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Abstract: The SARS-CoV-2 virus, responsible for COVID-19, often manifests symptoms akin to viral
pneumonia, complicating early detection and potentially leading to severe COVID pneumonia and
long-term effects. Particularly affecting young individuals, the elderly, and those with weakened
immune systems, the accurate classification of COVID-19 poses challenges, especially with highly
dimensional image data. Past studies have faced limitations due to simplistic algorithms and small,
biased datasets, yielding inaccurate results. In response, our study introduces a novel classification
model that integrates advanced texture feature extraction methods, including GLCM, GLDM, and
wavelet transform, within a deep learning framework. This innovative approach enables the effective
classification of chest X-ray images into normal, COVID-19, and viral pneumonia categories, overcom-
ing the limitations encountered in previous studies. Leveraging the unique textures inherent to each
dataset class, our model achieves superior classification performance, even amidst the complexity
and diversity of the data. Moreover, we present comprehensive numerical findings demonstrating the
superiority of our approach over traditional methods. The numerical results highlight the accuracy
(random forest (RF): 0.85; SVM (support vector machine): 0.70; deep learning neural network (DLNN):
0.92), recall (RF: 0.85, SVM: 0.74, DLNN: 0.93), precision (RF: 0.86, SVM: 0.71, DLNN: 0.87), and
F1-Score (RF: 0.86, SVM: 0.72, DLNN: 0.89) of our proposed model. Our study represents a significant
advancement in AI-based diagnostic systems for COVID-19 and pneumonia, promising improved
patient outcomes and healthcare management strategies.

Keywords: texture-based features; classification; machine learning; deep learning; COVID-19;
viral pneumonia

1. Introduction

The COVID-19 pandemic, originating as a respiratory virus in late 2019 in China,
swiftly escalated into a global crisis, prompting the World Health Organization (WHO)
to declare it a pandemic due to its rapid transmission and severe symptoms [1,2]. Its
unprecedented spread has precipitated significant economic challenges and profound
human suffering worldwide since its onset [1]. Governments worldwide have enacted
stringent measures and embraced new lifestyles to mitigate its spread [3]. However, despite
these efforts, the virus has undergone multiple mutations, rendering it more resistant to
advanced treatment techniques [1], implying its persistence for an extended period.

Detecting and distinguishing COVID-19 from other causes of viral pneumonia early
on is crucial, as it may progress to COVID pneumonia, a severe complication. How-
ever, COVID-19 shares most symptoms with other viral pneumonias like the flu, making
symptom-based identification challenging. COVID pneumonia progresses slowly through
the lungs, relying on the immune system for elimination, causing extensive damage and
leading to long-term illness. In contrast, other pneumonias cause acute illnesses, with all
symptoms appearing at once but not lasting as long. Symptom variability adds complexity
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to diagnosis; COVID-19 symptoms range from mild flu-like manifestations to severe respi-
ratory distress, with some individuals showing no symptoms at all [4]. This similarity in
symptoms often leads to misdiagnosis or delays in diagnosis. Initially, RT-PCR test kits
were widely used for COVID-19 detection, but medical imaging modalities such as chest
X-ray (CXR) and computed tomography (CT) have emerged as crucial alternatives. CXR
and CT are popular for diagnosing lung anomalies, including COVID-19. Moreover, the
accuracy of testing methods poses another challenge. While various techniques, such as
PCR tests and antigen tests, are employed for COVID-19 detection, they differ in sensitivity
and specificity. False-negative results are a concern, particularly when viral loads are low
or if sample collection processes are suboptimal. These challenges underscore the need for
comprehensive testing strategies and ongoing advancements in diagnostic techniques to
effectively combat the spread of the virus [5].

In this study, we focus solely on CXR images due to their widespread availability and
ease of acquisition. However, we acknowledge that other imaging modalities like CT and
magnetic resonance imaging (MRI) also play vital roles in diagnosing respiratory diseases
and could be integrated into future research endeavors.

Our primary novelty lies in the integration of advanced texture feature extraction
techniques, including grey level co-occurrence matrix (GLCM), grey level difference method
(GLDM), and wavelet-based texture analysis, within a DLNN model for the classification
of lung images into COVID-19 and viral pneumonia categories. While previous studies
have utilized deep learning models for medical image classification, such as [6–8], the
incorporation of GLCM, GLDM, and wavelet texture features represents a novel approach to
feature representation in this context. These texture features provide valuable information
about the spatial relationships, gray-level variations, and frequency characteristics within
the lung images, enabling the DLNN model to learn discriminative patterns for accurate
disease classification. By harnessing the complementary strengths of texture analysis and
deep learning, our methodology offers a novel framework for enhancing the accuracy and
robustness of COVID-19 diagnosis from medical imaging data. This innovative approach
contributes to the advancement of medical image analysis techniques and holds significant
potential for improving clinical decision-making and patient outcomes in the context of
respiratory disease diagnosis.

