The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric Analysis
2.3. Biochemical Testing
2.4. Study Follow-Up
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, A.J. Cardiovascular mortality in end-stage renal disease. Am. J. Med. Sci. 2003, 325, 163–167. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Kobo, O.; Abramov, D.; Davies, S.; Ahmed, S.B.; Sun, L.Y.; Mieres, J.H.; Parwani, P.; Siudak, Z.; Van Spall, H.G.C.; Mamas, M.A. CKD-Associated Cardiovascular Mortality in the United States: Temporal Trends from 1999 to 2020. Kidney Med. 2023, 5, 100597. [Google Scholar] [CrossRef]
- Wu, B.S.; Wei, C.H.; Yang, C.Y.; Lin, M.H.; Hsu, C.C.; Hsu, Y.J.; Lin, S.H.; Tarng, D.C. Mortality rate of end-stage kidney disease patients in Taiwan. J. Formos. Med. Assoc. 2022, 121 (Suppl. S1), S12–S19. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, A.; Zhang, Y.; Ren, K.; Ren, Z.; Zhao, C.; Wang, Q.; Cao, N. Abdominal aortic calcification score can predict all-cause and cardiovascular mortality in maintenance hemodialysis patients. Ren. Fail. 2023, 45, 2158869. [Google Scholar] [CrossRef]
- Jimenez, Z.N.; Pereira, B.J.; Romão, J.E., Jr.; Makida, S.C.; Abensur, H.; Moyses, R.M.; Elias, R.M. Ankle-brachial index: A simple way to predict mortality among patients on hemodialysis—A prospective study. PLoS ONE 2012, 7, e42290. [Google Scholar] [CrossRef]
- Ng, X.N.; Tsai, J.P.; Wang, C.H.; Hsu, B.G. Carotid-Femoral Pulse Wave Velocity Could Be a Marker to Predict Cardiovascular and All-Cause Mortality of Hemodialysis Patients. J. Clin. Med. 2023, 12, 2509. [Google Scholar] [CrossRef]
- Bergström, J. Nutrition and mortality in hemodialysis. J. Am. Soc. Nephrol. 1995, 6, 1329–1341. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Q.; Zhang, S.; Wang, Z.; Liu, H.; Teng, L.; Xiao, P.; Lu, Y.; Wang, X.; Dong, C.; et al. Serum Galectin-3 levels and all-cause and cardiovascular mortality in maintenance hemodialysis patients: A prospective cohort study. BMC Nephrol. 2022, 23, 5. [Google Scholar] [CrossRef]
- Kalousová, M.; Dusilová-Sulková, S.; Kuběna, A.A.; Zakiyanov, O.; Tesař, V.; Zima, T. Sclerostin levels predict cardiovascular mortality in long-term hemodialysis patients: A prospective observational cohort study. Physiol. Res. 2019, 68, 547–558. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Wu, Q.J.; Xiao, J.; Wang, Z.H.; Mu, X.W.; Zhang, Y.; Wang, X.N.; You, L.L.; Wang, S.N.; et al. Serum total indoxyl sulfate levels and all-cause and cardiovascular mortality in maintenance hemodialysis patients: A prospective cohort study. BMC Nephrol. 2022, 23, 231. [Google Scholar] [CrossRef]
- Wagner, Z.; Molnár, M.; Molnár, G.A.; Tamaskó, M.; Laczy, B.; Wagner, L.; Csiky, B.; Heidland, A.; Nagy, J.; Wittmann, I. Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am. J. Kidney Dis. 2006, 47, 294–300. [Google Scholar] [CrossRef]
