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Abstract: Background and objectives: This review aims to delve into the role of artificial intelligence
in medicine. Ulcerative colitis (UC) is a chronic, inflammatory bowel disease (IBD) characterized by
superficial mucosal inflammation, rectal bleeding, diarrhoea and abdominal pain. By identifying the
challenges inherent in UC diagnosis, we seek to highlight the potential impact of artificial intelligence
on enhancing both diagnosis and treatment methodologies for this condition. Method: A targeted,
non-systematic review of literature relating to ulcerative colitis was undertaken. The PubMed and
Scopus databases were searched to categorize a well-rounded understanding of the field of artificial
intelligence and its developing role in the diagnosis and treatment of ulcerative colitis. Articles that
were thought to be relevant were included. This paper only included articles published in English.
Results: Artificial intelligence (AI) refers to computer algorithms capable of learning, problem solving
and decision-making. Throughout our review, we highlighted the role and importance of artificial
intelligence in modern medicine, emphasizing its role in diagnosis through AI-assisted endoscopies
and histology analysis and its enhancements in the treatment of ulcerative colitis. Despite these
advances, AI is still hindered due to its current lack of adaptability to real-world scenarios and
its difficulty in widespread data availability, which hinders the growth of AI-led data analysis.
Conclusions: When considering the potential of artificial intelligence, its ability to enhance patient
care from a diagnostic and therapeutic perspective shows signs of promise. For the true utilization of
artificial intelligence, some roadblocks must be addressed. The datasets available to AI may not truly
reflect the real-world, which would prevent its impact in all clinical scenarios when dealing with a
spectrum of patients with different backgrounds and presenting factors. Considering this, the shift
in medical diagnostics and therapeutics is coinciding with evolving technology. With a continuous
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advancement in artificial intelligence programming and a perpetual surge in patient datasets, these
networks can be further enhanced and supplemented with a greater cohort, enabling better outcomes
and prediction models for the future of modern medicine.

Keywords: artificial intelligence; ulcerative colitis; diagnosis; inflammatory bowel disease; artificial
neural networks

1. Introduction

Ulcerative colitis and Crohn’s disease are the primary compartments of inflammatory
bowel disease (IBD), characterized by superficial mucosal inflammation, rectal bleeding,
diarrhoea, and abdominal pain. The overlapping nature between the two conditions can
cause confusion; however, distinguishing factors, including risk factors, spectrums of
variability relating to genetic predisposition and histologic and endoscopic features aid
physicians from a diagnostic standpoint. Inflammatory Bowel Disease aetiology has not
been discovered, but advancing research suggests that individuals with a genetic predispo-
sition exhibit an imbalanced mucosal immune reaction to the normal bacteria residing in
the gut, which acts as a contributing factor in bowel inflammation [1,2]. Endoscopy, along-
side histological evaluation, assumes a paramount role in the diagnosis and management
of Inflammatory Bowel Disease (IBD), while also serving as a pivotal component in the
surveillance of colorectal cancer [3]. The introduction of artificial intelligence (AI) would
provide a new outlook in medical diagnostics and treatments, boosting patient care in a
spectrum of varied clinical settings. Artificial Intelligence (AI) possesses the capacity to
analyze vast quantities of intricate data at a markedly accelerated pace compared to human
capabilities. It adeptly illuminates nuances that may elude our eyes, thus allowing a metic-
ulous and unbiased assessment of the data at hand [4]. As a result of the vital application
of endoscopic techniques and gastroenterological imaging modalities, especially in IBD,
AI-based image analysis has the potential to be manipulated and incorporated in an array
of situations covering a spectrum from appraising endoscopic lesions to detecting cancer
and gauging disease activity and severity, including prognosis and treatment response
assessment [3]. This review aims to delve into the role of artificial intelligence in medicine.
By identifying the challenges inherent in UC diagnosis, we seek to highlight the potential
impact of artificial intelligence on enhancing both diagnosis and treatment methodologies
for this condition. AI aids in detecting mucosal lesions and automates the assessment of
UC biopsies, reducing interobserver variability. Deep learning models distinguish between
UC and Crohn’s Disease, while CADe systems accurately assess UC biopsies for prognostic
prediction [5]. CNN models achieve high accuracy in assessing endoscopic and histological
remission [6]. Precision medicine integrates domain insight with bioinformatics through
machine learning, enhancing treatment strategies by predicting therapeutic responses to
medications like infliximab [7]. Despite these advances, challenges arise in selection bias
and the need for multi-centre data for AI algorithms’ effectiveness. AI-assisted colono-
scopies require prospective studies for validation, and physician hesitancy highlights the
importance of maintaining human involvement in diagnostic decision-making [8,9]. Fi-
nancial incentives and payer requisites may foster the widespread adoption of AI-assisted
diagnostics and treatments in clinical settings [10].

2. Methods

A targeted, non-systematic review of the literature relating to ulcerative colitis was
undertaken. The PubMed and Scopus databases were searched to categorize a well-rounded
understanding of the field of artificial intelligence and its developing role in the diagnosis
and treatment of ulcerative colitis. Different combinations of keywords and phrases were
used to determine information related to the title at hand. Some of the keywords included
were ulcerative colitis, artificial intelligence, diagnosis, treatment, deep learning, machine
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learning, endoscopy, and neural networks. All materials published before 28 February 2024
were acceptable sources for this review. Only English articles that were published were
included in this literature review.