Furthermore, our study proposes an integrated approach utilizing RF, SVM, and
DLNN techniques for classification. The choice of these classifiers is grounded in both
empirical evidence and theoretical insights. RF harnesses the collective predictive power
of multiple decision trees, making it well-suited for handling data complexity and noise
commonly encountered in medical imaging datasets. SVM excels at delineating optimal
decision boundaries between classes, facilitating precise segregation of data points in high-
dimensional feature spaces. DLNN, a groundbreaking classification paradigm capable of
autonomously discerning intricate features from data, enhances classification precision.
Moreover, empirical evidence from previous studies has demonstrated the efficacy of tex-
ture analysis techniques and classifiers in various medical imaging applications, including
the diagnosis of lung diseases such as pneumonia and lung cancer. By combining these
established techniques with state-of-the-art classifiers, we hypothesize that our proposed
method will outperform existing models in the classification of lung images into COVID-19
and viral pneumonia categories. Through rigorous experimentation and comparative
analysis, as detailed in Section 4, we aim to validate this hypothesis and provide empirical
evidence supporting the superiority of our proposed method. By elucidating the theoretical
basis and empirical rationale behind our approach, we aim to ensure transparency and
rigor in our methodology, thereby strengthening the scientific foundation of our research.

Our contribution extends beyond mere classification; we present a comprehensive
evaluation of our model’s performance using metrics such as categorical accuracy, confusion
matrix, precision, recall, F1-Score, and ROC. Additionally, we provide insights into the
rationale behind our model’s design choices, offering a robust framework for accurate chest
X-ray image categorization.
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In addition, Section 4 of our paper provides an exhaustive comparative analysis of
existing literature. This section critically evaluates and compares our integrated approach
with previous studies, elucidating the advancements and contributions of our methodology.
Through this comparative analysis, our objective is to underscore the novelty and efficacy
of our approach in the domain of COVID-19 diagnosis utilizing medical imaging data.

In summary, our study pioneers a novel approach combining texture-based feature
extraction with advanced classification techniques for accurate COVID-19 and pneumonia
differentiation from CXR images. Our findings not only advance the field of medical
imaging but also hold significant promise for improving diagnostic accuracy and patient
care in respiratory medicine.

The present study is structured as follows: Section 2 provides a detailed discussion of
the previous state-of-the-art related work that has been conducted recently. In Section 3, we
elucidate the implementation of our system and the design choices we made, along with
the evaluation methodology adopted in this study. The evaluation results are presented
and described in Section 4. Furthermore, Section 5 provides a comprehensive discussion of
the model employed in this study. In Section 6, we present our research work conclusions,
followed by a discussion of the future directions in Section 7.

2. Related Work

This section presents a comprehensive review of recent state-of-the-art studies focusing
on the utilization of CT or CXR images in DLNN models for COVID-19 detection and diag-
nosis. Our objective is to critically examine these studies, highlighting their methodologies,
strengths, limitations, and relevance to the proposed research.

Aslan et al. [2] employed pre-trained convolutional neural network (CNN) models
for COVID-19 classification from CXR images, preceded by lung segmentation as a pre-
processing step. This segmentation technique, achieved through an artificial neural network
(ANN), aims to eliminate irrelevant information and improve model accuracy. While their
approach yielded high accuracy ranging from 95.05% to 96.29%, it heavily relied on manual
segmentation, which may limit scalability and automation. In contrast, Khan et al. [3]
implemented DL models without prior segmentation of CXR images, achieving compa-
rable accuracy rates ranging from 93.9% to 96%. However, the absence of segmentation
may introduce noise and irrelevant information, potentially affecting model performance.
Additionally, ref. [9] introduced RADIC, a diagnostic tool combining deep learning and
quad-radiomics for COVID-19 diagnosis from chest CT and X-ray scans. While promising,
challenges related to feature selection and model interpretability were noted, underscoring
the need for further validation in clinical settings.

Similarly, ref. [10] proposed cascaded DL classifiers for computer-aided diagnosis
of COVID-19 and pneumonia from X-ray scans, enhancing feature extraction through
hierarchical architectures. However, scalability issues and computational resource require-
ments may limit its practical applicability. CoroNet [11], a deep neural network tailored
for COVID-19 detection from CXR images, showcased promising diagnostic capabilities.
Yet, concerns regarding dataset diversity and image quality were raised, necessitating
further validation studies. Moreover, ref. [12] introduced a wavelet-based DL pipeline for
COVID-19 diagnosis using CT slices, leveraging multi-resolution information. However,
computational complexity and scalability issues remain challenges for its implementation.
Similarly, ref. [13] proposed a texture-based radiomics analysis framework for coronavirus
diagnosis, emphasizing feature extraction from medical images. Yet, concerns regarding
feature selection and dataset heterogeneity were highlighted. Furthermore, ref. [14] intro-
duced a fusion model combining handcrafted and DL features for COVID-19 diagnosis,
aiming to capture complementary information from CXR images. However, the model’s
performance may depend on feature selection and integration.

While ref. [15] achieved high accuracy in X-ray image detection of pneumonia and
COVID-19 patients, concerns about dataset bias, model generalization, and interpretability
were noted, emphasizing the need for robust validation. Similarly, ref. [16] achieved high
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accuracy in classifying COVID-19 cases from CXR images, yet challenges related to dataset
bias and model generalizability were acknowledged, necessitating further investigation.
Moreover, studies by [17–19] introduced various DL approaches for COVID-19 detection
from medical images, each with distinct methodologies and performance metrics.

