Taxonomy of Acute Stroke: Imaging, Processing, and Treatment
Abstract
:1. Introduction
2. Taxonomy of Stroke Imaging
3. Taxonomy of Stroke Image Processing and Analysis
3.1. Non-Atlas/Template-Based Methods
3.1.1. Intensity and Contrast Transformations
3.1.2. Local Lesion Segmentation
Infarct Segmentation from CT Scans
Infarct Segmentation from MR Scans
Hematoma Segmentation
3.1.3. Anatomy-Guided Methods
3.1.4. Global Density-Guided Methods
3.1.5. AI/DL-Based Methods
3.2. Template- and Atlas-Based Methods
3.2.1. Template-Based Methods
3.2.2. Atlas-Based Methods
Methodology
Atlases
4. Taxonomy of Stroke Treatment
5. Stroke CAD Systems
5.1. NCCT Stroke CAD System in Emergency Room
5.2. MR Stroke CAD System for Thrombolysis
5.3. NCCT CAD System for Hemorrhagic Stroke
6. Discussion
7. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brazis, P.W.; Masdeu, J.C.; Biller, J. Localization in Clinical Neurology; Wolters Kluwer: Philadelphia, PA, USA, 2011. [Google Scholar]
- Wolfe, C.D. The impact of stroke. Br. Med. Bull. 2000, 56, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Mohr, J.P.; Choi, D.W.; Grotta, J.G.; Weir, B.; Wolf, P.A. Stroke Pathophysiology, Diagnosis, and Management, 4th ed.; Churchill Livingstone: Philadelphia, PA, USA, 2004. [Google Scholar]
- Adams, H.P. Principles of Cerebrovascular Disease; McGraw Hill Medical: New York, NY, USA, 2007. [Google Scholar]
- Katan, M.; Luft, A. Global burden of stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Caplan, L.R. Caplan’s Stroke. A Clinical Approach, 4th ed.; Saunders: Philadelphia, PA, USA, 2009. [Google Scholar]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.G.; Hirsch, J.A.; Koroshetz, W.J.; Lev, M.H.; Schaefer, P.W. Acute Ischemic Stroke. Imaging and Intervention; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Runge, V. Imaging of Cerebrovascular Disease, 1st ed.; Thieme: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Jansen, O.; Brueckmann, H. Interventional Stroke Therapy; Thieme: New York, NY, USA; Stuttgart, Germany, 2013. [Google Scholar]
- Menon, B.K.; Goyal, M. Imaging paradigms in acute ischemic stroke: A pragmatic evidence-based approach. Radiology 2015, 277, 7–12. [Google Scholar] [CrossRef]
- Chalela, J.A.; Kidwell, C.S.; Nentwich, L.M.; Luby, M.; A Butman, J.; Demchuk, A.M.; Hill, M.D.; Patronas, N.; Latour, L.; Warach, S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: A prospective comparison. Lancet 2007, 369, 293–298. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Walecki, J.; Pótorak-Szymczak, G.; Sklinda, K.; Mruk, B. Ischemic infarct detection, localization, and segmentation in non-contrast CT human brain scans: Review of automated methods. PeerJ 2020, 8, e10444. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, P.; Le, M.G.D.; Mair, G. Computational image analysis of nonenhanced Computed Tomography for acute ischaemic stroke: A systematic review. J. Stroke Cerebrovasc. Dis. 2022, 29, 104715. [Google Scholar] [CrossRef] [PubMed]
- Gudadhe, S.; Thakare, A. Multivariate analysis of ischaemic lesions using Computed Tomography and CT Perfusion Imaging: Critical review. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 2262–2277. [Google Scholar] [CrossRef]
- Rekik, I.; Allassonniere, S.; Carpenter, T.K.; Wardlaw, J.M. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal. NeuroImage Clin. 2012, 1, 164–178. [Google Scholar] [CrossRef]