3. An Overview of Ulcerative Colitis with Modern Diagnostic Approaches

Individuals with ulcerative colitis (UC) may experience the progression of proximal
disease extensions, potentially advancing to pancolitis, along with structural and functional
alterations, resulting in diminished quality of life and disability [11]. While ulcerative colitis
may manifest mildly in some patients, it concurrently elevates the risk of cancer among
afflicted individuals, with the extent and duration of the disease playing significant roles in
determining this heightened susceptibility [12]. UC is quite more widespread than Crohn’s
disease. Northern Europe and North America exhibit the highest incidence and prevalence
rates of UC. Incidence ranges between 9 and 20 cases per 100,000 person-years, while
prevalence ranges from 156 to 291 cases per 100,000 individuals. These values are increased
in countries with developed industrial lifestyles. Within eastern countries and the southern
hemisphere, the incidence of the disease is far lower, which implies that the interplay of
environmental factors could play a crucial role in the initiation of UC [1]. Encompassing
the patient’s history, physical exam, endoscopic evaluation, histopathological findings,
radiographic changes and biochemical analysis is imperative for the diagnostic indications
of the disease’s severity. Endoscopic evaluation serves as a critical tool in pinpointing
the precise location and visualizing the extent of inflammation associated with ulcera-
tive colitis, delineating nuances such as segmental or continuous patterns and varying
degrees of severity. Moreover, it possesses the capability to discern non-inflammatory
pathologies, including dysplasia, thereby contributing to comprehensive diagnostic in-
sights. Advances in endoscopic techniques coupled with refined histological analyses
hold the promise of enhancing with regard to the diagnostic and therapeutic outcome of
ulcerative colitis. Advancements in endoscopic techniques and histological analysis hold
the potential to improve outcomes in the identification and therapy of ulcerative colitis [13].
Indeed, the precision of endoscopic assessments hinges largely on the interpretation and
biopsy obtaining experience of the performing endoscopist. While contemporary endo-
scopic devices commonly feature high-definition white light endoscopy (HD-WLE) with
optical-enhancing chromoendoscopy capabilities, the primary challenge lies in the accu-
rate interpretation rather than the visualization per se. A suboptimal quality endoscopy
may result in delayed diagnosis and the onset of severe complications, underscoring the
critical importance of both technical proficiency and interpretive acumen in endoscopic
examinations for conditions such as ulcerative colitis [14]. Given that therapy decisions
are impacted by endoscopic evaluation, inconsistencies among observers contribute to
suboptimal patient outcomes. Disease severity scoring is semi-quantitative and is not
frequently implemented. For instance, a study examining endoscopic scoring variability
among 58 gastroenterologists demonstrated an interrater agreement of only 0.47 for Mayo
endoscopic subscore ratings in UC patients and 0.33 for the Rutgeerts score in CD patients.
This variability led the study authors to estimate that one-third of patients would undergo
different management solely based on endoscopic findings [13].

4. The Scope of Artificial Intelligence and Its Subdivisional Networks

Artificial intelligence (AI) refers to computer algorithms capable of learning, problem
solving and decision-making [15]. In the medical field, artificial intelligence spans across
multiple areas such as gene sequencing, computational intelligence, intelligent diagnosis,
and medical robotics. Within gastrointestinal endoscopy, AI technology has demonstrated
superior performance compared to professional endoscopists in terms of accuracy for
analyzing and processing vast patient data. This superiority has been a driving force
behind the rapid adoption of AI in gastrointestinal endoscopy in recent years [16]. A key
subdomain within AI is the artificial neural network (ANN), comprising input, hidden
connections, and output layers. ANNs simulate the neural structure of the human brain,
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enabling decision-making through the weighted summation of evidence [17]. Machine
learning (ML) represents another pivotal field within the domain of artificial intelligence.
ML algorithms are designed to autonomously carry out tasks by deducing data patterns and
overlaps without direct programming. This capacity allows machine learning to analyze
extensive datasets, recognizing patterns to predict various disease attributes such as severity
or prognosis. By leveraging ML techniques, healthcare professionals can gain valuable
insights from complex medical data, thereby enhancing diagnostic accuracy, treatment
planning, and patient care [15]. Deep learning is a subfield of ML. It is regarded as having
many advantages in the clinical evaluation of UC patients. Recently, DL has significantly
improved the image recognition ability of AI, thanks to the vast availability of data sets
to provide learning materials for the neural networks. However, with the development of
CNN, medical pattern recognition has made tremendous progress. Within the span of a few
years, AI has made a remarkable breakthrough as a screening software for medical images
in areas including, but not limited to, ophthalmology, pathology and neurology [18].

5. Artificial Intelligence in the Diagnosis of Ulcerative Colitis

In the realm of gastrointestinal endoscopy, AI is progressing along two primary av-
enues: the detection of mucosal lesions through computer-aided detection (CADe) and
the characterization of these lesions via computer-aided diagnosis. Additionally, AI is
employed in monitoring the endoscopic procedure itself. Although over 30 histological
scoring systems have emerged for grading UC histology in recent years, their clinical
utility remains constrained by their intricate nature. Even in clinical trials where these
scores are utilized, there is significant interobserver variability, necessitating the use of
expensive central reading systems staffed by highly qualified pathologists to mitigate
discrepancies. Consequently, there is rapid growth in employing AI-based systems to
automate the assessment of UC biopsies, aiming to standardize evaluations and reduce
interobserver variability. Ongoing trials in this area show promising initial results. Ini-
tially, efforts concentrated on developing a Computer-Aided Detection (CADe) model to
assess UC biopsies using eosinophil counts. While the system exhibited strong agreement
with manual counts conducted by pathologists with the interclass correlation coefficient
= 0.81–0.92, after thorough evaluation, it was found that there was no relationship be-
tween the number of eosinophils and total inflammatory activity. The IBD encompasses
both Ulcerative Colitis and Crohn’s Disease, making their clinical diagnosis difficult to
differentiate [5]. Park et al. developed a deep learning model aimed at distinguishing
between the two diseases using RNA sequencing data derived from patients with inflam-
matory bowel disease (IBD) who had undergone endoscopy and had biopsy tissue samples
recorded. By aligning the RNA sequence dataset to the human reference genome GRCh38
and quantifying the associated gene models, 19,596 protein-coding genes were included.
The non-supervised learning algorithm revealed four entities to categorize the samples:
UC normal, CD normal, UC inflammatory, and CD inflammatory. The supervised deep
learning software was successfully able to classify inflammatory UC from inflammatory
CD. Following the pruning process, robust classifiers for distinguishing between normal
Crohn’s disease (CD) and normal ulcerative colitis (UC) were identified, which reinforced
the ML abilities for RNA sequencing analysis of endoscopic mucosal tissue to differentiate
between the two diseases [19].

