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Abstract: Artificial intelligence (AI) refers to the science and engineering of creating intelligent
machines for imitating and expanding human intelligence. Given the ongoing evolution of the
multidisciplinary integration trend in modern medicine, numerous studies have investigated the
power of AI to address orthopedic-specific problems. One particular area of investigation focuses
on shoulder pathology, which is a range of disorders or abnormalities of the shoulder joint, causing
pain, inflammation, stiffness, weakness, and reduced range of motion. There has not yet been a
comprehensive review of the recent advancements in this field. Therefore, the purpose of this review
is to evaluate current AI applications in shoulder pathology. This review mainly summarizes several
crucial stages of the clinical practice, including predictive models and prognosis, diagnosis, treatment,
and physical therapy. In addition, the challenges and future development of AI technology are
also discussed.
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1. Introduction

Artificial intelligence (AI) is the science and engineering of creating intelligent ma-
chines for imitating and expanding human intelligence. It is a branch of computer science
that has the remarkable ability to perform tasks by simulating human cognitive functions [1].
Through the analysis and comparison of extensive datasets, AI technology has been en-
gaged in innovative applications in the field of medicine and revolutionized approaches to
various healthcare challenges [2–4].

In 1955, John McCarthy and his colleagues embarked on a research project to explore
the feasibility of reproducing all aspects of human intelligence using a machine/computer
with minimal human involvement [5]. This pivotal endeavor marked the establishment
of the field of AI, which became the foundation of subsequent computer research and
development. The early accomplishments of AI could be due to the fact that it was
proficient in solving tasks that were easy to formally program but challenging for humans
to execute [6,7]. Paradoxically, tasks that appeared effortless for humans showed greater
challenges due to their reliance on intuitive processes, making them inherently arduous to
formalize through coding [8,9].

Machine learning (ML) was first introduced as a subset of AI in 1959 (Figure 1) [10].
ML focuses on the development of algorithms and models that enable computers to learn
and make decisions on the basis of input data. Instead of being explicitly programmed to
perform a certain task, ML uses statistical techniques to learn from examples and adjust
their internal parameters (weights) and progressively improves with experience [11]. Ac-
cording to the learning process, ML can be broadly classified into three groups: supervised
learning, unsupervised learning, and reinforcement learning [12]. In supervised learning,
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the algorithm is trained on labeled data following explicit instructions, which means that it
is given input–output pairs and learns to map the input to the output [13]. Unsupervised
learning involves training on unlabeled data, and the algorithm should find patterns or
structures within the data, which can potentially reveal hidden patterns yet to be rec-
ognized by humans [14]. In reinforcement learning, the algorithm was trained to make
sequences of decisions by rewarding or punishing it based on its actions [15]. Additionally,
some certain ML models lack interpretability or transparency, which is called the black
box phenomenon. It means that although these models can make accurate predictions or
classifications, the underlying reasoning or decision-making process is not easily under-
standable by humans [16]. Nevertheless, despite its complexities and occasional opacity,
ML has immense impacts on various domains, ranging from image recognition and natural
language processing to recommendation systems and autonomous vehicles [17].
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Deep learning (DL), as a highly sophisticated advancement of ML, was proposed in
the 1980s. It emerged from the neural network research conducted by Geoffrey Hinton and
his colleagues [18]. It is a powerful methodology of unsupervised learning, and specifically
designed to understand complex patterns and relationships in large datasets [19]. DL
algorithms are inspired by the intricate connectivity and function of the human brain and
are composed of artificial neural networks (ANNs) with multiple layers to perform complex
tasks [20]. An ANN includes an input layer, multiple intermediate layers, and an output
layer. Each layer comprises interconnected nodes, called artificial neurons or units, which
process and transform the input data. The output of one layer acts as the input for the
next layer, allowing the network to learn hierarchical representations of the data [21]. The
key advantage of DL is its ability to automatically learn and extract relevant features from
unstructured and unlabeled data and eliminate the need for manual feature engineering.
By iteratively adjusting the weights and biases of the neural network during training, DL
models can discover complex and abstract representations that capture intricate patterns
present in the data [16,22]. The availability of large datasets and advances in computational
power have contributed to the rapid growth and state-of-the-art performance in tasks like
image classification, object detection, machine translation, and so on. [23,24].