While previous studies have made significant strides in COVID-19 diagnosis using
DLNN techniques, our proposed research aims to address several key gaps and existing
limitations. For instance, concerns regarding dataset bias, model generalizability, and
interpretability have been noted across various studies.

Specifically, imbalanced datasets used in some studies, such as those by Aslan et al. [2]
and Khan et al. [3], may lead to biased model predictions due to the disproportionate
representation of COVID-19 cases. Additionally, uncertainties regarding model generaliz-
ability across different healthcare settings, as highlighted in the study by [20], can limit the
applicability of DL models in diverse clinical environments. Moreover, the lack of inter-
pretability in DL models can hinder their adoption by healthcare professionals, who may
be hesitant to rely solely on model predictions without clear insights into the underlying
decision-making process.

In our proposed research, we aim to mitigate these limitations by integrating advanced
texture feature extraction techniques with DL models, offering a richer representation of
image data. By combining these techniques, we seek to enhance diagnostic accuracy and
robustness, addressing the challenges encountered in previous studies. Additionally, our
study provides a comprehensive evaluation framework and discusses the rationale behind
the proposed methodology, contributing to the advancement of COVID-19 diagnosis from
medical imaging data.

3. Methodology

In this section, we will discuss the methodology utilized in this project. Algorithm 1
outlines the steps taken in this study.

Algorithm 1 The algorithm for the proposed model

for i in range (0,len(dataset_Images) do
// Pre-processing steps
Image resize;
Adaptive histogram equalization;
Normalization;
// Extracting Texture Features from images
end for
while Feature_pool ̸= 0 do

TF ← cat(Feature_pool)
X ← FisherScore(TF)

end while
for i in range (0,len(X) do

Model_classi f ication = Classi f ication(inputs = [X])
Model_classi f ication. f it()
Loss Calculator
Optimize Parameter

end for

3.1. Dataset

First, we begin with the CXR image dataset acquired from Kaggle [21], which originally
consisted of 10,192 normal, 3616 COVID-19 positive cases, and 1345 viral pneumonia
images. This dataset was compiled by a team of researchers from Qatar University, Doha,
Qatar, and the University of Dhaka, Bangladesh, along with their collaborators from
Pakistan and Malaysia, in collaboration with medical doctors, creating a comprehensive
database for AI-based diagnostic research. All the images are in portable network graphics
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(PNG) file format with a resolution of 299 × 299 pixels and are in 8-bit grayscale mode,
providing 256 levels of gray.

To maintain a balanced dataset, we chose 1345 images randomly from each class,
totaling 4035 images across the three classes. This equilibrium is vital for machine learning
and computer vision tasks as it avoids biases towards classes with more samples and
boosts the model’s ability to generalize to new data. With an even distribution of images
per class, the model becomes adept at recognizing distinct features from all classes, not
just the most prevalent ones. To address potential biases and ensure representativeness
in our dataset, we took several deliberate steps to robustly manage our randomization
process. We implemented a systematic random selection method that adheres to a uniform
distribution, ensuring fairness by selecting images evenly across the dataset and preventing
overrepresentation or underrepresentation of any specific category. By setting a random
seed at the start, we guarantee reproducibility, allowing the random selection to be easily
verified and replicated. Although we showcased just one output in the manuscript, we
conducted the randomization process several times, yet the outcome consistently aligned.
This uniformity across numerous randomizations bolsters the resilience of our method and
indicates that the chosen images accurately represent the entire dataset. This approach,
combined with our rigorous randomization methods, aimed to provide a comprehensive
and unbiased representation of the dataset. In doing so, we enhanced its overall representa-
tiveness and strengthened the performance of the trained model. The COVID and normal
class images were selected randomly from the original dataset. The train-test split was
done using a ratio of 80% for the training set and 20% for the test set, as shown in Table 1.
A snippet of the dataset is shown in Figure 1.

Figure 1. Snippet of the dataset.

Table 1. Dataset split.

Training Set Test Set Total

Normal 1095 250 1345
COVID-19 1025 320 1345
Viral Pneumonia 1108 237 1345

3.2. Feature Extraction Methods

The images underwent a series of meticulous pre-processing steps to optimize their
quality and prepare them for subsequent analysis within the deep learning framework.
Initially, each image was resized to adhere to a standardized dimension of 299 × 299 pixels,
ensuring consistency across the dataset and facilitating uniform processing by the deep
learning algorithms. Resizing is applied only to images that do not match this standard
dimension. This resizing serves as a precautionary measure to standardize the image
dimensions and promote generalization across the dataset. Ensuring consistent image
dimensions is crucial for machine learning models, as they require uniform input sizes for
effective training and inference. Following resizing, histogram equalization was applied
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to enhance contrast and brightness levels within the images. This technique adjusts the
distribution of pixel intensities to create a more balanced histogram, thereby improving
the visibility of critical features and details in the images. Subsequently, we normalized
the pixel values of the images to a standard range between 0 and 1 to ensure consistency
across the dataset. By standardizing the numerical values of the pixels, normalization
ensures stable and efficient training of the deep learning models, mitigating issues such as
gradient vanishing or explosion. Collectively, these pre-processing steps play a vital role
in optimizing the quality and uniformity of the image data, laying a solid foundation for
accurate and reliable analysis within the deep learning framework, which is the first block
in the block diagram shown in Figure 2.