Rio et al. mentioned researchers who focused on a simplified method focusing on
assessing UC activity solely based on neutrophils, which represent the primary indicator
of active inflammation. With the introduction of the PICaSSO histologic remission index,
incorporated into a CADe system capable of accurately distinguishing histological activity
from remission in UC biopsies [3]. Iaucci et al. followed up on the PICaSSO index and
used CADe systems to analyze UC biopsies for prognostic prediction. With 535 digitalized
biopsies graded according to the PHRI, the system’s ability to differentiate between histo-
logical activity and remission scored a sensitivity of 89% and a specificity of 85%. And an
overall AUROC of 0.97, maintaining a promising diagnostic performance despite a mixture
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of severities in grades [20]. Furthermore, the incorporation of AI in endoscopic procedures
would help improve the exactness and accuracy of evaluating disease severity, as well as
eliminating human factors for subjectivity, bias, and variability. Gutierrez et al. developed
and trained an artificial neural system to evaluate the Endoscopic Mayo Score (EMS) us-
ing colonoscopies obtained from Etrolizumab trials. The outcomes exhibited significant
promise, with AUROC values of 0.84, 0.85, and 0.85 for Mayo Clinic Endoscopic Subscores
≥1, ≥2, and ≥3, respectively [21]. Jiang et al., who utilized CNN models for the objective
analysis of endoscopic disease activity and UC predictive remission, provided excellent
data to support the assessment of inflammation in UC patients undergoing endoscopies
to predict histological remission. The MES-CNN model attained a diagnostic accuracy of
97.04% for assessing endoscopic remission of UC and an accuracy of 90.15% in severity
evaluation. In predicting histological remission, the CNN models achieved an accuracy of
91.28% and a kappa value of 0.826, surpassing the accuracy of endoscopists of 87.69% [6].
With endoscopes being utilized in diagnostic mucosal healing, Huang underscored the
reliability of the combination between CADe and endoscopic diagnostics by achieving
94.5% accuracy for diagnostic mucosal healings with the computer-aided diagnostic system
using deep learning and machine learning to classify mucosal healings [22].

Other indexes have been utilized in the quantitative assessment of the histopatho-
logical findings in UC. Researchers used a random forest classifier built on 13 human
interpretable features exported from cell and tissue models, which were used as accurate
prediction markers for the Nancy Histological Index scores, which yielded a weighted
kappa of 0.91 and a spearman correlation of 0.89. The absence of neutrophil extravasa-
tion was utilized as a prediction marker for histological remission, which achieved an
accuracy of 0.97, indicating the implications and power of computer assessments of UC
histopathology [23]. A separate study carried out by Bhambhavi et al. successfully trained
a Convolutional Neural Network (CNN) model through static images captured during
endoscopy to identify and categorize images based on the endoscopic Mayo score (EMS).
Their final model demonstrated robust performance, achieving an AUC of 0.89 for MES
1 disease, 0.86 for MES 2 disease and 0.96 for MES 3 disease. The overall accuracy of the
model reached 77.2% [24]. The rapid integration of AI gives the opportunity to operate
with a large database to detect occult disease patterns [4]. A study conducted by Chen
et al. collected data from 187 patients with ulcerative colitis (UC), which demonstrated the
significant advantages of CAD systems in medical imaging. This study revealed that CAD
systems not only enhance precision and sensitivity but also outperform traditional imaging
methods by providing more detailed imaging information, automating processes, and en-
suring better reproducibility. The study utilized data from 187 patients, with 525 validation
sets collected from 100 patients. Additionally, with 12,900 endoscopic images collected
from the final 87 patients, the information was utilized to train the CAD system. Each
endoscopic image was annotated with its corresponding histological diagnosis. The CAD
system exhibited substantial promise, achieving a diagnostic sensitivity of 74%, a specificity
of 97% and an overall accuracy of 91% in identifying histological inflammation related to
ulcerative colitis. These results underscore the potential of CAD systems to fully automate
the identification of UC-related histological inflammation, thereby enhancing diagnostic
capabilities and patient care [17]. Presents the usage of CAD by different institutions [25].
Another aspect of AI is the deep neural network (DNN). According to much research,
deep neural networks can evaluate the remission and activity of UC with only endoscopic
analysis, excluding the necessity of biopsies. It is believed that the objectivity, coherence,
and accuracy of these systems are like those of a professional endoscopist [16]. Sutton
et al. conducted a comparative analysis of various convolutional neural network (CNN)
architectures subjected to a varied set of 8000 labelled endoscopic images sourced from
HyperKvasir. HyperKvasir stands as the most extensive video and image dataset available
for gastrointestinal tract conditions to date. The dataset demonstrated robust capabilities in
accurately discerning between UC and non-UC pathologies, thereby aiding in determining
the Mayo score of endoscopic disease severity. The models were initialized with ImageNet
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weights, and hyperparameters were optimized through Grid Search employing fivefold
cross-validation. The DenseNet121 architecture emerged as the most effective, reaching
an accuracy of 87.50% and an AUC of 0.90, surpassing the baseline prediction metrics of
72.02% accuracy and 0.50 AUC obtained by predicting the majority class [26].

Different papers exploring the auto-grading of the endoscopic modality have also
highlighted the benefits of employing deep learning models. For example, Takenaka et al.
conducted an evaluation using a DL network-based model on endoscopic imaging of
patients suffering from UC. Their model demonstrated high accuracy, reaching 90.1% when
assessing endoscopic imaging from 40,758 UC patients with signs of remission from the
endoscopy, all of whom had a UC Endoscopic Severity Index Score of 0. Alongside this,
Yao et al. introduced modifications to the video operation model by segmenting endo-
scopic videos into 1 FPS imaging stacks. They then automated processes such as rotation,
fragmentation and pre-processing of the images to ensure conformity to a standard scale.
The resultant model successfully generated Mayo endoscopic subscores for patients in an
automated manner [16]. Endoscopic and histological remission (ER and HR) are therapeutic
goals in UC. To improve histological prediction, Iacucci et al. developed a convolutional
neural network to separate ER/activity from histology prediction and white light en-
doscopy flare risk. The CNN system demonstrated a sensitivity of 72% and a specificity of
87%, with an AUROC of 0.85 for detecting ER (UCEIS ≤ 1) in white light endoscopy videos.
In virtual chromoendoscopy videos (PICaSSO ≤ 3), the sensitivity was 79%, the specificity
was 95%, and the AUROC was 0.94 for ER detection. By incorporating PICaSSO, the CNN
could provide a thorough histologic, clinical, and endoscopic assessment [27]. Hamamoto
et al. utilized the no-code AI software Version 1/2017 “Teachable Machine” to develop a
model capable of recognizing patterned individual differences between histological images
of ulcerative colitis, adenocarcinoma, non-UC coloproctitis, and control samples. They
curated a dataset consisting of 5100 histological images, which were designed to train the
software, and a further 900 for testing, all meticulously annotated by pathologists. Their
model achieved remarkable accuracies of 0.99 for UC, 1.00 for non-UC coloproctitis, 0.99 for
adenocarcinoma, and 0.99 for control samples. This study demonstrated the efficacy of a
user-friendly, no-code AI platform in accurately identifying the distinct histologic patterns
associated with UC [28].