- Inamdar, M.A.; Raghavendra, U.; Gudigar, A.; Chakole, Y.; Hegde, A.; Menon, G.R.; Barua, P.; Palmer, E.E.; Cheong, K.H.; Chan, W.Y.; et al. A Review on computer aided diagnosis of acute brain stroke. Sensors 2021, 21, 8507. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, Y.H.; Kim, N.; Kang, D.W. Deep into the brain: Artificial intelligence in stroke imaging. J. Stroke 2017, 19, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Badgeley, M.; Mocco, J.; Oermann, E.K. Deep learning guided stroke management: A review of clinical applications. J. Neurointerventional Surg. 2018, 10, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Soun, J.E.; Chow, D.S.; Nagamine, M.; Takhtawala, R.S.; Filippi, C.G.; Yu, W.; Chang, P.D. Artificial intelligence and acute stroke imaging. AJNR Am. J. Neuroradiol. 2021, 42, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Menaka, R.; Johnson, A.; Anand, S. Neuroimaging and deep learning for brain stroke detection—A review of recent advancements and future prospects. Comput. Methods Programs Biomed. 2020, 197, 105728. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.M.; Unberath, M.; Hager, G.D.; Hui, F.K. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review. J. Neurointerventional Surg. 2020, 12, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, A.; Dash, P.; Mohapatra, M.; Tan, R.S.; Acharya, U.R.; Sabut, S. Application of machine learning techniques for characterization of ischemic stroke with MRI Images: A Review. Diagnostics 2022, 12, 2535. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef]
- Bluhmki, E.; Chamorro, Á.; Dávalos, A.; Machnig, T.; Sauce, C.; Wahlgren, N.; Wardlaw, J.; Hacke, W. Stroke treatment with alteplase given 3.0–4.5 h after onset of acute ischaemic stroke (ECASS III): Additional outcomes and subgroup analysis of a randomised controlled trial. Lancet Neurol. 2009, 8, 1095–1102. [Google Scholar] [CrossRef]
- Spiotta, A.; Crosa, R. (Eds.) Ischemic Stroke Management: Medical, Interventional and Surgical Management, 1st ed.; Thieme: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Mendes Pereira, V.; Dmytriw, A.; Slater, L.; Power, S.; Krings, T. (Eds.) Endovascular Management of Ischemic Stroke: A Case-Based Approach, 1st ed.; Thieme: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Peisker, T.; Koznar, B.; Stetkarova, I.; Widimsky, P. Acute stroke therapy: A review. Trends Cardiovasc. Med. 2017, 27, 59–66. [Google Scholar] [CrossRef]
- Lövblad, K.O.; Baird, A.E. Computed tomography in acute ischemic stroke. Neuroradiology 2010, 52, 175–187. [Google Scholar] [CrossRef]
- Runge, V.M.; Nitz, W.R.; Schmeets, S.H.; Faulkner, W.H.; Desai, N.K. (Eds.) The Physics of Clinical MR Taught through Images; Thieme: New York, NY, USA, 2005. [Google Scholar]
- Alexandrov, A.V.; Wojner, A.W.; Grotta, J.C.; CLOTBUST Investigators. CLOTBUST: Design of a randomized trial of ultrasoundenhanced thrombolysis for acute ischemic stroke. J. Neuroimaging 2004, 14, 108–112. [Google Scholar] [PubMed]
- Bash, S.; Villablanca, J.P.; Jahan, R.; Duckwiler, G.; Tillis, M.; Kidwell, C.; Saver, J.; Sayre, J. Intracranial vascular stenosis and occlusive disease: Evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am. J. Neuroradiol. 2005, 26, 1012–1021. [Google Scholar] [PubMed]
- Mainali, S.; Wahba, M.; Elijovich, L. Detection of early ischemic changes in noncontrast CT head improved with “stroke windows”. Int. Sch. Res. Not. Neurosci. 2014, 2014, 654980. [Google Scholar] [CrossRef] [PubMed]
- Matesin, M.; Loncaric, S.; Petravic, D. A rule-based approach to stroke lesion analysis from CT brain images. In Proceedings of the 2nd International IEEE Symposium on Image Signal Processing and Analysis ISPA, Pula, Croatia, 19–21 June 2001; pp. 219–223. [Google Scholar]
- Meilunas, M.; Usinskas, A.; Kirvaitis, R.; Dobrovolskis, R.A. Automatic contouring of segmented human brain ischemic stroke region on CT images. Math. Model. Anal. 2003, 8, 43–50. [Google Scholar]
- Usinskas, A.; Dobrovolskis, R.A.; Tomandl, B.F. Ischemic stroke segmentation on CT images using joint features. Informatica 2004, 15, 283–290. [Google Scholar] [CrossRef]
- Przelaskowski, A.; Sklinda, K.; Bargieł, P.; Walecki, J.; Biesiadko-Matuszewska, M.; Kazubek, M. Improved early stroke detection: Wavelet-based perception enhancement of computerized tomography exams. Comput. Biol. Med. 2007, 37, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Chawla, M.; Sharma, S.; Sivaswamy, J.; Kishore, L.T. A method for automatic detection and classification of stroke from brain CT images. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3581–3584. [Google Scholar]