Convolutional neural networks (CNNs) are a type of DL algorithm that is highly
suitable for analyzing visual data such as images and videos [25]. CNNs are designed
to automatically and adaptively learn spatial hierarchies of features from the input data
through the use of convolutional layers, which apply filters (also known as kernels) to
the input data to extract relevant features. These filters are learned during the training
process, allowing the network to identify patterns such as edges, textures, and shapes at
different scales [26,27]. CNNs also typically include other types of layers, such as pooling
layers, which downsample the feature maps to reduce computational complexity, and fully
connected layers [28].
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Over the last few years, AI technology has been integrated into the field of medicine
for multiple purposes, such as clinical diagnosis, decision support, electronic health records,
personalized treatments, drug discovery and development, patient care and assistance, and
health monitoring [9,29]. It represents a significant growing trend poised to revolutionize
various aspects of healthcare delivery, improve clinical outcomes, and transform the patient
experience. The application of AI technology in the field of orthopedics has developed
exponentially, with a ninefold increase in the number of publications between 2017 and
2021 (Figure 2). This can be attributed to advancements in computer science, processor
speeds, and related technologies, which have facilitated the development of AI-driven tools
applicable to orthopedics. Nowadays, AI technology has demonstrated remarkable utility
in predictive analysis, medical imaging interpretation, preoperative planning, surgical
planning, and postoperative care and rehabilitation in various subspecialties of orthopedics
(Figure 3). One particular area of orthopedics focuses on shoulder pathology, which
has experienced rapid growth, especially in the past five years [30] (Figure 4). Shoulder
pathology refers to a range of disorders or abnormalities affecting the shoulder joint
and surrounding soft tissues. These conditions can cause pain, inflammation, stiffness,
weakness, and reduced range of motion. Some of the common shoulder pathologies include
rotator cuff tears (RCTs), shoulder impingement syndrome (SIS), shoulder instability,
shoulder osteoarthritis, and adhesive capsulitis [30–32].
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Diagnostics 2024, 14, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 3. AI-related publications in the subspecialties of orthopedics from 2010 to 2023. 

 
Figure 4. AI-related publications in the field of shoulder pathology from 2010 to 2023. 

Although the potential benefits of AI technology in the field of orthopedics are sub-
stantial, there are still several challenges and considerations that should be evaluated and 
addressed, such as data quality, interoperability, regulatory compliance, ethical consider-
ations, and the need for interdisciplinary collaboration. To date, numerous studies have 
been conducted to review AI applications in some subspecialties of orthopedics 
[2,6,14,16,28,30]. However, there has not yet been a comprehensive review of the recent 
advancements in shoulder pathology. Therefore, the purpose of this review is to evaluate 
the current AI applications in the literature concerning shoulder pathologies. It will ex-
plore several crucial stages of the clinical process, including predictive models and prog-
nosis, diagnosis, treatment, and physical therapy. In addition, the challenges and future 
development of AI technology are also discussed. A glossary of key terms associated with 
AI technology is provided in Table 1. 

  

654

561 549

304

223

112

0

100

200

300

400

500

600

700

Fracture Spine Surgery Arthroplasty Sports
Medicine

Bone Tumour Others

Number of Publications

Figure 3. AI-related publications in the subspecialties of orthopedics from 2010 to 2023.



Diagnostics 2024, 14, 1091 4 of 18

Diagnostics 2024, 14, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 3. AI-related publications in the subspecialties of orthopedics from 2010 to 2023. 

 
Figure 4. AI-related publications in the field of shoulder pathology from 2010 to 2023. 

Although the potential benefits of AI technology in the field of orthopedics are sub-
stantial, there are still several challenges and considerations that should be evaluated and 
addressed, such as data quality, interoperability, regulatory compliance, ethical consider-
ations, and the need for interdisciplinary collaboration. To date, numerous studies have 
been conducted to review AI applications in some subspecialties of orthopedics 
[2,6,14,16,28,30]. However, there has not yet been a comprehensive review of the recent 
advancements in shoulder pathology. Therefore, the purpose of this review is to evaluate 
the current AI applications in the literature concerning shoulder pathologies. It will ex-
plore several crucial stages of the clinical process, including predictive models and prog-
nosis, diagnosis, treatment, and physical therapy. In addition, the challenges and future 
development of AI technology are also discussed. A glossary of key terms associated with 
AI technology is provided in Table 1. 

  

654

561 549

304

223

112

0

100

200

300

400

500

600

700

Fracture Spine Surgery Arthroplasty Sports
Medicine

Bone Tumour Others

Number of Publications

Figure 4. AI-related publications in the field of shoulder pathology from 2010 to 2023.

Although the potential benefits of AI technology in the field of orthopedics are sub-
stantial, there are still several challenges and considerations that should be evaluated and
addressed, such as data quality, interoperability, regulatory compliance, ethical considera-
tions, and the need for interdisciplinary collaboration. To date, numerous studies have been
conducted to review AI applications in some subspecialties of orthopedics [2,6,14,16,28,30].
However, there has not yet been a comprehensive review of the recent advancements
in shoulder pathology. Therefore, the purpose of this review is to evaluate the current
AI applications in the literature concerning shoulder pathologies. It will explore several
crucial stages of the clinical process, including predictive models and prognosis, diagnosis,
treatment, and physical therapy. In addition, the challenges and future development of AI
technology are also discussed. A glossary of key terms associated with AI technology is
provided in Table 1.

Table 1. Glossary of key terms.