Biomarker prediction has been explored using least absolute shrinkage and selection
operators (LASSO) and random forest (RF). By using LASSO and RF to screen signature
genes through a GEO database, the ANN and ROC curves were used to judge the diag-
nostic significance of these tools regarding signature genes. The intersection of LASSO,
RF, and WGCNA analyses revealed eight signature genes: DUOX2, MMP10, SLC6A14,
S100A8, GREM1, CXCL1, IL-1B and TCN1. These markers are seen as credible for the
diagnosis of UC due to their role in immune mediation for the advancement of the dis-
ease [29]. In a separate study, Wang et al. focused on identifying potential biomarkers for
ulcerative colitis (UC) and understanding their association with immune infiltration. By
merging two datasets, the researchers analyzed 193 UC samples and 42 normal samples.
Using computational methods, 102 differentially expressed genes (DEGs) were discovered
between UC and normal samples, with pathways related to interleukin-17 and cytokine
receptors being significantly enriched. Through machine learning techniques and ROC
analysis, five genes (DUOX2, DMBT1, CYP2B7P, PITX2, and DEFB1) were identified as
promising diagnostic markers for UC. Furthermore, analysis of immune cell infiltration
revealed correlations between these biomarkers and various immune cells, such as regula-
tory T cells, CD8 T cells, and macrophages. These findings suggest that these biomarkers
may provide valuable insights into the progression of UC and its underlying immune
mechanisms [30]. Li et al. underscored the potential for biomarker usage in the screening
diagnostics for ulcerative cancer by selecting patients with mucosal intestinal biopsy of UC
from the GEO database. By employing machine learning and WGCNA analysis, poten-
tial UC biomarkers were isolated with ROC curves employed for result validation, while
the mechanisms of these marker genes were predicted through immune cell infiltration
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analysis, co-expression analysis, and competitive endogenous network analysis. The study
identified five potential biomarkers, TIMP1, IRAK3, HMGCS2, APOBEC3B and SLC6A14,
with diagnostic and therapeutic relevance for UC. It verified their involvement in UC
occurrence and progression through immune infiltration analysis and proposed a plausible
RNA regulatory pathway governing UC advancement [31]. Khorsani et al. utilized an
interplay between a developed feature selection algorithm and a support vector machine
classifier to create a model that could differentiate between diseased and healthy individ-
uals through the expression values of 32 genes in colon samples. The model accurately
detected all active cases and sustained an average precision of 0.62 for inactive cases. The
final UC detection model demonstrated superior performance compared to a biomarker
discovery software using machine learning, BioDiscML, in terms of average precision [32].
An individual study aimed to develop an effective diagnostic model for ulcerative colitis
(UC). By analyzing microarray data from GSE48634 and GSE87473 obtained from GEO,
126 differentially expressed genes (DEGs) between UC patients and normal samples were
discovered. GO and KEGG analyses suggested enrichment in immune-related processes
and pathways. Immune cell infiltration analysis showed significant differences between
UC patients and normal. A logistic regression model incorporating expression levels of
selected genes achieved an average AUC of 0.8497 in the training set (GSE87473) and 0.7208
in an independent validation set (GSE48634). Notably, hub genes like DEFA5, REG1A,
REG1B, DEFA6 and REG3A were identified as potentially associated with UC progression.
Overall, the results indicate that this five-gene logistic regression model holds promise for
reliable UC diagnosis [33].

6. Artificial Intelligence in the Treatment of Ulcerative Colitis

With the development of AI, there has been a notable shift in the perception of the treat-
ment goals for ulcerative colitis. In the evolution of therapeutic strategies, the traditional
goal of attaining clinical remission has undergone a significant shift with the emergence of
musical healing (MH). This paradigm shift reflects advancements in medical therapeutics
and aims to redefine treatment endpoints capable of fundamentally altering the natural
course of disease. MH is associated with a reduced risk of complications, including neo-
plasia, hospitalization, surgery and relapse. Despite the multitude of endoscopic scoring
systems proposed in recent years, a consensus regarding the definition of MH remains
elusive [4]. According to the International Organization for the Study of Inflammatory
Bowel Disease (IOIBD), MH can be identified as an absence of ulcers and friability in every
accessible segment of the colonic mucosa [34]. A report by Colombel et al. [35], In numerous
studies, MH has typically been characterized as a Mayo Endoscopic Score (MES) of 0–1,
irrespective of histological findings. Major clinical trials have established endoscopic remis-
sion as MES ≤ 1. Nonetheless, while clinical symptoms have been the primary focus in
most studies on UC, endoscopic remission has commonly been incorporated as a secondary
endpoint [14,15].

In 2020, Hota et al. conducted a comprehensive investigation into the perioperative and
treatment outcomes associated with robotic, laparoscopic and open surgeries in the manage-
ment of Crohn’s disease (CD). Their study involved the analysis of a database comprising
5158 patients diagnosed with CD. Leveraging Convolutional Point Transformer (CPT) codes,
they meticulously identified the surgical procedures employed for patient bowel resection.
Comparative analyses across the three surgical modalities were conducted, with a particular
focus on assessing the incidence of anastomotic fistula. Employing sophisticated multivariate
analysis techniques, the researchers derived a confidence interval for the dominance ratio
of 95%. Notably, their findings indicated that robotic surgery demonstrated non-inferiority
as a treatment option for bowel resection in ulcerative colitis recipients. This research sheds
valuable light on the differences in surgical approaches and their associated outcomes, con-
tributing to the refinement of treatment strategies in UC management [36]. Given the intricate
nature of inflammatory bowel disease (IBD) pathogenesis, relying solely on the interpretation
of individual omics data sets often proves inadequate for understanding complex biological
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processes. Hence, it is crucial to perceive the previously discussed omics methodologies as
a unified entity. The fusion of several omics techniques into a network presents potential
for elucidating the pathways implicated in pathogenesis and facilitating the discovery of
different subgroups, thereby enhancing therapy regimens for IBD. Conducting simultaneous
assessments of diverse molecules spanning transcriptomic, genomic, microbiome, proteomic
and metabolomic levels is feasible, with subsequent integration of findings into multiomics
models. These biomarkers enable a deeper understanding of disease pathogenesis, facilitate
the discovery of promising predictive biomarkers, and promote the development of early
patient-tailored treatment plans. Several ongoing multiomics projects focus on investigating
IBD heterogeneity to enhance precision management strategies [37]. The treatment goal
for IBD has shifted from a typical clinical remission to a more comprehensive objective of
achieving deep remission or mucosal healing. As a result, clinical decision-making has be-
come increasingly challenging for both patients and clinicians. Presently, the efficacy and
anticipated tolerability of novel treatment options typically guide clinical decisions. However,
numerous challenges persist in optimizing treatment strategies, enhancing the long-term
prognosis, and altering the natural course of IBD. Machine learning (ML) offers promise due
to its capacity to rapidly compile and apply medical information and imaging modalities
to generate therapeutic outcomes, enabling predictions regarding IBD progression or the
effectiveness of specific medications [17].