- Wu, I.W.; Hsu, K.H.; Hsu, H.J.; Lee, C.C.; Sun, C.Y.; Tsai, C.J.; Wu, M.S. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—A prospective cohort study. Nephrol. Dial. Transplant. 2012, 27, 1169–1175. [Google Scholar] [CrossRef]
- Mafra, D.; Kemp, J.A.; Borges, N.A.; Wong, M.; Stenvinkel, P. Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins 2023, 15, 499. [Google Scholar] [CrossRef]
- Wolley, M.J.; Hutchison, C.A. Large uremic toxins: An unsolved problem in end-stage kidney disease. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S3), iii6–iii11. [Google Scholar] [CrossRef]
- Valkenburg, S.; Glorieux, G.; Vanholder, R. Uremic Toxins and Cardiovascular System. Cardiol. Clin. 2021, 39, 307–318. [Google Scholar] [CrossRef]
- Filler, G.; Kusserow, C.; Lopes, L.; Kobrzyński, M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin. Biochem. 2014, 47, 1188–1194. [Google Scholar] [CrossRef]
- Hoffmann, A.; Nimtz, M.; Conradt, H.S. Molecular characterization of beta-trace protein in human serum and urine: A potential diagnostic marker for renal diseases. Glycobiology 1997, 7, 499–506. [Google Scholar] [CrossRef]
- Schwab, S.; Kleine, C.E.; Bös, D.; Bohmann, S.; Strassburg, C.P.; Lutz, P.; Woitas, R.P. Beta-trace protein as a potential biomarker of residual renal function in patients undergoing peritoneal dialysis. BMC Nephrol. 2021, 22, 87. [Google Scholar] [CrossRef]
- Bargnoux, A.S.; Buthiau, D.; Morena, M.; Rodriguez, A.; Noguera-Gonzalez, M.E.; Gilbert, O.; Le Quintrec, M.; Kuster, N.; Cristol, J.P. Estimation of residual renal function using beta-trace protein: Impact of dialysis procedures. Artif. Organs 2020, 44, 647–654. [Google Scholar] [CrossRef]
- Inker, L.A.; Tighiouart, H.; Coresh, J.; Foster, M.C.; Anderson, A.H.; Beck, G.J.; Contreras, G.; Greene, T.; Karger, A.B.; Kusek, J.W.; et al. GFR Estimation Using β-Trace Protein and β2-Microglobulin in CKD. Am. J. Kidney Dis. 2016, 67, 40–48. [Google Scholar] [CrossRef]
- White, C.A.; Ghazan-Shahi, S.; Adams, M.A. β-Trace protein: A marker of GFR and other biological pathways. Am. J. Kidney Dis. 2015, 65, 131–146. [Google Scholar] [CrossRef]
- Han, F.; Takeda, K.; Ishikawa, K.; Ono, M.; Date, F.; Yokoyama, S.; Furuyama, K.; Shinozawa, Y.; Urade, Y.; Shibahara, S. Induction of lipocalin-type prostaglandin D synthase in mouse heart under hypoxemia. Biochem. Biophys. Res. Commun. 2009, 385, 449–453. [Google Scholar] [CrossRef]
- Orenes-Piñero, E.; Manzano-Fernández, S.; López-Cuenca, Á.; Marín, F.; Valdés, M.; Januzzi, J.L. β-Trace protein: From GFR marker to cardiovascular risk predictor. Clin. J. Am. Soc. Nephrol. 2013, 8, 873–881. [Google Scholar] [CrossRef]