Figure 2. Architecture of the Proposed Methodology.

While previous studies have utilized texture-based features for COVID-19 diagnosis,
the novelty of our approach lies in the integration of GLCM and GLDM matrices with
feature dimension reduction techniques. These methods offer a nuanced understanding
of the spatial relationships, gray-level variations, and frequency characteristics present
within the images. Such detailed information is crucial for effectively discerning the subtle
differences between COVID-19 manifestations and other respiratory conditions.

The feature extraction methods, GLCM and GLDM, were chosen for their ability to
capture intricate textural details from CXR images. These methods provide insights into the
spatial relationships, gray-level variations, and frequency characteristics present within the
images, essential for distinguishing between COVID-19 and other respiratory conditions.

Despite the prevalence of deep learning models in medical image analysis, we opted
not to use them for feature extraction in this study. The decision was made due to the
complexity of deep learning models, which often require large amounts of labeled data
for training and can be computationally intensive. Given the challenges associated with
obtaining labeled medical imaging data, especially in the context of rare diseases like
COVID-19, and the computational resources required for training deep learning models,
we sought alternative methods.

Instead, by integrating GLCM and GLDM matrices with feature dimension reduction
techniques, we aimed to achieve two key objectives. Firstly, these methods enable us to
extract a comprehensive set of discriminative features from the CXR images, capturing
intricate nuances indicative of COVID-19 infection. Secondly, the feature dimension reduc-
tion techniques streamline the extracted feature set, enhancing computational efficiency
and minimizing the risk of overfitting.
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The synergy between advanced texture analysis methods and neural network clas-
sifiers is pivotal for improving the accuracy and robustness of COVID-19 classification.
By feeding the neural network with the discriminative patterns derived from GLCM and
GLDM matrices, we empower the model to learn and discern subtle distinctions between
COVID-19 and other respiratory ailments more effectively. This integration facilitates a
more precise and reliable diagnosis, ultimately contributing to enhanced patient care and
clinical decision-making in the realm of respiratory medicine.

We skipped pre-trained DL models for feature extraction due to the unique complexi-
ties of medical imaging for COVID-19 diagnosis. Fine-tuning them demands significant
computational resources and labeled medical data, scarce for rare diseases like COVID-19.
Instead, we used advanced texture analysis methods like GLCM and GLDM, coupled with
feature dimension reduction. This approach directly captures discriminative features from
CXR images, reflecting COVID-19 pneumonia patterns while minimizing data labeling
and computational needs. Our goal was to create a precise diagnostic tool tailored to
COVID-19’s imaging challenges.

So the next step is to extract the GLCM and GLDM matrices and, from them, extract
the texture features, which are combined in one pool to improve classification accuracy.
To enhance runtime efficiency, we use the fisher score as a feature dimension reduction
technique to select the most relevant feature vectors from the extraction process, as shown in
the fourth block in Figure 2. Finally, these features are input into a neural network classifier
to categorize images into normal, COVID, or viral pneumonia classes. The performance of
the proposed method is assessed using the categorical accuracy metric.

GLCM is a texture feature extraction technique introduced by Haralick, Shanmugam,
and Dinstein [22] that characterizes the texture of images by determining the spatial
relationship of a pixel with a specific value. The GLCM is represented as a matrix that
shows the likelihood of a particular gray level occurring in the neighborhood of any other
gray level within a certain distance and angle [22]. The distance is expressed in pixels, while
the angle is represented in degrees with four directions: 0°, 45°, 90°, and 135°. Figure 3
shows an example of constructing a GLCM matrix of distance one and direction 0°.

Figure 3. Example of constructing GLCM matrix [23].

To calculate the GLCM texture features, Haralick, Shanmugam, and Dinstein [22]
defined the features, including autocorrelation, contrast, correlation, dissimilarity, energy,
entropy, homogeneity, and others, using equations.

In this study, we used energy, contrast, mean, max, min, standard deviation, area,
correlation, dissimilarity, and homogeneity as texture features. Energy is the amount of
varying gray intensity in the image, while contrast is the difference in the level of color or
grayscale that appears in an image. The value of contrast will be zero if the neighboring
pixels have the same amount. Correlation is the linear relationship between the degree
of gray image. Dissimilarity measures variations in intensity levels between neighboring
pixels and is considered high if the local region has high contrast. Homogeneity is the
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measure of distribution between neighboring pixels. The formulas for each feature are
as follows:

Energy = ∑
i,j

P2
d (i, j) (1)

where Pd(i, j) is a GLCM matrix of images with gray values i and j.

Contrast = ∑
i,j
(i− j)2Pd(i, j) (2)

Correlation =
Σi,j(i− ux)(j− uy)Pd(i, j)

σxσy
(3)

where ux,uy is the mean, and σx, σy is the standard deviation.