Liu et al. demonstrated a new outlook for combining digital histopathological histomic
features and ML algorithms to predict the response of paediatric patients to certain therapies.
This will aid in patient identification and classification into those who can achieve remission
without the use of steroids when on mesalamine monotherapy. The algorithm was trained on
187,571 informative patches from rectal biopsies stained with H-E. A total of 292 samples from
treatment-naive paediatric patients with ulcerative colitis were used within the multicenter
inception cohort study. With the machine learning algorithm being initially trained on
250 histomic features, it achieved an AUROC of 0.87 with a 0.90 accuracy within the WSI
level for treatment response prediction. The potential for the algorithm’s clinical usability was
reinforced when a subdivision of 18 histomic features demonstrated a similar performance,
achieving 0.89 and 0.90 for the AUROC and accuracy, respectively, highlighting its potential
for a standardized clinical use case within practical boundaries [38,39].

With infliximab being a first-line immunomodulator therapy for ulcerative colitis, it is
imperative to assess patients who show primary non-responsiveness to the drug [40,41].
This affects around one-third of patients [42]. A study by Chen et al. assessed the GEO
datasets and utilized the RobustRankAggreg software to characterize and discover differen-
tially expressed genes between primary non-responders and those who can benefit from the
drug. For selected genes to obtain a predictive value, ANN was employed, with primary
results suggesting that the interplay between CHP2, CDX2, NOX4, RANK, HSD11B2 and
VDR provides a satisfactory indicator of a personalized therapeutic response to infliximab.
The repeated overall (AUC) ranged from 0.850 to 0.103. Alongside this, the utilization of an
independent GEO dataset confirmed the predictive value of the six differentially expressed
genes for primary non-responsive patients to infliximab, yielding an overall AUC range
of 0.759 ± 0.065. Given that the detection of proteins does not necessitate that fresh tissue
and can circumvent multi-biopsies, the researchers analyzed key information for protein
detection to measure the suitability of RNA level by employing immunohistochemistry
staining of biopsy tissues obtained from the colon of UC patients treated with infliximab,
alongside ROC analysis, to delve deeper into the clinical application potential of the six
DEGs at the protein level. RANK and VDR were confirmed to be associated with inflix-
imab efficacy through immunohistochemistry of the colonic tissue. This provides a bridge
between the impact of ANN software Chainer v 7.8.1 on the prediction of patient responses,
thus allowing a more tailored approach for patients with selected genes [7]. A similar study
carried out by Popa et al. underscores the ability of artificial intelligence to be utilized for
personalized therapy management, having attained outstanding performance in predicting
disease activity at one year, with a test set accuracy of 90% and an AUC of 0.92, along with a
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validation set accuracy of 100% and an AUC of 1. The proposed machine learning solution
demonstrates potential as a valuable tool for aiding clinicians’ decisions. Upon validation
across independent, external cohorts of patients, it could support clinical judgments regard-
ing dose adjustments or the transition to alternative biological therapeutics [43]. The role of
machine learning has been emphasized with an array of therapeutics, with biologics such
as vedolizumab being hypothetically optimized for personal therapeutic use in patient
treatment, with researchers using the algorithm to identify patients who would not achieve
steroid-free clinical remission at week 22; therefore, allowing a new clinical approach to
be curated with alternative biologics that would potentially improve their therapeutic
journey [44]. With the development of precision medicine, its clinical applications allow pa-
tients to be treated based on their disease and reaction to drug administration [45]. Gardiner
et al. wanted to combine domain insight with bioinformatics through a machine learning
mechanism that would assist in predicting the changes and variability in drug responses
between different patients. Using the ML software RandomForest RF (version 4.7-1.1);
xgboost 2.0.3 as a building block, these researchers used the data produced by the ML to
interpret the response of patient fresh tissue receiving pharmaceuticals under preclinical
testing. As a means of assessing the effectiveness of drugs, they evaluated the decrease in
the release of the inflammatory cytokine TNFα from fresh IBD tissues with and without
the presence of test drugs. Initially, they investigated the impact of a mitogen-activated
protein kinase (MAPK) inhibitor, but later demonstrated that this methodology could be
extended to examine other targets, test drugs, or mechanisms of interest. Given patient
variations ranging from age to gender or condition, their findings revealed differences
in drug efficacy when assessed through ex vivo assays. Furthermore, they correlated
new genetic polymorphisms with variations in patient responses to the anti-inflammatory
treatment BIRB796 (Doramapimod). This allowed their approach to not only model drug
responses in IBD but also identify the most influential features, employing a transparent
machine learning precision medicine strategy [46].

7. The Post-Operative Role of Artificial Intelligence

Patients with ulcerative colitis have a high risk of postoperative complications following
a total abdominal colectomy [47]. By utilizing machine learning, researchers were able to
predict the rate of minor postoperative complications in patients with high-risk ulcerative
colitis. Data from 32 patients were used for the statistical analysis, focused on preoperative
therapy, biographical data, blood chemistry, nutritional status, surgical technique and blood
transfusion. The algorithm demonstrated that low preoperative serum albumin levels were
associated with a higher risk of minor infection, and if the length of the preoperative stay
was >4 days, the body temperature was >37.5 ◦C, and the blood transfusion massed to 1 or
more units, the risk of infectious morbidity rose significantly. Despite a small sample size,
its use case can be applied to a suitable clinical scenario, given that a larger dataset will be
available for the learning algorithm to be trained on [48]. Mizuno explored the predictive
capabilities of artificial intelligence and deep learning to predict pouchitis in patients with
ulcerative colitis following ileal pouch-anal anastomosis. In this paper, a total of 43 patients
were included, with pouchitis occurring in 33% of patients after ileostomy closure. The CNN
model measured predictive rates of pouchitis following ileostomy closure through fivefold
cross-validation. Results suggest that most patients’ modified pouchitis disease activity index
scores, which did not match before and after the ileostomy closure, had worse scores than
before. The predictive rate of pouchitis using the deep learning model was 20% greater than
that of using the modified pouchitis disease activity index. This was highlighted, where the
predictive accuracy for pouchitis determined by the area under the curve using the DL model
was 84%. In contrast, the predictive accuracy for pouchitis using the modified pouchitis
disease activity index prior to ileostomy closure was 62%, suggesting that the DL program
could be used to determine early interventions for pouchitis [49].