- Tang, F.H.; Ng, K.S.; Chow, H.K. An image feature approach for computer-aided detection of ischemic stroke. Comput. Biol. Med. 2011, 41, 529–536. [Google Scholar] [CrossRef]
- Boers, A.M.; Marquering, H.A.; Jochem, J.J.; Besselink, N.J.; Berkhemer, O.A.; van der Lugt, A.; Beenen, L.F.; Majoie, C.B.; MR CLEAN Investigators. Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. AJNR Am. J. Neuroradiol. 2013, 34, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.C.; Weaver, N.A.; Biesbroek, J.M.; Weaver, N.A.; Velthuis, B.K.; Viergever, M.A. Automatic detection and segmentation of ischemic lesions in computed tomography images of stroke patients. In Proceedings of the SPIE 8670 Medical imaging 2013: Computer-Aided Diagnosis, Lake Buena Vista, FL, USA, 29 March 2013. [Google Scholar] [CrossRef]
- Tyan, Y.-S.; Wu, M.-C.; Chin, C.-L.; Kuo, Y.-L.; Lee, M.-S.; Chang, H.-Y. Ischemic stroke detection system with a computer-aided diagnostic ability using an unsupervised feature perception enhancement method. Int. J. Biomed. Imaging 2014, 2014, 947539. [Google Scholar] [CrossRef]
- Ray, A.; Bandyopadhyay, S.K. Automatic detection of ischemic stroke lesion using textural analysis from brain CT images. Eur. J. Biomed. Pharm. Sci. 2016, 3, 82–288. [Google Scholar]
- Martel, A.; Allder, S.; Delay, G.; Morgan, P.; Moody, A. Measurement of infarct volume in stroke patients using adaptive segmentation of diffusion weighted MR images. In Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention 1999, Cambridge, UK, 19–22 September 1999; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1679, pp. 22–31. [Google Scholar]
- Weinman, J.; Bissias, G.; Horowitz, J.; Riseman, E.; Hanson, A. Nonlinear diffusion scale-space and fast marching level sets for segmentation of MR imagery and volume estimation of stroke lesions. In Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention 2003, Montréal, QC, Canada, 15–18 November 2003; Volume 2879, pp. 496–504.
- Kabir, Y.; Dojat, M.; Scherrer, B.; Forbes, F.; Garbay, C. Multimodal MRI segmentation of ischemic stroke lesions. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1595–1598. [Google Scholar] [CrossRef]
- James, J.R.; Yoder, K.K.; Osuntokun, O.; Kalnin, A.; Bruno, A.; Morris, E.D. A supervised method for calculating perfusion/diffusion mismatch volume in acute ischemic stroke. Comput. Biol. Med. 2006, 36, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tian, J.; Li, E.; Dai, J. Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification. Neuroimage 2004, 23, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Prakash, B.; Nowinski, W.L. Automatic and rapid identification of infarct slices and hemisphere in DWI scans. Acad. Radiol. 2008, 15, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Szameitat, A.J.; Sterr, A. Detection of Infarct lesions from single MRI modality using inconsistency between voxel intensity and spatial location—A 3-D automatic approach. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Menaka, R. A multi-scale approach for detection of ischemic stroke from brain MR images using discrete curvelet transformation. Measurement 2017, 100, 223–232. [Google Scholar] [CrossRef]
- Maier, O.; Wilms, M.; von der Gablentz, J.; Krämer, U.M.; Münte, T.F.; Handels, H. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 2015, 240, 89–100. [Google Scholar] [CrossRef]
- Dice, L. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Griffis, J.C.; Allendorfer, J.B.; Szaflarski, J.P. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J. Neurosci. Methods 2016, 257, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, A.; Acharya, U.R.; Dash, M.; Jena, S.; Sabut, S. Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images. Comput. Biol. Med. 2018, 103, 116–129. [Google Scholar] [CrossRef]