Dissimilarity = ∑
i,j
|i− j|P(i, j) (4)

Homogeneity = ∑
i,j

Pd(i, j)
1 + |i− j| (5)

GLDM is used to quantify the relationship between the gray-level values of pixels in
an image. A GLDM is a square matrix where each element represents the number of times
that a particular combination of gray-level values occurs at a specific distance and direction
in the image. Specifically, each element in the GLDM represents the frequency of a pair
of gray-level values occurring at a certain distance and direction within the image. The
matrix is typically normalized by the total number of pairs of pixels to yield a matrix of
probabilities, which are often used as features for texture classification and segmentation.
An example of extracting the GLDM matrix from an image is shown in Figure 4, with a
distance of one and a direction of 0°.

Figure 4. Example of constructing GLDM matrix.

The wavelet transform is a powerful mathematical tool utilized for signal and image
analysis, similar to Fourier analysis. However, in contrast to Fourier transform, which em-
ploys sine and cosine functions, the wavelet transform employs wavelets, which are brief
and localized in time and frequency. This enables the wavelet transform to analyze signals
in both the time and frequency domains simultaneously, capturing both the frequency
content and the time-varying behavior of the signal. This makes it particularly useful for an-
alyzing signals with non-stationary characteristics, where the frequency content varies over
time. The wavelet transform of a signal f (x) is represented by the following expression:

W f (a, x) =
1
a

Ψ(
x− b

a
) (6)

where a is the scale factor and b is the translation factor. Since the image is planar, the
one-dimensional wavelet transform should be extended to a two-dimensional wavelet
transform. For a two-dimensional function f (x, y), the wavelet transform is

Ws f (x, y) = f (x, y) ∗Ψa,b(x, y) (7)
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where ∗ expresses the convolution along the different directions and s is the scale. In
two-dimensional images, the intensity of edges can be enhanced in each one-dimensional
image by convolving. If the window of the images is convolved in the x direction over an
image, a peak will result at positions where an edge is aligned with the y direction.

The next step in our research methodology was to extract texture features using
GLCM and wavelet transforms. Since GLCM and wavelet produce numerous features, we
employed a feature reduction technique, namely Fischer score. Following the extraction
of texture features, they were incorporated into the deep learning model for subsequent
analysis and evaluation.

3.3. Deep Learning Model Architecture

The DLNN model depicted in Figure 5 was meticulously crafted to balance perfor-
mance and computational efficiency. This involved employing a combination of techniques
such as pruning, quantization, and compression. Pruning, implemented as a key strategy
using weight pruning, involved selectively removing individual weights that were close
to zero or had minimal impact on the network’s output. This weight-based approach
aimed to reduce the neural network’s overall size and complexity. By eliminating these
less important weights, the network became more efficient without sacrificing its perfor-
mance on classification tasks, ensuring that essential features were preserved for accurate
image categorization.

Figure 5. Implemented Model.

To optimize the model for deployment on resource-constrained devices, careful consid-
eration was given to factors like model size, inference speed, and accuracy. The architecture
consists of four dense layers, each followed by a dropout layer to prevent overfitting.
Dropout layers randomly deactivate a fraction of neurons during training, enhancing the
model’s generalization capability.

The hyperparameters chosen for training the model, as outlined in Table 2, were
carefully selected to optimize the training process. The optimizer employed was Adam,
a widely-used optimization algorithm recognized for its efficiency and effectiveness in
training deep neural networks. To mitigate overfitting, a dropout rate of 0.4 was applied
to the dropout layers, serving as a regularization technique. Additionally, the activation
function used was softplus, ensuring a smooth and continuous output from the model.

The model was trained for 100 epochs with a batch size of 15 samples per iteration,
striking a balance between computational efficiency and stability. To promote stable con-
vergence and prevent overshooting of the minima, a low learning rate of 0.00001 was
maintained throughout the training process. Furthermore, cross-validation was imple-
mented to evaluate the model’s performance robustly and ensure its generalizability. These
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hyperparameters were meticulously chosen based on empirical observations and best
practices to guarantee optimal model performance.

Table 2. Model Hyperparameters.

Optimizer Adam

Dropout 0.4

Activation layer softplus

Epochs 100

Batch size 15

Learning rate 0.00001

By meticulously fine-tuning these hyperparameters and architectural choices, the
DLNN model was optimized to achieve superior performance in accurately categorizing
chest X-ray images into normal, COVID-19, and viral pneumonia classes, as demonstrated
in the results section.