We included a table to demonstrate and summarize the use of artificial intelligence
and how it is being integrated into UC diagnostics and therapeutics (Table 1).
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Table 1. Performance results of existing studies.

Study Publication Year Diagnostics or
Therapeutics Dataset Utilized AI Model Results Conclusion

Becker et al. [21] 2021 Diagnostic 1672 endoscopic videos

End-to-end
computer-assisted
diagnosis system based on
deep learning

AUC = 0.84 for Mayo Clinic
Endoscopic Subscore ≥1, 0.85 for
≥2, and 0.85 for ≥3), with
reduced manual annotation
required.

The evaluation on 1672 endoscopic
videos from the etrolizumab Phase
II Eucalyptus and Phase III
Hickory and Laurel trials
demonstrates high accuracy and
robustness, which provides an
increase in efficiency and
standardization in the diagnosis of
UC within a clinical setting.

Bhambhvani HP
et al. [24] 2021 Diagnostics 777 Still images of

endoscopies
101-layer convolutional
neural network model

The model achieved AUCs of
0.96 for MES 3, 0.86 for MES 2,
and 0.89 for MES 1 classifications,
with an overall accuracy of 77.2%.
Across the MES categories, it
showed an average specificity of
85.7%, a sensitivity of 72.4%, a
PPV of 77.7%, and an NPV of
87.0%.

They have illustrated the robust
capability of a deep learning model
to effectively classify different
grades of endoscopic disease
severity in ulcerative colitis
patients.

Sutton et al. [26] 2022 Diagnostics
8000 labelled endoscopic
still images derived from
HyperKvasir

1. InceptionV3
2. ResNet50
3. VGG19
4. DenseNet121

The DenseNet121 architecture
achieved the highest accuracy
(87.50%) and Area Under the
Curve (AUC) (0.90), surpassing
the majority class prediction (‘no
skill’ model), which attained
72.02% accuracy and 0.50 AUC.

They achieved moderate-to-good
performance, distinguishing
between mild and
moderate-to-severe ulcerative
colitis (UC), using a relatively
small public dataset of endoscopy
images. This achievement is
notable, considering that images
with global labels, such as Mayo
endoscopic subscores, typically
necessitate larger datasets to
achieve satisfactory performance.
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Table 1. Cont.

Study Publication Year Diagnostics or
Therapeutics Dataset Utilized AI Model Results Conclusion

Iacucci et al. [20] 2023 Diagnostic 535 digitalized biopsies VGG16 CNN

The system effectively
distinguished between
histological activity and
remission, achieving sensitivities
and specificities of 89% and 85%
(PHRI), 94% and 76% (Robarts
Histological Index), and 89% and
79% (Nancy Histological Index),
respectively. Moreover, it
accurately predicted endoscopic
remission/activity with 79% and
82% accuracy for UC endoscopic
index of severity and Paddington
International virtual
ChromoendoScopy ScOre,
respectively. The hazard ratios
for disease flare-up between
histological activity and
remission groups were 3.56 for
PHRI assessed by pathologists
and 4.64 for AI-assessed PHRI.

The CAD system accurately
differentiated between disease
remission and activity, as defined
by the PHRI, RHI, and NHI, in
real-time. Additionally, it
effectively predicted corresponding
endoscopic activity and assessed
the risk of flare-up.

Iacucci et al. [27] 2023 Diagnostic 1090 endoscopic videos ResNet50 CNN

The AI system detected
endoscopic remission (UCEIS ≤
1) in WLE videos with 72%
sensitivity, 87% specificity, and
an AUROC of 0.85. For VCE
videos (PICaSSO ≤ 3), sensitivity
was 79%, specificity 95%, and
AUROC 0.94.

The system effectively
differentiated between endoscopic
remission/activity and predicted
HR and clinical outcomes from
colonoscopy videos. It represents
the inaugural computer model
designed to detect
inflammation/healing on VCE
using PICaSSO and the pioneering
computer tool offering
comprehensive clinical, endoscopic
and histologic assessments.
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Table 1. Cont.

Study Publication Year Diagnostics or
Therapeutics Dataset Utilized AI Model Results Conclusion

Yang et al. [29] 2023 Diagnostics

The gene expression
profiles were obtained
from the GEO database
and subsequently received
preprocessing and
normalization using R
software.

1. LASSO
2. Random Forest

Through the intersection of
LASSO, RF, and WGCNA results,
8 signature genes were discerned:
TCN1, S100A8, DUOX2, CXCL1,
IL-1B, SLC6A14, GREM1, and
MMP10.

Credible potential biomarkers for
the diagnosis and therapy of UC
were identified through the
discovery of 8 signature genes.
These biomarkers are integral to
the immune response underlying
the onset and progression of UC,
facilitated by reciprocal
interactions between the signature
biomarkers and immune-infiltrated
cells.

Wang et al. [30] 2023 Diagnostic
Two datasets were merged
to obtain 193 UC samples
and 42 normal samples.

1. LASSO
2. SVM-RFE

In our analysis, 102 differentially
expressed genes (DEGs) were
identified, with 64 showing
significant upregulation and 38
exhibiting significant
downregulation. Machine
learning methods and ROC tests
validated DUOX2, DMBT1,
CYP2B7P, PITX2, and DEFB1 as
pivotal diagnostic genes for UC.

Prospective biomarkers for UC,
including DUOX2, DMBT1,
CYP2B7P, PITX2, and DEFB1, were
identified. These biomarkers, along
with their associations with
immune cell infiltration, may offer
a novel perspective on
understanding the progression of
UC.

Li et al. [31] 2022 Diagnostic
The GEO database was
used to obtain gene data
sets.