- Bhanu Prakash, K.N.; Gupta, V.; Jianbo, H.; Nowinski, W.L. Automatic processing of diffusion-weighted ischemic stroke images based on divergence measures: Slice and hemisphere identification, and stroke region segmentation. Int. J. Comput. Assist. Radiol. Surg. 2008, 3, 559–570. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Gomolka, R.S.; Qian, G.; Gupta, V.; Ullman, N.L.; Hanley, D.F. Characterization of intraventricular and intracerebral hematomas in non-contrast CT. Neuroradiol. J. 2014, 27, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Bhanu Prakash, K.N.; Zhou, S.; Morgan, T.C.; Hanley, D.F.; Nowinski, W.L. Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Schreuder, F.H.B.M.; Klijn, C.J.M.; Prokop, M.; van Ginneken, B.; Marquering, H.A.; Roos, Y.B.W.E.M.; Baharoglu, M.I.; Meijer, F.J.A.; Manniesing, R. Intracerebral haemorrhage segmentation in non-contrast CT. Sci. Rep. 2019, 9, 17858. [Google Scholar] [CrossRef]
- Bhanu Prakash, K.N.; Morgan, T.C.; Hanley, D.F.; Nowinski, W.L. A brain parenchyma model based segmentation of intraventricular and intracerebral haemorrhage in CT scans. Neuroradiol. J. 2012, 25, 273–282. [Google Scholar] [CrossRef]
- Scherer, M.; Cordes, J.; Younsi, A.; Sahin, Y.A.; Götz, M.; Möhlenbruch, M.; Stock, C.; Bösel, J.; Unterberg, A.; Maier-Hein, K.; et al. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 2016, 47, 2776–2782. [Google Scholar] [CrossRef]
- Bhanu Prakash, K.N.; Hu, J.; Morgan, T.; Hanley, D.M.; Nowinski, W.L. Comparison of three segmentation techniques for intra-ventricular and intra-cerebral haemorrhages in unenhanced CT scans. J. Comput. Assist. Tomogr. 2012, 36, 109–120. [Google Scholar]
- Maldijan, J.A.; Chalela, J.; Kasner, S.E.; Liebeskind, D.; Detre, J.A. Automated CT segmentation and analysis for acute middle cerebral artery stroke. AJNR Am. J. Neuroradiol. 2001, 22, 1050–1055. [Google Scholar]
- Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Gupta, V.; Qian, G.Y.; He, J.; Poh, L.E.; Ambrosius, W.; Chrzan, R.M.; Polonara, G.; Mazzoni, C.; Mol, M.; et al. Automatic detection, localization and volume estimation of ischemic infarcts in non-contrast CT scans: Method and preliminary results. Investig. Radiol. 2013, 48, 661–670. [Google Scholar] [CrossRef]
- Puspitasari, F.; Volkau, I.; Ambrosius, W.; Nowinski, W.L. Robust calculation of the midsagittal plane in CT scans using the Kullback-Leibler’s measure. Int. J. Comput. Assist. Radiol. Surg. 2009, 4, 535–547. [Google Scholar] [CrossRef]
- Gupta, V.; Ambrosius, W.; Qian, G.; Blazejewska, A.; Kazmierski, R.; Urbanik, A.; Nowinski, W.L. Automatic segmentation of cerebrospinal fluid, white and gray matter in unenhanced computed tomography images. Acad. Radiol. 2010, 17, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Gomolka, R.S.; Chrzan, R.M.; Urbanik, A.; Nowinski, W.L. A quantitative method using head non-contrast CT scans to detect hyperacute non-visible ischemic changes in patients with stroke. J. Neuroimaging 2016, 26, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Maier, O.; Schröder, C.; Forkert, N.D.; Martinetz, T.; Handels, H. Classifiers for ischemic stroke lesion segmentation: A comparison study. PLoS ONE 2015, 10, e0145118. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, K.J.; Geis, R.J. When machines think: Radiology’s next frontier. Radiology 2017, 285, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep learning in neuroradiology. AJNR Am. J. Neuroradiol. 2018, 39, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference Medical Image Computing and Computer-Assisted Intervention MICCAL 2015, Munich, Germany, 5–9 October 2015; LNCS 9351. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Rajini, N.H.; Bhavani, R. Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 2013, 46, 1865–1874. [Google Scholar] [CrossRef]