Term Definition

Area under the curve (AUC)

A valuable metric for evaluating the performance of binary classification models, which
provides a concise measure of the model’s ability to discriminate between positive and

negative classes and is widely used for comparing and assessing the overall performance
of predictive models.

Class activation map (CAM)

A technique that generates a heatmap to visualize the important regions of an input image
for predicting a specific class in a deep convolutional neural network, and helps in

interpreting model decisions and understanding the features learned by the network
during the classification process.

DenseNet121

DenseNet is a deep learning architecture characterized by dense connectivity patterns,
where each layer receives direct input from all preceding layers, leading to improved

feature reuse, parameter efficiency, and gradient flow during training. DenseNet121 has
121 layers in total and is commonly used for image classification tasks on the

ImageNet dataset.

Dice similarity coefficient (DSC)

A statistical measure used to quantify the similarity between two sets, often employed in
the context of image segmentation to evaluate the overlap between predicted and ground
truth masks, ranging from 0 to 1, with 1 indicating perfect overlap between the two sets

and 0 indicating no overlap.
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Table 1. Cont.

Term Definition

F1-score
A performance metric used to evaluate the accuracy of binary classification models, which
is to predict one of two possible outcomes based on input data, with values ranging from
0 to 1, where 1 indicates perfect precision and recall and 0 indicates poor performance.

Gradient-weighted class activation
mapping (Grad-CAM)

A technique that extends the class activation map (CAM) approach to provide better
visual explanations for the predictions made by deep convolutional neural networks.

nnU-Net
An extension of the original U-Net architecture and a framework for 3D biomedical image

segmentation that aims to provide a standardized and automated way to train and
evaluate deep learning models on various datasets.

Otsu thresholding technique
An image processing technique used for automatic image thresholding, and the goal of

thresholding is to separate objects or regions of interest from the background in an image
by converting it into a binary image (black and white).

Segmentation Model Adopting a
pre-trained Classification

Architecture (SMART-CA)

A deep learning algorithm that improves the efficiency and accuracy of CNNs by
adaptively refining the network architecture during training based on the complexity of

the input data, which uses a self-modulating mechanism and a measure of network
capacity called the channel attention score to achieve this.

Shapley plot

A valuable tool for explaining and interpreting machine learning models by attributing
the model’s predictions to individual features, help data scientists and stakeholders gain

insights into the model’s decision-making process, and understand the significance of
each feature in driving the model’s output.

U-Net
A convolutional neural network architecture that was designed for biomedical image
segmentation tasks. The U-Net architecture consists of a contracting path to capture

context and a symmetric expanding path to enable precise localization.

Voxception-ResNet (VRN) A hybrid neural network architecture that merges the strengths of Voxception and ResNet
to tackle tasks that require processing 3D image data.

XGBoost model A versatile and efficient algorithm that excels in handling structured/tabular data and is
widely used for tasks such as regression, classification, ranking, and more.

Youden index

A single statistic that captures the performance of a binary classification test, which takes
into account both the sensitivity and specificity of the test to provide an overall measure

of its accuracy, with 1 indicating perfect performance and 0 indicating no
discriminatory power.

2. Methods
2.1. Search Strategy

A systematic literature review was conducted following the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). One reviewer
carried out structured searches on the PubMed, Google Scholar, and ScienceDirect databases
to retrieve all relevant articles published from 1 January 2010 to 1 January 2024. The search
query included the terms: (artificial intelligence OR machine learning OR deep learning)
AND (shoulder OR shoulder pathology OR shoulder pain OR shoulder disorder OR
shoulder surgery OR rotator cuff OR shoulder fracture OR shoulder tendinopathy). The
titles, abstracts, and full-text articles were independently screened by two reviewers. The
reference lists of the included articles were also reviewed and cross-referenced to identify
any other additional relevant studies that were not retrieved through the keyword search.

2.2. Eligibility Criteria and Article Selection

Study eligibility was determined using standardized inclusion and exclusion criteria.
Disagreements or discrepancies were resolved through consensus. The inclusion criteria
were as follows: (1) full-length original articles involving Al or ML or DL applications in
shoulder pathologies; (2) diagnosis or treatment relevant to orthopedists; (3) randomized
controlled trials (RCTs), non-randomized studies, or observational studies; (4) published
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in English. Exclusion criteria were as follows: (1) review articles, conference papers, book
chapters, letters to the editor and (2) animal studies, post-mortem studies.

The screening process is shown in Figure 5. After the literature screening, 41 studies
were included in this review.
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3. Rotator Cuff Tears (RCTs)
3.1. Diagnosis

The diagnosis of RCTs is important for providing timely and accurate treatment for
patients. AI technology could analyze medical images with high accuracy and reduce the
risk of misdiagnosis.