- Manzano-Fernández, S.; Januzzi, J.L., Jr.; Boronat-Garcia, M.; Bonaque-González, J.C.; Truong, Q.A.; Pastor-Pérez, F.J.; Muñoz-Esparza, C.; Pastor, P.; Albaladejo-Otón, M.D.; Casas, T.; et al. β-trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J. Am. Coll. Cardiol. 2011, 57, 849–858. [Google Scholar] [CrossRef]
- Vílchez, J.A.; Roldán, V.; Manzano-Fernández, S.; Fernández, H.; Avilés-Plaza, F.; Martínez-Hernández, P.; Vicente, V.; Valdés, M.; Marín, F.; Lip, G.Y.H. β-Trace protein and prognosis in patients with atrial fibrillation receiving anticoagulation treatment. Chest 2013, 144, 1564–1570. [Google Scholar] [CrossRef]
- Sert, E.T.; Akilli, N.; Köylü, R.; Cander, B.; Kokulu, K.; Köylü, Ö. The Effect of Beta-Trace Protein on Diagnosis and Prognosis in Patients with Acute Coronary Syndrome. Cureus 2020, 12, e7135. [Google Scholar] [CrossRef]
- Mendez, K.; Rane, M.; Orkaby, A.R.; Gaziano, J.M. A tool to help patients visualize ASCVD risk and the potential impact of risk-lowering interventions. Int. J. Cardiol. Cardiovasc. Risk Prev. 2022, 15, 200159. [Google Scholar] [CrossRef]
- Pöge, U.; Gerhardt, T.; Stoffel-Wagner, B.; Palmedo, H.; Klehr, H.U.; Sauerbruch, T.; Woitas, R.P. Beta-trace protein-based equations for calculation of GFR in renal transplant recipients. Am. J. Transplant. 2008, 8, 608–615. [Google Scholar] [CrossRef]
- Leyssens, K.; Van Regenmortel, N.; Roelant, E.; Guerti, K.; Couttenye, M.M.; Jorens, P.G.; Verbrugghe, W.; Van Craenenbroeck, A.H. Beta-Trace Protein as a Potential Marker of Acute Kidney Injury: A Pilot Study. Kidney Blood Press. Res. 2021, 46, 185–195. [Google Scholar] [CrossRef]
- Donadio, C.; Bozzoli, L. Urinary β-trace protein: A unique biomarker to screen early glomerular filtration rate impairment. Medicine 2016, 95, e5553. [Google Scholar] [CrossRef]
- Urade, Y.; Hayaishi, O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim. Biophys. Acta 2000, 1482, 259–271. [Google Scholar] [CrossRef]
- Cipollone, F. The balance between PGD synthase and PGE synthase is a major determinant of atherosclerotic plaque instability in humans. Arterioscler. Thromb. Vasc. Biol. 2008, 28, e1. [Google Scholar] [CrossRef]
- Tanaka, R.; Miwa, Y.; Mou, K.; Tomikawa, M.; Eguchi, N.; Urade, Y.; Takahashi-Yanaga, F.; Morimoto, S.; Wake, N.; Sasaguri, T. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem. Biophys. Res. Commun. 2009, 378, 851–856. [Google Scholar] [CrossRef]
- Straus, D.S.; Pascual, G.; Li, M.; Welch, J.S.; Ricote, M.; Hsiang, C.H.; Sengchanthalangsy, L.L.; Ghosh, G.; Glass, C.K. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc. Natl. Acad. Sci. USA 2000, 97, 4844–4849. [Google Scholar] [CrossRef]
- Urade, Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D(2) Synthase as a Multifunctional Lipocalin. Front. Physiol. 2021, 12, 718002. [Google Scholar] [CrossRef]