- Sales Barros, R.; Tolhuisen, M.L.; Boers, A.M.; Jansen, I.; Ponomareva, E.; Dippel, D.W.J.; van der Lugt, A.; van Oostenbrugge, R.J.; van Zwam, W.H.; Berkhemer, O.A.; et al. Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks. J. Neurointerv. Surg. 2019; Epub ahead of print. [Google Scholar] [CrossRef]
- Kuang, H.; Najm, M.; Chakraborty, D.; Maraj, N.; Sohn, S.I.; Goyal, M.; Hill, M.D.; Demchuk, A.M.; Menon, B.K.; Qiu, W. Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. AJNR Am. J. Neuroradiol. 2019, 40, 33–38. [Google Scholar] [CrossRef]
- Kuang, H.; Menon, B.K.; Qiu, W. Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke. Med. Phys. 2019, 46, 4037–4045. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Menon, B.K.; Qiu, W. Automated infarct segmentation from follow-up non-contrast CT scans in patients with acute ischemic stroke using dense Multi-Path Contextual Generative Adversarial Network. In Lecture Notes in Computer Science, Proceedings of the Medical Image Computing and Computer Assisted Intervention MICCAI 2019, Shenzhen, China, 13–17 October 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11766, pp. 856–863. [Google Scholar]
- Kuang, H.; Menon, B.K.; Qiu, W. Segmenting hemorrhagic and ischemic infarct simultaneously from follow-up non-contrast CT images in patients with acute ischemic stroke. IEEE Access 2019, 7, 39842–39851. [Google Scholar] [CrossRef]
- Prakash, K.N.B.; Gupta, V.; Bilello, M.; Beauchamp, N.J.; Nowinski, W.L. Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad. Radiol. 2006, 13, 1474–1484. [Google Scholar] [CrossRef]
- Chen, L.; Bentley, P.; Rueckert, D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin. 2017, 15, 633–643. [Google Scholar] [CrossRef]
- Clèrigues, A.; Valverde, S.; Bernal, J.; Freixenet, J.; Oliver, A.; Lladó, X. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput. Methods Programs Biomed. 2020, 194, 105521. [Google Scholar] [CrossRef]
- Paing, M.P.; Tungjitkusolmun, S.; Bui, T.H.; Visitsattapongse, S.; Pintavirooj, C. Automated segmentation of infarct lesions in T1-weighted MRI scans using variational mode decomposition and deep learning. Sensors 2021, 21, 1952. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Menaka, R.; Hariharan, M.; Won, D. Ischemic lesion segmentation using ensemble of multi-scale region aligned CNN. Comput. Methods Programs Biomed. 2021, 200, 105831. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, Y.; Thamm, T.; Gong, E.; Ouyang, J.; Huang, C.; Christensen, S.; Marks, M.P.; Lansberg, M.G.; Albers, G.W.; et al. Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw. Open 2020, 3, e200772. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Hsu, J.; Xu, X.; Ramachandran, S.; Wang, V.; Miller, M.I.; Hillis, A.E.; Faria, A.V.; STIR and VISTA Imaging Investigators. Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke. Commun. Med. 2021, 1, 61. [Google Scholar] [CrossRef] [PubMed]
- Abedi, V.; Goyal, N.; Tsivgoulis, G.; Hosseinichimeh, N.; Hontecillas, R.; Bassaganya-Riera, J.; Elijovich, L.; Metter, J.E.; Alexandrov, A.W.; Liebeskind, D.S.; et al. Novel screening tool for stroke using artificial neural network. Stroke 2017, 48, 1678–1681. [Google Scholar] [CrossRef] [PubMed]
- Kasasbeh, A.S.; Christensen, S.; Parsons, M.W.; Campbell, B.; Albers, G.W.; Lansberg, M.G. Artificial neural network computer tomography perfusion prediction of ischemic core. Stroke 2019, 50, 1578–1581. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.C.; Speier, W.; Zhang, H.; Scalzo, F.; El-Saden, S.; Arnold, C.W. A Machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans. Med. Imaging 2019, 38, 1666–1676. [Google Scholar] [CrossRef]
- Winzeck, S.; Mocking, S.J.T.; Bezerra, R.; Bouts, M.J.R.J.; McIntosh, E.C.; Diwan, I.; Garg, P.; Chutinet, A.; Kimberly, W.T.; Copen, W.A.; et al. Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted MRI. AJNR Am. J. Neuroradiol. 2019, 40, 938–945. [Google Scholar] [CrossRef]