X-rays are widely recognized for their high negative predictive value (NPV) in di-
agnosing RCTs [33]. A specific DL algorithm was trained on a 6793 shoulder radiograph
series and tested on a 1095 radiograph series by Kim et al. The results showed that the
algorithm accurately ruled out significant RCTs based on shoulder radiographs, with a
sensitivity of 97.3%, NPV of 96.6%, and a negative likelihood ratio (LR-) of 0.06. Subgroup
analysis revealed that age < 60 years, non-dominant side, absence of trauma history, and
ultrasound examination were associated with negative test results, and NPVs were higher
in patients younger than 60 years and those examined with ultrasound [33]. In another
study, a DL algorithm was developed to evaluate subscapularis tendon tears using axillary
lateral shoulder radiography. A dataset of 2779 radiographs was used for training, and the
algorithm outputted the probability of a subscapularis tendon tear exceeding 50% thickness.
The algorithm’s performance was validated by two distinct test sets, with arthroscopy and
MRI findings serving as the reference gold standard, respectively. Performance evaluation
yielded an area under the curve (AUC) of 0.83 and 0.82 for two test sets. At the high-
sensitivity cutoff point, the sensitivity was 91.4% and 90.2% and the NPV was 90.4% and
89.5% for the respective test sets. The algorithm successfully identified the subscapularis in-
sertion site at the lesser tuberosity as the most sensitive region [34]. Iio et al. also developed
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a DL algorithm using shoulder radiography as a screening tool for RCTs, which showed
high diagnostic performance for full-thickness tears, with an AUC of 0.82, sensitivity of
94.5%, NPV of 96.2%, and LR- of 0.10 [35].

Currently, magnetic resonance imaging (MRI) is widely recognized as the most efficient
and reliable technique for examining RCTs without invasive procedures. DL has shown
promise in accurately detecting and classifying RCTs on shoulder MRI scans. A DL model
was developed using 11,925 MRI scans by Lin et al. [36]. The model achieved excellent
performance, with an AUC of 0.93 for supraspinatus tears, 0.89 for infraspinatus tears, and
0.90 for subscapularis tears. Notably, it demonstrated high accuracy for full-thickness tears
with AUCs of 0.98, 0.99, and 0.95 for the respective tendons.

Additionally, multisequence input yielded improved results for some tear types. The
accuracy of the DL model compared favorably to specialized radiologists, highlighting its
potential as a valuable tool in clinical practice.

DL is also a viable approach for the automated detection classification and segmen-
tation of supraspinatus tears on MRI scans. A total of 200 shoulder MRI scans were
retrospectively collected by Yao et al. [37], which contained full-thickness tears, partial-
thickness tears, or intact supraspinatus tendons. The researchers developed a 3-stage
pipeline, including a slice selection network, a segmentation network based on an encoder–
decoder architecture (U-Net), and a custom multi-input classifier. The DL model achieved
a sensitivity of 85.0%, specificity of 85.0%, AUC of 0.943, and dice similarity coefficient
(DSC) of 0.814. No significant difference in accuracy was observed between 1.5 T and 3.0 T
MRI scans.

CNNs play a crucial role in enhancing the analysis and interpretation of shoulder MRI
scans. A 2D CNN model was developed by Guo et al. to automatically detect supraspinatus
tears, trained on 701 shoulder MRIs and validated on 69 arthroplasty MRIs [38]. The model
showed optimal performance, achieving high F1-scores and sensitivity on both surgery
and internal test sets. Subgroup analyses confirmed its robustness across tear degrees and
MRI field strengths. The comparison in diagnostic accuracy with clinicians revealed that
the model was equivalent to senior clinicians and better than junior clinicians.

The 2D CNNs process data in two parameters, namely width and height, while 3D
CNNs can capture more complex patterns and relationships in the data by incorporating
the additional dimension (depth or time), making 3D CNNs more suitable for analyzing
volumetric data. A 3D U-Net CNN model was developed to identify, segment, and
visually represent RCTs in 3D, using MRI data from 303 patients with RCTs [39]. Two
shoulder specialists labeled the RCTs in the entire MRIs using in-house developed software
(Reconeasy 3D program, SeeAnn Solution, South Korea). The CNN model was trained
following the augmentation of a training dataset and tested using randomly selected
test data, maintaining a 6:2:2 ratio for training, validation, and test data. The 3D U-Net
CNN successfully detected, segmented, and visualized RCT areas with a DSC of 94.3%,
sensitivity of 97.1%, specificity of 95.0%, precision of 84.9%, F1-score of 90.5%, and Youden
index of 91.8%. Thus, the proposed method demonstrated high accuracy and successful
3D visualization. Shim et al. [40] used the Voxception-ResNet (VRN) structure to train
a 3D CNN model to automatically detect RCT presence, classify tear size, and visualize
tear location in 3D on a dataset of MRI data from 2124 patients. The proposed method
indicated the superiority over orthopedists in terms of accuracy and specificity. Moreover,
the generated 3D class activation map (CAM) provides valuable information on tear
localization and size.