- Lousa, I.; Reis, F.; Beirão, I.; Alves, R.; Belo, L.; Santos-Silva, A. New Potential Biomarkers for Chronic Kidney Disease Management—A Review of the Literature. Int. J. Mol. Sci. 2020, 22, 43. [Google Scholar] [CrossRef]
- Foster, M.C.; Coresh, J.; Hsu, C.Y.; Xie, D.; Levey, A.S.; Nelson, R.G.; Eckfeldt, J.H.; Vasan, R.S.; Kimmel, P.L.; Schelling, J.; et al. Serum β-Trace Protein and β2-Microglobulin as Predictors of ESRD, Mortality, and Cardiovascular Disease in Adults with CKD in the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2016, 68, 68–76. [Google Scholar] [CrossRef]
- Schwab, S.; Pörner, D.; Kleine, C.E.; Werberich, R.; Werberich, L.; Reinhard, S.; Bös, D.; Strassburg, C.P.; von Vietinghoff, S.; Lutz, P.; et al. Pre-transplant serum Beta Trace Protein indicates risk for post-transplant major cardiac adverse events. Nephrology 2023, 28, 51–59. [Google Scholar] [CrossRef]
- Manzano-Fernández, S.; López-Cuenca, A.; Januzzi, J.L.; Parra-Pallares, S.; Mateo-Martínez, A.; Sánchez-Martínez, M.; Pérez-Berbel, P.; Orenes-Piñero, E.; Romero-Aniorte, A.I.; Avilés-Plaza, F.; et al. Usefulness of β-trace protein and cystatin C for the prediction of mortality in non ST segment elevation acute coronary syndromes. Am. J. Cardiol. 2012, 110, 1240–1248. [Google Scholar] [CrossRef]
- Shafi, T.; Parekh, R.S.; Jaar, B.G.; Plantinga, L.C.; Oberai, P.C.; Eckfeldt, J.H.; Levey, A.S.; Powe, N.R.; Coresh, J. Serum β-trace protein and risk of mortality in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 1435–1445. [Google Scholar] [CrossRef]
- Enko, D.; Meinitzer, A.; Scharnagl, H.; Stojakovic, T.; Kleber, M.E.; Delgado, G.E.; Zelzer, S.; Drechsler, C.; Krämer, B.K.; Wanner, C.; et al. Prospective cohort studies of beta-trace protein and mortality in haemodialysis patients and patients undergoing coronary angiography. Nephrol. Dial. Transplant. 2018, 33, 1984–1991. [Google Scholar] [CrossRef]
- Cheung, C.L.; Cheung, T.T.; Lam, K.S.; Cheung, B.M. Reduced serum beta-trace protein is associated with metabolic syndrome. Atherosclerosis 2013, 227, 404–407. [Google Scholar] [CrossRef]
- Virtue, S.; Feldmann, H.; Christian, M.; Tan, C.Y.; Masoodi, M.; Dale, M.; Lelliott, C.; Burling, K.; Campbell, M.; Eguchi, N.; et al. A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization. Diabetes 2012, 61, 3139–3147. [Google Scholar] [CrossRef]
- Soleymanian, T.; Kokabeh, Z.; Ramaghi, R.; Mahjoub, A.; Argani, H. Clinical outcomes and quality of life in hemodialysis diabetic patients versus non-diabetics. J. Nephropathol. 2017, 6, 81–89. [Google Scholar] [CrossRef]