4. Results

In this section, we present the results obtained from our experiments, preceded by
a discussion on the training process. Our deep learning model was trained on a dataset
comprising labeled COVID-19 and non-COVID-19 images, utilizing a standard training-test
split. During training, batches of images were iteratively fed into the model, with its param-
eters adjusted using the Adam optimizer and a predefined learning rate established during
hyperparameter tuning. Dropout regularization was implemented to address overfitting by
randomly dropping units within the network. In the test phase, the model’s performance
was periodically assessed on a separate test dataset to evaluate its generalization ability,
utilizing performance metrics such as accuracy, precision, recall, and F1-score. To combat
overfitting, early stopping criteria were enacted, ceasing training if test performance stag-
nated. Additionally, we monitored training and test loss curves, adjusting hyperparameters
if overfitting indicators arose. These measures ensured the effective training and reliable
performance of our deep learning model for COVID-19 detection. Furthermore, we em-
ployed accuracy as the primary metric for initial model assessment, providing an overall
measure of correctness in classification. Additionally, to delve deeper into performance
evaluation, we utilized recall, precision, and F1-score metrics, offering a more comprehen-
sive understanding of the models’ capabilities in accurately identifying relevant instances
and classifying positive instances. Specifically:

• Recall, also known as true positive rate or sensitivity, measures the model’s ability to
correctly identify all relevant instances of a class, presenting the ratio of true positive
predictions to the total number of actual positive instances, and is given by

Recall =
True Positives

True Positives + False Negatives

• Precision evaluates the model’s accuracy in classifying positive instances among all
instances predicted as positive, quantifying the ratio of true positive predictions to the
total number of predicted positive instances, and is given by

Precision =
True Positives

True Positives + False Positives

• F1-Score, a harmonic mean of precision and recall, provides a balanced assessment
of the model’s performance, particularly valuable when dealing with imbalanced
datasets, and is given by
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F1 = 2× Precision× Recall
Precision + Recall

In addition to these metrics, we visualized the classification outcomes through confu-
sion matrices for each model, illustrating the interplay between true positive, true negative,
false positive, and false negative predictions across different class categories. Further-
more, to provide a comprehensive view of the model’s discriminatory capabilities, we
presented ROC curves, focusing particularly on the deep neural network model due to
its superior performance. These visualizations offer insights into the models’ ability to
discriminate between different classes and complement the quantitative metrics employed
in our evaluation.

Figure 6 provides a visual representation of the confusion matrix stemming from the
application of the RF technique, encapsulating the outcomes of RF’s classification process.
Similarly, Figure 7 illuminates the confusion matrix originating from the use of the SVM,
illustrating the distribution of the SVM’s classifications comprehensively.

Figure 6. Confusion Matrix-Random Forrest.

Figure 7. Confusion Matrix-SVM.
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Expanding on our observations, Figure 8 offers insight into the confusion matrix
produced by the deep neural network’s application to the test dataset. This presentation
allows for an intuitive understanding of the model’s performance across different class cat-
egories. Impressively, our deep learning model showcased remarkable prowess, achieving
a categorical accuracy of 92.71%. This achievement, which outshines the accuracy achieved
by other employed techniques, reflects the model’s ability to make accurate predictions
across the varied classes of chest x-ray images.

Figure 8. Confusion Matrix-Deep Neural Network.

Further emphasizing our model’s performance, it’s noteworthy that the RF technique
yielded an accuracy of 85%, while the SVM achieved an accuracy of 70%. This stark
contrast in accuracy values underscores the distinct strengths and capabilities of each
technique in addressing the complexities inherent in the categorization of chest x-ray images.
In classification tasks, false positive and true positive values are crucial performance
parameters. The ROC curve is generated by plotting false positive values against true
positive values. A false positive occurs when the actual value is negative but the prediction
is positive. A true positive occurs when the actual value is positive and the predicted value
is also positive. Since the DLNN obtained the highest results, we focused on showing the
ROC using the DLNN. The ROC curve for COVID-19 is illustrated in Figure 9, while the
ROC curve for viral pneumonia is depicted in Figure 10. The ROC curve for normal cases
is presented in Figure 11. These curves provide valuable insight into the performance of
our model across different classes.

When comparing the performance of three distinct techniques—RF, SVM, and DLNN—
across the metrics of recall, precision, and F1-score, discernible trends emerge that shed
light on their relative strengths and capabilities, as shown in Table 3.

Table 3. Performance Comparison of Classification Models.

Metrics RF SVM DLNN

Accuracy 0.85 0.70 0.92
Recall 0.85 0.74 0.93
Precision 0.86 0.71 0.87
F1-Score 0.86 0.72 0.89
AUC/ROC 0.83 0.68 0.91
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Figure 9. COVID-19 ROC.

Figure 10. Viral pneumonia ROC.

Figure 11. Normal ROC.
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Starting with the deep neural network’s confusion matrix, the recall values represent
the network’s proficiency in correctly identifying instances of each class. Precision val-
ues, quantifying the accuracy of positive predictions, were similarly calculated. Further
elucidating the balance between precision and recall, F1-score values were computed by
harmonizing these two metrics.

Moving on to RF and SVM, it’s evident that these techniques excelled in different
aspects. RF attained a recall of 0.85, signifying its ability to accurately capture a substantial
proportion of true positive instances. Coupled with a commendable precision of 0.86, RF
demonstrated its proficiency in minimizing false positives. Consequently, the F1-score,
harmonizing both recall and precision, also reached 0.86.

In the case of SVM, a recall of 0.74 was achieved, indicating its capacity to identify
relevant instances within its classes. However, SVM’s precision, measuring its ability to
correctly classify positive instances, stood at 0.71. This suggests a higher likelihood of false
positives compared to RF and NN. Consequently, SVM’s F1-score was also lower compared
to RF and NN, registering at 0.72, illustrating the trade-off between precision and recall
that this technique faces.