Shoulder MRI using standard multiplanar sequences often requires a long scan time.
However, accelerated sequences, although providing a shorter scan time, have limitations
in terms of noise and resolution. To address this, DL-based reconstruction (DLR) has been
proposed as a potential solution to reduce scan time while preserving image quality. In a
retrospective study involving 105 patients who underwent 110 shoulder MRI examinations,
standard sequences (scan time: 9 min 23 s) and accelerated sequences (scan time: 3 min 5 s;
67% reduction) were compared. The standard sequences were reconstructed conventionally,
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while the accelerated sequences were reconstructed using both conventional and DLR
pipelines. Two radiologists evaluated the images for subjective image quality, artifacts, and
specific pathologies. Diagnostic accuracy was assessed using arthroscopic findings as the
reference standard in 27 patients who underwent arthroscopy. The results indicated that
the accelerated sequences with DLR provided similar subjective image quality, artifacts,
and diagnostic performance compared to standard sequences [41]. Liu et al. [42] showed a
significantly reduced scan time (6 min 1 s vs. 11 min 25 s) and higher image quality in DLR
MRI compared to the conventional method. The image quality satisfaction survey among
400 patients received high scores in DL-MRI from all radiologists. Kaniewska et al. [43] also
declared that DLR could improve diagnostic accuracy and image quality with a thorough
assessment of the subacromial bursa and good agreement for other shoulder structures.

Ultrasound imaging has been identified as a valid alternative to MRI. Ultrasound
imaging offers several advantages over MRI including real-time imaging, cost-effectiveness,
wide availability, and dynamic assessment [44]. However, speckle noise can degrade image
resolution in ultrasound imaging, making conventional vision-based algorithms ineffective
for segmenting diseased regions. Lee et al. [45] proposed a novel fully CNN called Seg-
mentation Model Adopting a pre-trained Classification Architecture (SMART-CA), which
incorporated an integrated positive loss function (IPLF) to accurately diagnose the locations
of RCTs using ultrasound imaging during orthopedic examinations. SMART-CA utilizes
a pre-trained network to extract distinct features that improve segmentation accuracy.
IPLF efficiently optimizes SMART-CA for imbalanced datasets like RCT. The experimental
results indicated that SMART-CA with IPLF achieved improved precision, recall, and DSC,
and is robust for segmentation in the presence of speckle noise, outperforming the existing
state-of-the-art networks. In another study, a total of 194 ultrasound images were used to
train and test five pre-trained CNN models. Among them, DenseNet121 demonstrated
the best classification performance with 88.2% accuracy, 93.8% sensitivity, 83.6% specificity,
and an AUC score of 0.832. A gradient-weighted class activation mapping (Grad-CAM)
highlighted the sensitive features in the learning process on ultrasound images [46].

3.2. Predictive Models and Prognosis

In addition to the diagnosis of RCTs, AI technology has been applied in the predic-
tive models to evaluate the functional and anatomical outcomes according to various
pre-operative factors. The occupation ratio and fatty infiltration of the supraspinatus mus-
cle are crucial parameters for predicting the diagnosis and treatment prognosis of RCTs.
Ro et al. [47] employed a DL model to segment the supraspinatus muscle and fossa regions
by quantitatively measuring the occupation ratio of the supraspinatus muscle and calculat-
ing the amount of fatty infiltration of the supraspinatus muscle using the Otsu thresholding
technique on MRI scans. The model exhibited high DSC, accuracy, sensitivity, and speci-
ficity in the segmentation. The fatty infiltration measure significantly varied across different
Goutallier grades [48]. Furthermore, a strong negative correlation was observed between
occupation ratio and fatty infiltration. Kim et al. [49] also proposed a DL model from an
MRI dataset of 240 patients with various disease severities to detect the supraspinatus
muscle and fossa regions, which achieved high accuracy and DSC. They declared that
this model could assist clinicians to accurately track the preoperative and postoperative
changes in muscle volume of the supraspinatus fossa. Besides evaluating an MRI dataset,
Taghizadeh et al. [50] developed and verified a CNN model that can automatically measure
and characterize the degeneration of rotator cuff muscles in a total of 103 shoulder CT
scans from 95 patients with glenohumeral osteoarthritis. The automatic CNN segmentation
showed comparable DSC to the manual ones. The CNN model also quantified muscle
atrophy, fatty infiltration, and overall muscle degeneration rapidly, providing accurate and
reliable predictions. In addition, Medina et al. [51] performed automated segmentations of
shoulder MRI images using two CNN models, in which Model A was created for Y-view
selection, and Model B was for muscle segmentation. They concluded that the combination
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of deep CNN models could achieve overall accurate and reliable Y-view selection and
automated algorithm muscle segmentation.