- Lim, W.H.; Johnson, D.W.; Hawley, C.; Lok, C.; Polkinghorne, K.R.; Roberts, M.A.; Boudville, N.; Wong, G. Type 2 diabetes in patients with end-stage kidney disease: Influence on cardiovascular disease-related mortality risk. Med. J. Aust. 2018, 209, 440–446. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, Y.C.; Chen, H.H.; Chen, T.W.; Hsu, C.C.; Wu, M.S. Determinant Effects of Average Fasting Plasma Glucose on Mortality in Diabetic End-Stage Renal Disease Patients on Maintenance Hemodialysis. Kidney Int. Rep. 2017, 2, 18–26. [Google Scholar] [CrossRef]
- Grzywacz, A.; Lubas, A.; Smoszna, J.; Niemczyk, S. Risk Factors Associated with All-Cause Death Among Dialysis Patients with Diabetes. Med. Sci. Monit. 2021, 27, e930152. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Luo, J.; Xi, D.; Huang, W.; Yang, S.; Ye, J.; Zhang, Y. Early albumin level and mortality in hemodialysis patients: A retrospective study. Ann. Palliat. Med. 2021, 10, 10697–10705. [Google Scholar] [CrossRef]
- Tsai, M.H.; Fang, Y.W.; Liou, H.H.; Leu, J.G.; Lin, B.S. Association of Serum Aluminum Levels with Mortality in Patients on Chronic Hemodialysis. Sci. Rep. 2018, 8, 16729. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.J.; Hsu, F.C.; Carr, J.J.; Freedman, B.I.; Bowden, D.W. Glomerular filtration rate and albuminuria predict mortality independently from coronary artery calcified plaque in the Diabetes Heart Study. Cardiovasc. Diabetol. 2013, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Su, H.M.; Tsai, Y.C.; Huang, J.C.; Chang, J.M.; Hwang, S.J.; Chen, H.C. Framingham risk score with cardiovascular events in chronic kidney disease. PLoS ONE 2013, 8, e60008. [Google Scholar] [CrossRef] [PubMed]
- SCORE2 Working Group; ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- Bundy, J.D.; Rahman, M.; Matsushita, K.; Jaeger, B.C.; Cohen, J.B.; Chen, J.; Deo, R.; Dobre, M.A.; Feldman, H.I.; Flack, J.; et al. Risk Prediction Models for Atherosclerotic Cardiovascular Disease in Patients with Chronic Kidney Disease: The CRIC Study. J. Am. Soc. Nephrol. 2022, 33, 601–611. [Google Scholar] [CrossRef]
Variables | All Participants (n = 96) | Participants without Mortality (n = 71) | Participants with Mortality (n = 25) | p Value |
---|---|---|---|---|
Age (years) | 62.54 ± 12.76 | 60.80 ± 12.80 | 67.48 ± 11.49 | 0.024 * |
Female, n (%) | 48 (50.0) | 35 (49.3) | 13 (52.0) | 0.817 |
Diabetes mellitus, n (%) | 39 (40.6) | 23 (32.4) | 16 (64.0) | 0.006 * |
Hypertension, n (%) | 52 (54.2) | 37 (52.1) | 15 (60.0) | 0.496 |
HD vintage (months) | 55.14 (23.28–122.16) | 53.4 (21.63–128.1) | 59.4 (29.85–104.61) | 0.835 |
Pre-HD BMI (kg/m2) | 24.91 ± 4.79 | 25.25 ± 4.74 | 23.92 ± 4.90 | 0.234 |
Post-HD BMI (kg/m2) | 23.92 ± 4.57 | 24.29 ± 4.48 | 22.86 ± 4.75 | 0.180 |
Systolic blood pressure (mm Hg) | 144.39 ± 26.83 | 143.03 ± 25.88 | 148.28 ± 29.57 | 0.403 |