1. LASSO
2. SVM-RFE

A total of 107 differentially
expressed genes were identified,
predominantly linked to
biological functions like humoral
immune response and
inflammatory response. From
this set, five marker genes were
meticulously screened, revealing
associations with M0
macrophages, quiescent mast
cells, M2 macrophages, and
activated NK cells in terms of
immune cell infiltration.

The study identified five
biomarkers—IRAK3, HMGCS2,
APOBEC3B, SLC6A14, and
TIMP1—as potential aids in the
diagnosis and treatment of UC. It
verified their involvement in the
onset and advancement of UC
through immune infiltration
analysis and proposed a potential
RNA regulatory pathway
governing UC progression.
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Table 1. Cont.

Study Publication Year Diagnostics or
Therapeutics Dataset Utilized AI Model Results Conclusion

Khorasani et al. [32] 2020 Diagnostic

The NCBI Gene
Expression Omnibus
database (GEO) was
utilised for expression
profiling studies using
colonic samples from UC
subjects

1. SVM
2. DRPT

Achieving flawless detection of
all active cases, the model
exhibited an average precision of
0.62 in identifying inactive cases.
This performance was
benchmarked against results
from prior studies and a machine
learning-based biomarker
discovery tool, BioDiscML,
recently introduced into the
scientific field.

In terms of average precision, the
final model for detecting UC
demonstrates superior
performance.

Jiang et a [6] 2023 Diagnostics 12,257 endoscopic images Inception-ResNet-v2

The MES-CNN model attained
an accuracy of 97.04% in
diagnosing endoscopic remission
in UC cases. Additionally, the
MES-CNN and UCEIS-CNN
models demonstrated accuracies
of 90.15% and 85.29%,
respectively, in evaluating the
endoscopic severity of UC. In
predicting histological remission,
CNN models achieved accuracy
and kappa values of 91.28% and
0.826, respectively, surpassing
the accuracy achieved by human
endoscopists (87.69%).

Based on evaluations of MES and
UCEIS by expert
gastroenterologists, the proposed
artificial intelligence model
provides accurate assessments of
inflammation in UC endoscopic
images. Furthermore, it
demonstrates reliable predictive
capability for histological remission

Chen et al. [7] 2021 Therapeutics Independent GEO dataset. ANN

The study suggests that a
combination of six genes—CDX2,
CHP2, HSD11B2, RANK, NOX4,
and VDR—accurately predicts
patients’ response to IFX therapy,
with a repeated overall AUC
ranging from 0.850 ± 0.103. The
validation using an independent
GEO dataset confirms the
predictive value of these genes,
with an overall AUC range of 0.759
± 0.065 for forecasting patient
non-response (PNR) to IFX.

The study established a correlation
between RNA and protein models,
with both being accessible.
However, the composite signature
of VDR and RANK proves more
favourable for clinical application.
This composite signature could
potentially guide the pre-selection
of patients likely to benefit from
pharmacological treatment in the
future.
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Table 1. Cont.

Study Publication Year Diagnostics or
Therapeutics Dataset Utilized AI Model Results Conclusion

Popa et al. [43] 2020 Therapeutics 55 UC Patients Multi-layered Perceptron
Neural Network Model

The classifier demonstrated
outstanding performance in
predicting disease activity at one
year. On the test set, it achieved
an accuracy of 90% and an AUC
of 0.92. Meanwhile, on the
validation set, it attained a
perfect accuracy of 100% and an
AUC of 1.

After validation on independent
external patient cohorts, the ML
solution could serve as a valuable
tool for clinicians, aiding them in
decisions regarding dosage
adjustments or transitions to
alternative biologic agents.

Gardiner et al. [46] 2022 Therapeutics 25 patient organoculture
assay data sets

1. RF
2. XGBoost
3. SVM
4. KNN
5. Adaboost

The top-performing model
accurately predicted TNFα levels
using demographic, medicinal
and genomic features, achieving
a remarkably low error rate of
only 4.98% on unseen patients.
Additionally, the findings
revealed differences in drug
effectiveness, as measured by ex
vivo assays, among patients
based on gender, age or
condition. Moreover, new genetic
polymorphisms were identified,
highlighting their role in
influencing variations in patient
response to the
anti-inflammatory treatment
BIRB796 (Doramapimod).

They showcased the promise of
merging preclinical functional
assessments of drug effectiveness
and inter-patient variability in
drug response. By integrating
cutting-edge omics, bioinformatics
and ML/AI methodologies, they
introduced a novel approach to
crafting precision medicine
strategies during the initial phases
of drug development.

Miyoshi et al. [44] 2021 Therapeutics 34 Patients RF

During validation with external
Cohort 2, the prediction model
exhibited positive and negative
predictive values of 54.5% and
92.3%, respectively. This tool
proved valuable in identifying
UC patients unlikely to achieve
SFCR at week 22 while
undergoing VDZ therapy.

This study demonstrates the
feasibility of personalized
treatment for UC through machine
learning with real-world data,
serving as a proof-of-concept.
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8. Prematurity in the Advancement and Utilization of Artificial Intelligence in
Ulcerative Colitis

With the expansive and instrumental development in the field of medical artificial
intelligence, the neural software’s, capabilities suffer from some drawbacks that impair
their utilization in modern medicine. It is essential to acknowledge and address the
inherent challenges and limitations. These include issues like selection bias, spectrum
bias and the simplistic nature of algorithm development, which may lead to inappropriate
generalizations of results. The current evidence is primarily based on retrospective data
used to train AI algorithms. However, these datasets, often derived from clinical trials
of investigational drugs, may not fully represent real-world scenarios. Moreover, CNN
models trained on data from single centres have shown limited performance in broader
applications, highlighting the importance of acquiring multicenter data and externally
validating AI algorithms. Prospective studies, aligned with the new CONSORT-AI and
SPIRIT guidelines, are crucial to assessing the effectiveness of AI in managing inflammatory
bowel disease (IBD). Challenges also exist in AI-assisted colonoscopies, particularly in
adapting algorithms from still images to real-life video colonoscopies. Analyzing raw
full-motion videos and distinguishing informative frames (e.g., affected mucosa) from non-
informative ones poses a significant challenge. Real-time analysis is necessary to provide
insights into disease type, severity, treatment response and neoplasia development [4].