In the context of identifying the relationship between important clinical features and
the prediction of RCTs, Li et al. [52] conducted a retrospective trial including patients with
shoulder pain and dysfunction who underwent questionnaires and physical examinations
in outpatient settings. Six ML models were developed and assessed using accuracy, AUC,
and Brier scores. Among them, the XGBoost model exhibited superior performance. More-
over, the Shapley plot highlighted the Jobe test, bear hug test, and age as the most important
variables in predicting RCTs. Potty et al. [53] created an ML model to predict post-operative
functional outcomes following arthroscopic rotator cuff repair by collecting pre-operative
and post-operative patient data. The proposed model successfully predicted post-operative
scores accurately. The most essential features in predicting patient recovery were identified
as pre-operative American Shoulder and Elbow Surgeons (ASES) score, pre-operative pain
score, body mass index (BMI), age, and tendon quality. They declared that it is valuable
for pre-operative counseling, planning, and resource allocation. The main studies of AI
applications in the RCTs are summarized in Table 2.

Table 2. AI applications in the rotator cuff tears.

Author (Year) Input Feature Model/Algorithm Dataset Type of Outcome Results

Kim et al., 2020 [33] X-ray ResNet-based
CNN (1)

6793 radiograph
series

Rule out significant
RCTs (2)

The sensitivity, NPV (3), and
LR- (4) were 97.3%, 96.6%, and

0.06, respectively.

Kang et al., 2021 [34] X-ray ResNet-based CNN 2779 radiograph
series

Rule out
subscapularis tendon

tears

The AUC (4), sensitivity, NPV,
and LR- were 0.83 91.4%, 90.4%,
and 0.21 in Test Set 1, and 0.82
90.2%, 89.5%, and 0.21 in Test

Set 2, respectively.

Iio et al., 2023 [35] X-ray EfficientNet-based
CNN

2803 radiograph
series

Rule out significant
RCTs

The sensitivity, NPV, and LR-
were 94.5%, 96.2%, and

0.10, respectively.

Lin et al., 2023 [36] MRI ResNet-based CNN 11,925 MRI scans Detection and
classification of RCTs

The AUCs for supraspinatus,
infraspinatus, and

subscapularis tendon tears were
0.93, 0.89, and 0.90, respectively.
The model performed best for
full-thickness supraspinatus,

infraspinatus, and
subscapularis tears with AUCs

of 0.98, 0.99, and
0.95, respectively.

Yao et al., 2022 [37] MRI ResNet-based CNN 200 MRI scans
Detection and

segmentation of
supraspinatus tears

The sensitivity and specificity
were 85.0% and 85.0%,

respectively. The AUC for
classification was 0.943; DSC (5)

for segmentation was 0.814.

Guo et al., 2023 [38] MRI Xception-based
CNN

701 MRI scans for
training and 69
MRI scans for

clinical validation

Detection of
supraspinatus tears

The model showed high
F1-scores and sensitivity on

both surgery and internal test
sets. Subgroup analyses

confirmed its robustness across
tear degrees and MRI

field strengths.

Lee et al., 2020 [39] MRI U-Net-based CNN 303 MRI scans Segmentation of
RCTs

The model reached 94.3% DSC,
97.1% sensitivity, 95.0%

specificity, 84.9% precision,
90.5% F1-score, and a Youden

index of 91.8%.
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Table 2. Cont.

Author (Year) Input Feature Model/Algorithm Dataset Type of Outcome Results

Shim et al., 2020 [40] MRI VRN (6)-based
CNN

2124 MRI scans

Detect the presence
or absence of RCTs,
classify the tear size,

and provide 3D
visualization of the

tear location.

The model outperformed
orthopedists in binary accuracy

(92.5% vs. 76.4% and 68.2%),
top-1 accuracy (69.0% vs. 45.8%
and 30.5%), top-1 ± 1 accuracy

(87.5% vs. 79.8% and 71.0%),
sensitivity (0.94 vs. 0.86 and
0.90), and specificity (0.90 vs.
0.58 and 0.29). The generated

3D CAM (7) provided effective
information regarding the 3D
location and size of the tear.

Lee et al., 2021 [45] Ultrasound
imaging

VGG19-
basedCNN,
denoted as

SMART-CA (8)

1400 ultrasound
images

Segmentation of
RCTs

The precision, recall, and DSC
were 0.604% (+38.4%), 0.942%

(+14.0%), and 0.736%
(+38.6%), respectively.

Ho et al., 2022 [46] Ultrasound
imaging

CNN (based on
VGG19, ResNet50,

InceptionV3,
DenseNet121, or

Xception)

194 ultrasound
images

Segmentation of
RCTs

DenseNet121 demonstrated the
best performance, with 88.2%

accuracy, 93.8% sensitivity,
83.6% specificity, and an AUC

score of 0.832.

Ro et al., 2021 [47] MRI VGG19-based
CNN 240 MRI scans

Segmentation of the
supraspinatus muscle

and fossa, and
calculation of the
amount of fatty

infiltration of the
supraspinatus muscle

The mean DSC, accuracy,
sensitivity, specificity, and

relative area difference for the
segmented lesion were 0.97,
99.84, 96.89, 99.92, and 0.07,

respectively, for the
supraspinatus fossa and 0.94,
99.89, 93.34, 99.95, and 2.03,

respectively, for the
supraspinatus muscle.