Diastolic blood pressure (mm Hg) | 77.10 ± 15.52 | 77.86 ± 15.89 | 74.96 ± 14.50 | 0.425 |
β-trace protein (mg/L) | 6.43 (5.88–7.78) | 6.36 (5.86–7.08) | 7.51 (6.02–8.97) | 0.019 * |
Hemoglobin (g/dL) | 10.54 ± 1.16 | 10.60 (9.73–11.18) | 10.70 (10.30–11.05) | 0.485 |
Total cholesterol (mg/dL) | 146.76 ± 34.88 | 149.80 ± 34.90 | 138.12 ± 34.04 | 0.151 |
Triglyceride (mg/dL) | 113.00 (83.25–175.00) | 115 (83.25–184) | 105 (81.25–129.25) | 0.206 |
HDL-C (mg/dL) | 45.00 (38.00–54.75) | 47.00 (38.00–56.00) | 42.00 (35.50–52.00) | 0.279 |
LDL-C (mg/dL) | 111.24 ± 26.57 | 113.31 ± 26.48 | 105.36 ± 26.46 | 0.200 |
Glucose (mg/dL) | 132.50 (106.25–168.75) | 128 (103–160.5) | 144 (124.5–185.25) | 0.032 * |
Blood urea nitrogen (mg/dL) | 60.64 ± 13.83 | 61.17 ± 14.10 | 59.12 ± 13.19 | 0.527 |
Creatinine (mg/dL) | 9.45 ± 1.95 | 9.82 ± 1.84 | 8.37 ± 1.89 | 0.001 * |
Total calcium (mg/dL) | 9.02 ± 0.81 | 9.04 ± 0.82 | 8.97 ± 0.81 | 0.723 |
Phosphorus (mg/dL) | 4.66 ± 1.35 | 4.72 ± 1.37 | 4.49 ± 1.32 | 0.480 |
iPTH (pg/mL) | 191.45 (69.33–479.48) | 205.2 (77.28–49.43) | 160.3 (57.3–522.13) | 0.997 |
Urea reduction rate | 0.74 ± 0.04 | 0.73 (0.70–0.76) | 0.76 (0.71–0.78) | 0.184 |
Kt/V (Gotch) | 1.35 ± 0.17 | 1.30 (1.21–1.43) | 1.42 (1.25–1.52) | 0.179 |
10-year ASCVD risk (%) | 14.00 (4.70–27.33) | 10.40 (4.10–22.70) | 20.70 (11.65–38.40) | 0.033 * |
ARB, n (%) | 29 (30.2) | 23 (32.4) | 6 (24.0) | 0.432 |
β-blocker, n (%) | 31 (32.3) | 26 (36.6) | 5 (20.0) | 0.126 |
CCB, n (%) | 38 (39.6) | 32 (45.1) | 6 (24.0) | 0.064 |
Statin, n (%) | 16 (16.7) | 14 (19.7) | 2 (8.0) | 0.176 |
Fibrate, n (%) | 12 (12.5) | 9 (12.7) | 3 (12.0) | 0.930 |
Aspirin, n (%) | 67 (69.8) | 49 (69.0) | 18 (72.0) | 0.780 |
Variables | HR | 95% CI | p Value | aHR | 95% CI | p Value |
---|---|---|---|---|---|---|
Age (years) | 1.034 | 1.002–1.068 | 0.038 * | 1.021 | 0.985–1.058 | 0.268 |
Female/Male | 0.948 | 0.640–1.404 | 0.790 | – | – | – |
Diabetes mellitus | 3.092 | 1.365–7.000 | 0.007 * | 2.474 | 1.041–5.875 | 0.040 * |
Hypertension | 1.433 | 0.644–3.190 | 0.378 | – | – | – |
HD vintage (months) | 0.998 | 0.992–1.004 | 0.592 | – | – | – |
Pre-HD BMI (kg/m2) | 0.955 | 0.875–1.043 | 0.306 | – | – | – |
Post-HD BMI (kg/m2) | 0.945 | 0.861–1.037 | 0.230 | – | – | – |
Systolic blood pressure (mm Hg) | 1.007 | 0.993–1.021 | 0.346 | – | – | – |
Diastolic blood pressure (mm Hg) | 0.992 | 0.966–1.018 | 0.533 | – | – | – |
β-trace protein | ||||||
<6.43 mg/L | 1 | |||||
≥6.43 mg/L | 3.188 | 1.428–7.115 | 0.005 * | 2.913 | 1.256–6.754 | 0.013 * |
Hemoglobin (g/dL) | 1.195 | 0.858–1.664 | 0.292 | – | – | – |
Total cholesterol (mg/dL) | 0.991 | 0.979–1.003 | 0.146 | – | – | – |
Triglyceride (mg/dL) | 0.996 | 0.990–1.002 | 0.157 | – | – | – |
HDL-C (mg/dL) | 0.983 | 0.952–1.014 | 0.280 | – | – | – |