Overall, the deep neural network exhibited outstanding performance, surpassing other
techniques with the highest accuracy, recall, precision, and F1-score values. Specifically,
the deep neural network achieved a remarkable recall of 0.93, highlighting its proficiency
in correctly identifying instances of each class. Additionally, the precision reached an
impressive value of 0.87, indicating the model’s accuracy in classifying positive instances
among all predicted positives. Harmonizing both recall and precision, the F1-score attained
a commendable value of 0.89, providing a balanced assessment of the model’s performance.
This comparative analysis not only underscores the distinct trade-offs associated with each
technique but also offers valuable insights into their suitability for accurately categorizing
chest x-ray images into normal, COVID-19, and viral pneumonia classes.

In comparison to [2], and as shown in Table 4, utilizing state-of-the-art CNN ar-
chitectures with Bayesian optimization for COVID-19 diagnosis, our models exhibited
competitive performance across various metrics. Notably, our DLNN model achieved
an accuracy of 92%, closely rivaling the performance of ResNet50-SVM from the refer-
enced study, which attained an accuracy of 95.23%. Furthermore, while our DLNN model
demonstrated a precision of 0.87, the SVM models in the referenced study, such as those
employing ResNet18 and ResNet50 architectures, achieved precision scores ranging from
0.90 to 0.95. This suggests that our DLNN model excels at distinguishing true positive
predictions from total positive instances, albeit with a slight trade-off in accuracy compared
to some models in the literature. Moreover, comparing our results to those presented
in [3], we observed that our DLNN model surpassed the NasNetMobile and MobileNetV2
architectures employed in the referenced study. While our model attained an accuracy of
92%, NasNetMobile and MobileNetV2 achieved accuracies of 89.30% and 90.03%, respec-
tively. Additionally, our model demonstrated higher sensitivity and F1-score, indicating its
robustness in correctly identifying COVID-19 cases while minimizing false positives.

Additionally, our DLNN exhibited an accuracy of 92%, surpassing Hemdan et al.’s [24]
COVIDX-Net and Narin et al.’s [25] Inception-ResNetV2, which achieved accuracies of
90.0% and 87.0%, respectively. Additionally, our model’s accuracy outperformed Wang and
Wong’s [26] COVID-Net, which achieved an accuracy of 92.4% in distinguishing COVID-19
cases from non-COVID-19 pneumonia. Furthermore, when compared to Ghoshal and
Tucker’s [27] Bayesian CNN approach, which attained an accuracy of almost 90.0% when
combined with an experienced radiologist for distinguishing COVID-19 cases from non-
COVID-19 viral and bacterial pneumonia, our DLNN model exhibited superior standalone
performance. These comparisons underscore the effectiveness of our DLNN approach in
accurately identifying COVID-19 cases from other classes, highlighting its potential utility
in clinical settings for COVID-19 diagnosis.

Dataset details: Aslan et al. [2] utilized a public dataset consisting of 219 COVID-19
images, 1341 normal, and 1345 viral pneumonia images. Khan et al.’s [3] dataset comprised
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COVID-19 with 3616 images, lung opacity with 6012 images, normal with 10,192 images,
and viral pneumonia with 1345 images. Hemdan et al. [24] utilized a dataset with
25 normal cases and 25 positive COVID-19 images. Narin et al.’s [25] dataset included
chest X-ray images of 341 COVID-19 patients. Wang and Wong’s [26] dataset comprised
13,975 CXR images across 13,870 patient cases, with 358 CXR images from 266 COVID-19
patients, 8066 images with no pneumonia, and 5538 images with non-COVID19 pneumonia.
Ghoshal and Tucker’s [27] dataset included 68 selected posterior-anterior (PA) X-ray images
of lungs depicting COVID-19 cases.

Table 4. Results from the employed methodologies. Datasets: Aslan et al. [2], Khan et al. [3],
Hemdan et al. [24], Narin et al. [25], Wang and Wong [26], Ghoshal and Tucker’s [27] dataset.

Authors Deep Learning Classifier Accuracy (%)

Aslan et al. [2] ResNet50-SVM 95.23
Khan et al. [3] NasNetMobile 89.30
Khan et al. [3] MobileNetV2 90.03
Hemdan et al. [24] COVIDX-Net 90.00
Narin et al. [25] Inception-ResNetV2 87.00
Wang and Wong’s [26] COVID-Net 92.40
Ghoshal and Tucker’ [27] Bayesian CNN ∼90.00
Our DLNN Model DLNN 93

5. Discussion

In this study, we developed a novel approach for the classification of chest X-ray
images into normal, COVID-19, and viral pneumonia categories using texture-based fea-
tures extracted from the images. Our methodology involved extracting texture features
such as energy, contrast, mean, standard deviation, area, correlation, dissimilarity, and
homogeneity using techniques like GLCM, GLDM, and wavelet transform. These features
were then utilized in training a DLNN model alongside traditional machine learning algo-
rithms like RF and SVM. Our results demonstrated that the DLNN model outperformed
RF and SVM in terms of accuracy, recall, precision, and F1-score, achieving values of 0.92,
0.93, 0.87, and 0.89, respectively. The DLNN model exhibited remarkable capability in
accurately classifying chest X-ray images, surpassing the performance of conventional
machine learning techniques.