Kim et al., 2019 [49] MRI
CNN (fully

convolutional
network)

240 MRI scans
Segmentation of the

supraspinatus muscle
and fossa

The DSC is 0.9718 ± 0.012 in the
fossa region and 0.9463 ± 0.047

in the muscle region.

Taghizadeh et al.,
2020 [50] CT U-Net-based CNN 103 CT scans

Segmentation of RC
(9) muscle and

calculation of muscle
atrophy and

degeneration.

Average DSC for muscle
segmentations (88 ± 9%) and

manually by human raters
(89 ± 6%) were comparable.

The model provided good–very
good estimates of muscle
atrophy (R2 = 0.87), fatty

infiltration (R2 = 0.91), and
overall muscle degeneration

(R2 = 0.91)

Medina et al.,
2020 [51] MRI U-Net-based CNN

258 cases of model
A (Y-view

selection) and 1048
sagittal T1 Y-views
for model (muscle

segmentation)

Segmentation of RC
muscles on a Y-view

Model A showed top-3
accuracy >98% to select an

appropriate Y-view. Model B
produced accurate RC muscle

segmentations with mean
DSC > 0.93.

Li et al., 2023 [52]
Questionnaires

and physical
examinations

ML (stacking,
gradient boosting
machine, bagging,

random forest,
XGBoost, and

adaptive boosting)

1684 patients

Identify best model
and important

clinical variables for
predicting patients

with
RCTs in outpatient

settings.

The XGBoost model showed
superior performance, with

accuracy, AUC, and Brier scores
of 0.85, 0.92, and 0.15,
respectively. The most

important variables were Jobe
test, bear hug test, and age for

prediction, with mean SHAP (10)

values of 1.458, 0.950, and
0.790, respectively.
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Table 2. Cont.

Author (Year) Input Feature Model/Algorithm Dataset Type of Outcome Results

Potty et al., 2023 [53]
Patient-related
and surgical-

related factors

ML (linear
regression, ridge

regression,
lasso, support

vector regression,
K-nearest neighbor,

random forest,
and XGBoost)

631 patients

Identify important
clinical variables for
predicting patients

with repairing
RCTs.

The XGBoost model predicted
post-operative outcomes

accurately. The most essential
variables were pre-operative
ASES (11) score, pre-operative
pain score, BMI (12), age, and

tendon quality.

(1) Convolutional neural network, (2) rotator cuff tears, (3) negative predictive value, (4) area under the curve,
(5) dice similarity coefficient, (6) Voxception-ResNet, rotator cuff, (7) class activation map, (8) Segmentation Model
Adopting a pre-trained Classification Architecture, (9) rotator cuff, (10) Shapley additive explanation, (11) American
Shoulder and Elbow Surgeons, (12) body mass index.

3.3. Physical Therapy

Physical therapy has been established as an effective treatment for RCTs, resulting in
significant improvements in patient-reported outcomes and reducing the need for surgery.
However, poor adherence to physical therapy programs became a challenge to effectively
managing common shoulder disorders, particularly with unsupervised home exercise
programs [30]. To address this, twenty healthy adults without prior shoulder disorders
participated in the study of Burns et al. [54], performing seven exercises from an evidence-
based rotator cuff physiotherapy protocol while data from a 6-axis inertial sensor on the
active extremity were collected. Four supervised DL algorithms were trained and optimized
within an activity recognition chain framework to classify the exercises. The algorithms’
performance was evaluated using 5-fold cross-validation, first temporally and then by
subject. All algorithms achieved a categorical classification accuracy of over 94% in the
temporally stratified cross-validation, with the convolutional recurrent neural network
(CRNN) algorithm performing the best at 99.4%. They proved the technical feasibility
of using such an approach to monitor and assess adherence to shoulder physiotherapy
exercise protocols at home.

4. Shoulder Instability
4.1. Diagnosis

To date, there is no definitive evidence regarding glenohumeral translation in dynamic
glenohumeral joint stability models. Therefore, a standardized method for assessing shoul-
der kinematics can provide a clear understanding and be beneficial for patient treatment.
Croci et al. [55] obtained fluoroscopic images for both shoulders of 12 participants with
unilateral RCTs and 13 patients who were asymptomatic subjects. They designed a 3D full-
resolution CNN (nnU-Net) model to automatically locate five landmarks (glenohumeral
joint center, humeral shaft, inferior and superior edges of the glenoid, calibration sphere,
and the most lateral point of the acromion). As a result, the model achieved accurate
landmark detection, with all landmarks and the calibration sphere located within 1.5 mm,
except for the humeral landmark with a difference of 9.6 mm. This proposed model pro-
vides a reliable and efficient means of automatically identifying and tracking anatomical
landmarks, enabling the measurement of clinically relevant anatomical configurations and
investigation of dynamic glenohumeral joint stability in pathological shoulders.