- Xue, Y.; Farhat, F.G.; Boukrina, O.; Barrett, A.M.; Binder, J.R.; Roshan, U.W.; Graves, W.W. A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. Neuroimage Clin. 2020, 25, 102118. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.P.; Bizzo, B.C.; Hillis, J.M.; Chin, J.K.; Comeau, D.S.; Gauriau, R.; Macruz, F.; Pawar, J.; Noro, F.T.C.; Sharaf, E.; et al. Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging. Sci. Rep. 2022, 12, 2154. [Google Scholar] [CrossRef] [PubMed]
- Gillebert, C.R.; Humphreys, G.W.; Mantini, D. Automated delineation of stroke lesions using brain CT images. Neuroimage Clin. 2014, 4, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L. Computational and mathematical methods in brain atlasing. Neuroradiol. J. 2017, 30, 520–534. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L. Human brain atlases in stroke management. Neuroinformatics 2020, 18, 549–567. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L.; Qian, G.; Bhanu Prakash, K.N.; Hu, Q.; Aziz, A. Fast Talairach Transformation for magnetic resonance neuroimages. J. Comput. Assist. Tomogr. 2006, 30, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L. Modified Talairach landmarks. Acta Neurochir. 2001, 143, 1045–1057. [Google Scholar] [CrossRef]
- Volkau, I.; Puspitasari, F.; Ng, T.; Prakash, K.B.; Gupta, V.; Nowinski, W. A simple and fast method of 3D registration and statistical landmark localization for sparse multi-modal/time-series neuroimages based on cortex ellipse fitting. Neuroradiol. J. 2012, 25, 98–111. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Thirunavuukarasuu, A. The Cerefy Clinical Brain Atlas on CD-ROM; Thieme: New York, NY, USA, 2004. [Google Scholar]
- Talairach, J.; Tournoux, P. Coplanar Stereotactic Atlas of the Human Brain; Thieme: New York, NY, USA; Stuttgart, Germany, 1988. [Google Scholar]
- Nowinski, W.L.; Fang, A.; Nguyen, B.T.; Raphel, J.K.; Jagannathan, L.; Raghavan, R.; Bryan, R.N.; Miller, G.A. Multiple brain atlas database and atlas-based neuroimaging system. Comput. Aided Surg. 1997, 2, 42–66. [Google Scholar] [CrossRef]
- Nowinski, W.L. The Cerefy brain atlases: Continuous enhancement of the electronic Talairach-Tournoux brain atlas. Neuroinformatics 2005, 3, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L.; Qian, G.; Bhanu Prakash, K.N.; Thirunavuukarasuu, A.; Hu, Q.M.; Ivanov, N.; Parimal, A.S.; Runge, V.M.; Beauchamp, N.J. Analysis of ischemic stroke MR images by means of brain atlases of anatomy and blood supply territories. Acad. Radiol. 2006, 13, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L.; Chua, B.C. Stroke Atlas: A 3D interactive tool correlating cerebrovascular pathology with underlying neuroanatomy and resulting neurological deficits. Neuroradiol. J. 2013, 26, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L.; Gupta, V.; Qian, G.Y.; Ambrosius, W.; Kazmierski, R. Population-based stroke atlas for outcome prediction: Method and preliminary results for ischemic stroke from CT. PLoS ONE 2014, 9, e102048, eCollection 2014. [Google Scholar] [CrossRef]
- Bilello, M.; Lao, Z.; Krejza, J.; Hillis, A.E.; Herskovits, E.H. Statistical atlas of acute stroke from magnetic resonance diffusion-weighted-images of the brain. Neuroinformatics 2006, 4, 235–242. [Google Scholar] [CrossRef]
- Menzes, N.M.; Ay, H.; Zhu, M.W.; Lopez, C.J.; Singhal, A.B.; Karonen, J.O.; Aronen, H.J.; Liu, Y.; Nuutinen, J.; Koroshetz, W.J.; et al. The Real Estate Factor: Quantifying the impact of Infarct Location on Stroke Severity. Stroke 2007, 38, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Petrick, N.; Sahiner, B.; Armato, S.G., 3rd; Bert, A.; Correale, L.; Delsanto, S.; Freedman, M.T.; Fryd, D.; Gur, D.; Hadjiiski, L.; et al. Evaluation of computer-aided detection and diagnosis systems. Med. Phys. 2013, 40, 087001. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Available online: https://www.strokeguideline.org/app/uploads/2023/04/National-Clinical-Guideline-for-Stroke-2023.pdf (accessed on 1 March 2024).