In a survey encompassing 487 pathologists across 59 nations, the predominant senti-
ments included concerns regarding physician distrust, technophobia, liability, and the fear
of potential replacement by AI, all of which may contribute to hesitancy in adopting AI
tools. Most respondents (72.0%) expressed optimism about the potential positive impact of
AI on diagnostic efficiency. However, most respondents also emphasized the importance of
maintaining human involvement in the diagnostic decision-making process [8,9]. Within
the existing fee-for-service reimbursement structure, integrating AI may pose challenges;
nevertheless, in a value-based model prioritizing enhanced quality and reduced costs, AI is
poised to serve as a valuable supplement. It is conceivable that payers might stipulate cov-
erage for new drugs or treatment continuations contingent upon the availability of accurate
assessments of patients’ disease activity facilitated by AI-driven technology. Consequently,
payer requisites for reimbursement are anticipated to be pivotal in fostering the uptake of
AI within healthcare. Notably, the widespread adoption of AI-assisted optical biopsy in
clinical settings may hinge on the provision of financial incentives through reimbursement
fee codes [10].

The diversity among data sources utilized for training and validation, such as the
presence of missing or irrelevant data, can diminish the performance of AI models when
applied in real-world scenarios. Furthermore, the intricate nature of real-world conditions
may not be sufficiently integrated into AI algorithms, potentially resulting in lower ac-
curacies of AI tools in practical settings compared to what is reported in the academic
literature [8]. AI models may face challenges with rare clinical scenarios due to their limited
representation in training datasets. Overcoming this limitation requires the availability
of high-quality, standardized datasets that encompass geographic, technical and patient
diversity [50].

9. Discussion

Ulcerative colitis (UC) imposes a significant burden on affected individuals, with a
spectrum of disease severity ranging from mild manifestations to potentially life-altering
complications. Epidemiological data underscore the global impact of UC, with incidence
rates ranging from 9 to 20 cases per 100,000 person-years and prevalence rates between
156 and 291 cases per 100,000 individuals. Notably, regions with developed industrial
lifestyles exhibit higher prevalence rates, implicating environmental factors in disease
initiation [1].

Endoscopic evaluation stands as a cornerstone in UC diagnosis, offering critical in-
sights into disease localization and severity. However, challenges persist in achieving
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consistent interpretations of endoscopic findings. For instance, interrater agreement for
Mayo endoscopic subscore ratings among gastroenterologists remains modest, with re-
ported values of 0.47 [13]. These inconsistencies underscore the need for standardized
diagnostic approaches. Artificial intelligence (AI) holds promise for revolutionizing UC
diagnosis and management. Advanced AI-driven technologies, such as computer-aided
detection (CADe) and computer-aided diagnosis, aim to mitigate interobserver variability
in assessing UC biopsies. Notably, CADe models using deep learning techniques exhibit
strong agreement with manual eosinophil counts conducted by pathologists, with an
interclass correlation coefficient ranging from 0.81 to 0.92 [5].

The evolution of treatment goals for ulcerative colitis (UC) has been profoundly in-
fluenced by advancements in artificial intelligence (AI), leading to a paradigm shift in
therapeutic strategies. Traditionally, the primary goal has been to achieve clinical remis-
sion, but the emergence of musical healing (MH) has introduced a new perspective. MH,
associated with a reduced risk of complications such as neoplasia, hospitalization, surgery,
and relapse, aims to redefine treatment endpoints to fundamentally alter the natural course
of the disease. Despite the proliferation of endoscopic scoring systems, a consensus on the
definition of MH remains elusive. However, according to the International Organization for
the Study of Inflammatory Bowel Disease (IOIBD), MH can be identified as the absence of
ulcers and friability in every accessible segment of the colonic mucosa. Major clinical trials
have established endoscopic remission as a Mayo Endoscopic Score (MES) of 0–1, regardless
of histological findings [34,35]. In 2020, Hota et al. conducted a comprehensive investi-
gation into perioperative and treatment outcomes associated with robotic, laparoscopic,
and open surgeries in managing Crohn’s disease (CD). Analyzing a database of 5158 CD
patients, they identified surgical procedures using Convolutional Point Transformer (CPT)
codes. Their findings indicated that robotic surgery demonstrated non-inferiority as a
treatment option for bowel resection in UC recipients. The intricate nature of inflamma-
tory bowel disease (IBD) pathogenesis necessitates a holistic approach [36]. Assessing
primary non-responsiveness to infliximab, a first-line immunomodulator therapy for UC,
is crucial. Chen et al. identified genes like CHP2, CDX2, NOX4, RANK, HSD11B2 and
VDR as predictive markers for the therapeutic response to infliximab. Immunohistochem-
istry confirmed the associations of RANK and VDR with infliximab efficacy at the protein
level [7]. In summary, the integration of AI, multiomics approaches, and machine learning
algorithms is revolutionizing the management of UC. These advancements offer personal-
ized treatment strategies, improve treatment outcomes, and enhance our understanding of
disease pathogenesis.

Machine learning algorithms offer valuable predictive insights into postoperative
outcomes. For instance, algorithms predict minor postoperative complications based on a
range of factors, including preoperative serum albumin levels, length of preoperative stay,
and perioperative variables [48]. These predictive models enable proactive management
strategies to mitigate postoperative risks and enhance patient recovery. Incorporating AI-
driven approaches into UC management represents a paradigm shift, offering opportunities
to enhance diagnostic accuracy, optimize treatment strategies, and improve postoperative
outcomes. However, realizing the full potential of AI in clinical practice necessitates
further research, validation, and integration into existing healthcare frameworks, ensuring
equitable access and improved patient-centred care.

10. Conclusions

When considering the potential of artificial intelligence, its ability to enhance patient
care from a diagnostic and therapeutic perspective shows signs of promise. With the
integration of neural networks and convolutional layers, the capabilities of this intelligent
software allow for expansive cohort analysis and prediction, giving physicians a more
defined understanding of how to approach each individual patient.

For the true utilization of artificial intelligence, some roadblocks must be addressed.
The datasets available to AI may not truly reflect the real-world, which would prevent its
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impact in all clinical scenarios when dealing with a spectrum of patients with different
backgrounds and presenting factors. Moreover, there is still a sense of physician distrust
and technophobia, sparking a certain fear factor when entrusting the software with the life
of a patient. This leads to physicians maintaining their stance of being the single driving
factor for the management of a patient in terms of their diagnostic and therapeutic plan.

Considering this, the shift in medical diagnostics and therapeutics is coinciding with
evolving technology. With a continuous advancement in artificial intelligence programming
and a perpetual surge in patient datasets, these networks can be further enhanced and
supplemented with a greater cohort, enabling better outcomes and prediction models for
the future of modern medicine.
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