To further contextualize our findings, it is imperative to compare our approach with
existing research in the field. A notable study by Aslan et al. [2] achieved accuracy ranging
from 95.05% to 96.29% by employing pre-trained CNN models and lung segmentation
techniques. However, their reliance on manual lung segmentation introduces subjectivity
and potential errors, which our automated approach mitigates. Similarly, Khan et al. [3]
achieved accuracies ranging from 93.9% to 96% without lung segmentation but did not
address class imbalance, potentially leading to biased results. In contrast, our approach
addresses these limitations by automating feature extraction and balancing the dataset,
resulting in a more robust and reliable model for COVID-19 diagnosis. Moreover, previous
studies [9–12] have contributed to the field, but they may suffer from limitations such as
small dataset sizes, a lack of robust evaluation metrics, or insufficient model explainability.
In comparison, our study utilizes a large, well-curated dataset, comprehensive evaluation
metrics, and provides insights into the model’s decision-making process. By addressing
these limitations and demonstrating superior performance, our approach advances the
field of COVID-19 diagnosis using chest X-ray images, paving the way for more reliable
and interpretable models that can assist clinicians in accurately identifying and managing
COVID-19 cases.

In terms of dataset utilization, our study utilized a comprehensive dataset comprising
10,192 normal, 3616 COVID-19 positive cases, and 1345 viral pneumonia images obtained
from a collaborative effort between researchers from Qatar University, Doha, Qatar, and
the University of Dhaka, Bangladesh. This dataset diversity ensured the inclusivity of



Diagnostics 2024, 14, 1017 16 of 18

various pathological conditions, enhancing the generalizability of our model. However,
it is essential to acknowledge the limitations associated with the dataset, such as class
imbalance and potential biases, which could impact the model’s performance.

In addressing the class imbalance issue, we adopted a pragmatic approach by ensuring
a balanced representation of each class in our dataset. Specifically, we identified the class
with the fewest images and set the sample size for the other classes to match that number.
This strategy helped mitigate the imbalance across classes, ensuring that the model was
trained on a more equitable distribution of data. By equalizing the class sizes, we aimed
to prevent the model from being biased towards the majority class and to promote better
generalization performance across all categories. This approach not only enhanced the
reliability of our model but also minimized the risk of misclassification and improved the
overall robustness of the classification framework.

In conclusion, our study presents a novel and effective approach for the automated
classification of chest X-ray images into normal, COVID-19, and viral pneumonia categories
using texture-based features and deep learning techniques. By leveraging advanced texture
analysis methods and integrating them into a DLNN model, we achieved superior perfor-
mance compared to traditional machine learning algorithms. Our findings contribute to the
ongoing efforts towards developing accurate and efficient diagnostic tools for respiratory
diseases, thereby facilitating timely interventions and improving patient outcomes. How-
ever, further research is warranted to validate our approach on larger and more diverse
datasets and to explore its applicability in clinical settings.

6. Conclusions

In conclusion, this study presents a novel approach for the automated classification
of chest X-ray images into normal, COVID-19, and viral pneumonia categories using
texture-based features and machine learning techniques. The theoretical implications of
our research lie in the advancement of medical imaging analysis, where texture features
extracted from X-ray images offer valuable insights into the underlying patterns indicative
of different pulmonary conditions. Our findings demonstrate the effectiveness of employing
deep learning neural networks alongside traditional machine learning algorithms like SVM
and RF for accurate disease diagnosis, with the deep neural network exhibiting superior
performance metrics in terms of accuracy, recall, precision, and F1-score.

From a practical standpoint, our study contributes to the development of robust
diagnostic tools capable of assisting medical professionals in timely and accurate disease
detection, especially in the context of the ongoing COVID-19 pandemic. By automating the
classification process, our proposed methodology has the potential to enhance the efficiency
of healthcare systems, particularly in resource-limited settings where access to specialized
expertise may be limited.

However, it is important to acknowledge the limitations of our research. The dataset
used in this study, while comprehensive, may not fully capture the diversity of chest X-ray
images encountered in real-world clinical settings. Additionally, the generalization of
our findings may be limited by factors such as dataset bias and variations in imaging
protocols across different healthcare institutions. Further research is warranted to validate
our approach using larger and more diverse datasets and to explore the integration of
additional clinical variables for improved disease characterization.

7. Future Work

Future research in automated disease diagnosis using medical imaging holds signifi-
cant potential for revolutionizing healthcare delivery. One avenue for advancement lies
in integrating multi-modal data, including clinical information and patient demograph-
ics, to develop more comprehensive diagnostic models. Additionally, exploring transfer
learning techniques can expedite model training and enhance performance, particularly
in resource-constrained settings. Furthermore, future research should prioritize longitu-
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dinal monitoring and outcome prediction, enabling early intervention and personalized
treatment strategies.
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