- Cloft, H.J.; Rabinstein, A.; Lanzino, G.; Kallmes, D.F. Intra-arterial stroke therapy: An assessment of demand and available work force. AJNR Am. J. Neuroradiol. 2009, 30, 453–458. [Google Scholar] [CrossRef]
- Mazighi, M.; Serfaty, J.-M.; Labreuche, J.; Laissy, J.-P.; Meseguer, E.; Lavallée, P.C.; Cabrejo, L.; Slaoui, T.; Guidoux, C.; Lapergue, B.; et al. RECANALISE Investigators. Comparison of intravenous alteplase with a combined intravenousendovascular approach in patients with stroke and confirmed arterial occlusion (RECANALISE study): A prospective cohort study. Lancet Neurol. 2009, 8, 802–809. [Google Scholar] [CrossRef]
- Yoo, A.J.; Verduzco, L.A.; Schaefer, P.W.; Hirsch, J.A.; Rabinov, J.D.; González, R.G. MRI-based selection for intra-arterial stroke therapy: Value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 2009, 40, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Lansberg, M.G.; Straka, M.; Kemp, S.; Mlynash, M.; Wechsler, L.R.; Jovin, T.G.; Wilder, M.J.; Lutsep, H.L.; Czartoski, T.J.; A Bernstein, R.; et al. DEFUSE 2 study investigators. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol. 2012, 11, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Yoo, A.J.; Barak, E.R.; Copen, W.A.; Kamalian, S.; Gharai, L.R.; Pervez, M.A.; Schwamm, L.H.; González, R.G.; Schaefer, P.W. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with National Institutes of Health Stroke Scale Score improves the prediction of acute stroke outcome. Stroke 2010, 41, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.W.; Davis, S.M. Therapeutic impact of MRI in acute stroke. In Magnetic Resonance Imaging in Ischemic Stroke; von Kummer, R., Back, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 23–40. [Google Scholar]
- Hacke, W.; Donnan, G.; Fieschi, C.; Kaste, M.; von Kummer, R.; Broderick, J.P.; Brott, T.; Frankel, M.; Grotta, J.C.; Haley, E.C., Jr.; et al. Association of outcome with early stroke treatment: Pooled analysis of ATLANTIS, ECASS and NINDS rt-PA stroke trials. Lancet 2004, 363, 768–774. [Google Scholar] [PubMed]
- Butcher, K.S.; Parsons, M.; MacGregor, L.; Barber, P.A.; Chalk, J.; Bladin, C.; Levi, C.; Kimber, T.; Schultz, D.; Fink, J.; et al. Refining the perfusion–diffusion mismatch hypothesis. Stroke 2005, 36, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Furlan, A.J.; Eyding, D.; Albers, G.W.; Al-Rami, Y.; Lees, K.R.; Rowley, H.A.; Sachara, C.; Soehngen, M.; Warach, S.; Hacke, W.; et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): Evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Albers, G.; Al-Rawi, Y.; Bogousslavsky, J.; Davalos, A.; Eliasziw, M.; Fisher, M.; Furlan, A.; Kaste, M.; Lees, K.R.; et al. The desmoteplase in acute ischemic stroke trial (DIAS): A phase 2 MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005, 36, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, W.; Lansberg, M.G.; Thijs, V.N.; Kemp, S.M.; Bammer, R.; Wechsler, L.R.; Moseley, M.E.; Marks, M.P.; Albers, G.W.; DEFUSE Investigators. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J. Cereb. Blood Flow Metab. 2008, 28, 887–891. [Google Scholar] [CrossRef]
- Zaman, S.; Dierksen, F.; Knapp, A.; Haider, S.P.; Abou Karam, G.; Qureshi, A.I.; Falcone, G.J.; Sheth, K.N.; Payabvash, S. Radiomic features of acute cerebral hemorrhage on non-contrast CT associated with patient survival. Diagnostics 2024, 14, 944. [Google Scholar] [CrossRef]
- Ziai, W.C.; Tuhrim, S.; Lane, K.; McBee, N.; Lees, K.; Dawson, J.; Butcher, K.; Vespa, P.; Wright, D.W.; Keyl, P.M.; et al. A multicenter, randomized, double-blinded, placebo-controlled phase III study of Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III). Int. J. Stroke 2014, 9, 536–542. [Google Scholar] [CrossRef]
- Kennedy, D.N.; Haselgrove, C.; Makris, N.; Goldin, D.M.; Lev, M.H.; Caplan, D.; Caviness, V.S. WebParc: A tool for analysis of the topography and volume of stroke from MRI. Med. Biol. Eng. Comput. 2010, 48, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Asano, T.; Kato, H.; Hara, T.; Kanematsu, M.; Hoshi, H.; Iwama, T.; Fujita, H. Computer-aided diagnosis for detection of lacunar infarcts on MR images: ROC analysis of radiologists’ performance. J. Digit. Imaging 2012, 25, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Afonso, D.; Seabra, J.; Suri, J.S.; Sanches, J.M. A CAD system for atherosclerotic plaque assessment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2012, 1008–1011. [Google Scholar]
- Chan, T.; Huang, H.K. Effect of a computer-aided diagnosis system on clinicians’ performance in detection of small acute intracranial hemorrhage on computed tomography. Acad. Radiol. 2008, 15, 290–299. [Google Scholar] [CrossRef]
- Moran, C.; Phan, T.G.; Srikanth, V.K. Cerebral small vessel disease: A review of clinical, radiological, and histopathological phenotypes. Int. J. Stroke 2012, 7, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.M.; Park, K.Y.; Avery, R.; Helenius, J.; Rost, N.; Rosand, J.; Rosen, B.; Ay, H. Extensive leukoaraiosis is associated with high early risk of recurrence after ischemic stroke. Stroke 2014, 45, 479–485. [Google Scholar] [CrossRef]
- Brown, D.L.; Lisabeth, L.D.; Garcia, N.M.; Smith, M.A.; Morgenstern, L.B. Emergency department evaluation of ischemic stroke and TIA: The BASIC Project. Neurology 2004, 63, 2250–2254. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, Q.; Aziz Nowinski, W.L. A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages. NeuroImage 2004, 21, 269–283. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Qian, G.Y.; Hanley, D.F. A CAD system for hemorrhagic stroke. Neuroradiol. J. 2014, 27, 409–416. [Google Scholar] [CrossRef]
- Bathla, G.; Ajmera, P.; Mehta, P.M.; Benson, J.C.; Derdeyn, C.P.; Lanzino, G.; Agarwal, A.; Brinjikji, W. Advances in acute ischemic stroke treatment: Current status and future directions. AJNR Am. J. Neuroradiol. 2023, 44, 750–758. [Google Scholar] [CrossRef]
- Nowinski, W.L. Evolution of human brain atlases in terms of content, applications, functionality, and availability. Neuroinformatics 2021, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L. Advances in neuroanatomy through brain atlasing. Anatomia 2023, 2, 28–42. [Google Scholar] [CrossRef]
- Brainomix. Available online: https://www.brainomix.com/stroke/ (accessed on 15 May 2024).