LDL-C (mg/dL) | 0.989 | 0.972–1.007 | 0.217 | – | – | – |
Albumin (g/dL) | 0.217 | 0.087–0.544 | 0.001 * | 0.298 | 0.110–0.806 | 0.017 * |
Glucose (mg/dL) | 1.005 | 1.000–1.009 | 0.035 * | 1.002 | 0.997–1.007 | 0.498 |
Blood urea nitrogen (mg/dL) | 0.992 | 0.965–1.020 | 0.590 | |||
Creatinine (mg/dL) | 0.693 | 0.558–0.861 | 0.001 * | 0.787 | 0.618–1.002 | 0.052 |
Total calcium (mg/dL) | 0.910 | 0.558–1.148 | 0.706 | – | – | – |
Phosphorus (mg/dL) | 0.902 | 0.673–1.208 | 0.487 | – | – | – |
iPTH (pg/mL) | 1.001 | 1.000–1.002 | 0.222 | – | – | – |
Urea reduction rate (×100) | 1.051 | 0.960–1.152 | 0.282 | – | – | – |
Kt/V (Gotch) | 3.373 | 0.375–30.38 | 0.278 | – | – | – |
ASCVD risk | 1.033 | 1.014–1.052 | 0.001 * | – | – | – |
ARB | 0.693 | 0.277–1.737 | 0.434 | – | – | – |
β-blocker | 0.519 | 0.195–1.384 | 0.190 | – | – | – |
CCB | 0.465 | 0.186–1.164 | 0.102 | – | – | – |
Statin | 0.430 | 0.101–1.824 | 0.252 | – | – | – |
Fibrate | 0.942 | 0.282–3.145 | 0.922 | – | – | – |
Aspirin | 1.129 | 0.471–2.703 | 0.786 | – | – | – |
Variables | Spearman Coefficient of Correlation | p Value |
---|---|---|
Age (years) | −0.174 | 0.090 |
Log-HD vintage (months) | −0.125 | 0.226 |
Pre-HD BMI (kg/m2) | 0.124 | 0.230 |
Post-HD BMI (kg/m2) | 0.112 | 0.279 |
Systolic blood pressure (mm Hg) | −0.132 | 0.199 |
Diastolic blood pressure (mm Hg) | −0.155 | 0.131 |
Hemoglobin (g/dL) | 0.044 | 0.674 |
Total cholesterol (mg/dL) | −0.037 | 0.718 |
Log-Triglyceride (mg/dL) | 0.215 | 0.036 * |
Log-HDL-C (mg/dL) | −0.105 | 0.309 |
LDL-C (mg/dL) | 0.037 | 0.724 |
Albumin (g/dL) | −0.235 | 0.021 * |
Log-Glucose (mg/dL) | 0.045 | 0.661 |
Blood urea nitrogen (mg/dL) | −0.041 | 0.689 |
Creatinine (mg/dL) | −0.092 | 0.374 |
Total calcium (mg/dL) | −0.083 | 0.424 |
Phosphorus (mg/dL) | −0.040 | 0.696 |
Log-iPTH (pg/mL) | −0.003 | 0.977 |
Urea reduction rate | 0.024 | 0.818 |
Kt/V (Gotch) | 0.026 | 0.802 |
Log-ASCVD risk | −0.107 | 0.301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-Y.; Hsu, B.-G.; Wang, C.-H.; Tsai, J.-P. The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis. Diagnostics 2024, 14, 974. https://doi.org/10.3390/diagnostics14100974
Huang P-Y, Hsu B-G, Wang C-H, Tsai J-P. The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis. Diagnostics. 2024; 14(10):974. https://doi.org/10.3390/diagnostics14100974
Chicago/Turabian StyleHuang, Po-Yu, Bang-Gee Hsu, Chih-Hsien Wang, and Jen-Pi Tsai. 2024. "The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis" Diagnostics 14, no. 10: 974. https://doi.org/10.3390/diagnostics14100974
APA StyleHuang, P. -Y., Hsu, B. -G., Wang, C. -H., & Tsai, J. -P. (2024). The Prognostic Role of Serum β-Trace Protein Levels among Patients on Maintenance Hemodialysis. Diagnostics, 14(10), 974. https://doi.org/10.3390/diagnostics14100974