- Öman, O.; Mäkelä, T.; Salli, E.; Savolainen, S.; Kangasniemi, M. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 2019, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Widimsky, P.; Snyder, K.; Sulzenko, J.; Hopkins, L.N.; Stetkarova, I. Acute ischaemic stroke: Recent advances in reperfusion treatment. Eur. Heart J. 2023, 44, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Morey, J.R.; Zhang, X.; Marayati, N.F.; Matsoukas, S.; Fiano, E.; Oxley, T.; Dangayach, N.; Stein, L.K.; Fara, M.G.; Skliut, M.; et al. Mobile interventional stroke teams improve outcomes in the early time window for large vessel occlusion stroke. Stroke 2021, 52, e527–e530. [Google Scholar] [CrossRef]
- Kaźmierski, R. Brain injury mobile diagnostic system: Applications in civilian medical service and on the battlefield-General concept and medical aspects. J. Clin. Ultrasound 2023, 51, 1598–1606. [Google Scholar] [CrossRef]
CT | MR | Others |
---|---|---|
NCCT is the first-line diagnosis for emergency evaluation. CTA images cervical and cerebral arteries and identifies or excludes large-vessel occlusion, detects stenosis, and evaluates the collateral vascular network. CTP allows for the calculation of perfusion maps useful for the evaluation of infarct and penumbra. | T1W, T2W provide anatomy. T2* enables exclusion of hemorrhage. SWI reveals microangiopathy. T2 and FLAIR detect 90% of acute infarcts by 24 h. MRA evaluates severity of artery stenosis, vascular occlusion, and collateral flow. DWI is the gold standard for evaluating ischemia. ADC quantifies the degree of diffusion to detect and assess infarct and distinguish new from chronic infarcts. PWI examines hemodynamic conditions at the microvascular level, enabling evaluation of penumbra. MR spectroscopy images intracellular metabolites and could serve as a surrogate for stroke treatment. | US evaluates vascular pathologies. Color duplex sonography provides hemodynamic information, such as stenosis, occlusion, and collaterals and morphological findings. Transcranial Doppler images major cerebral artery occlusions and monitors the effects of thrombolytic therapy. DSA evaluates vascular pathologies and therapeutically plays a vital role in catheterization procedures. SPECT and PET image physiology and may serve as a surrogate in differential diagnosis and hemodynamic assessment. SPECT lacks anatomy and has low resolution and relatively long acquisition time. PET is quantitative and is established as the gold standard to define infarct and penumbra; it is not employed in daily practice due to its high cost, lack of anatomy, long acquisition time, and limited availability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowinski, W.L. Taxonomy of Acute Stroke: Imaging, Processing, and Treatment. Diagnostics 2024, 14, 1057. https://doi.org/10.3390/diagnostics14101057
Nowinski WL. Taxonomy of Acute Stroke: Imaging, Processing, and Treatment. Diagnostics. 2024; 14(10):1057. https://doi.org/10.3390/diagnostics14101057
Chicago/Turabian StyleNowinski, Wieslaw L. 2024. "Taxonomy of Acute Stroke: Imaging, Processing, and Treatment" Diagnostics 14, no. 10: 1057. https://doi.org/10.3390/diagnostics14101057
APA StyleNowinski, W. L. (2024). Taxonomy of Acute Stroke: Imaging, Processing, and Treatment. Diagnostics, 14(10), 1057. https://doi.org/10.3390/diagnostics14101057