In terms of assessing osseous injuries associated with anterior shoulder instability, CT
scans of the shoulder with 3D reconstruction are considered the gold standard. The CT
scans provide improved conceptualization and accurate quantification of injuries at the
glenoid and humeral head [56]. However, this method exposes patients to much radiation.
An alternative approach involving the use of 3D MRI models has been advocated recently,
which can be obtained and reconstructed during standard 2D MRI of the shoulder. The 3D
MRI models have demonstrated equal effectiveness in evaluating bipolar bone loss [57].
Rodrigues et al. [58] collected shoulder MRI images from 100 patients and developed a
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fully automated segmentation 3D CNN model for proton density-weighted images. The
CNN model showed high accuracy in segmenting the humerus and glenoid, and in the
evaluation of glenohumeral anatomy and GBL.

Wei et al. [59] collected radiographs of 106 elbows and 140 shoulders, half of which had
dislocations. Multiple CNN models were trained and tested using datasets from external
hospitals and online radiology repositories. The CNN models achieved high accuracy in
identifying joint dislocations, with AUCs greater than 0.99 on internal test sets and greater
than 0.97 on external test sets. The CAMs indicated that the CNNs accurately identified
relevant joints regardless of the presence of dislocations with excellent generalizability to
external test sets.

4.2. Predictive Models and Prognosis

The predictors of optimized functional outcomes after surgery for anterior shoulder
instability from a global perspective, rather than domain-specific perspectives, remain
elusive. Till et al. [60] used ML clustering to identify predictors for achieving the “optimal
observed outcome” after surgery for anterior shoulder instability. Medical records, images,
and operative data of patients under 40 years old were analyzed. Of the 200 patients
with an average follow-up of 11 years, 64% achieved the “optimal observed outcome”
characterized by reduced postoperative pain, low rates of recurrent instability, revision
surgery, osteoarthritis, and improved range of motion. Additionally, 41% achieved a
“perfect outcome” across all categories. Negative predictors included a longer time from
initial instability to presentation and habitual/voluntary instability, while a predilection
toward preoperative subluxations was a positive predictor.

5. Rotator Cuff Calcific Tendinopathy (RCCT)

RCCT is one of the most common causes of shoulder pain. It is characterized by the
deposition of calcium hydroxyapatite crystals either inside or around rotator cuff tendons.
Although published studies have highlighted a wide range of risk factors for the onset of
RCCT, including endocrine disorders, hyperlipidemia, and sports strain, the etiology of
symptomatic RCCT is currently debatable [61,62].

Ultrasound imaging is regarded as an excellent imaging tool to visualize calcifications
within the rotator cuff tendons. Vassalou et al. [63] evaluated the performance of two ML
models in predicting long-term complete pain resolution following ultrasound-guided
percutaneous irrigation of calcific tendinopathy (US-PICT) in 100 patients with rotator
cuff disease. The two models incorporated data related to procedural details, patient
characteristics, and calcification properties to predict pain at 1 year post-US-PICT. The
results showed an AUC of 69.2% for predicting complete pain resolution at 1 year, with age
and baseline VAS scores being the most influential variables. Furthermore, the inclusion of
VAS scores at 1 month did not significantly improve the models’ performance, indicating
that the models could be beneficial in predicting patient outcomes following US-PICT.
Chiu et al. [64] declared that their DL model was able to assist clinicians in diagnosing
supraspinatus calcific tendinopathy during ultrasound examinations with high accuracy,
sensitivity, and specificity.

6. Proximal Humeral Fractures (PHFs)

Accurate diagnosis and classification of PHFs are essential for appropriate treatment
planning. The complexity arises from the variability in fracture patterns, which can make it
difficult to precisely determine the fracture type based solely on visual inspection. Factors
such as overlapping bone fragments, subtle displacement, and the presence of associated
injuries can further complicate the classification process [63,64].

Automation of fracture classification with AI technology has been proven to improve
diagnostic accuracy, reduce inter-observer variability, and accelerate the classification pro-
cess. A CNN model trained by Chung et al. [65] demonstrated exceptional performance,
with a top-1 accuracy of 96% and an AUC of 1.00 for distinguishing PHFs from normal
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shoulder radiographs. Additionally, the CNN model showed promising results in clas-
sifying fracture types based on the Neer classification system, achieving top-1 accuracy
ranging from 65% to 86% and AUC ranging from 0.90 to 0.98. Furthermore, the model
outperformed orthopedists in both detection and classification tasks. Notably, the CNN
model’s superiority was more obvious in complex three-part and four-part fractures. Mag-
neli et al. [66] also evaluate the classification performance of the CNN model for PHFs
based on the AO/OTA classification system. The overall AUC for fracture classification was
0.89, including excellent AUC for diaphyseal humerus fractures (0.97), clavicle fractures
(0.96), and good AUC for scapula fractures (0.87), which showed that the proposed model
could effectively utilize plain radiographs and classify fractures. Dipnall et al. [67] assessed
the classification performance of several ML algorithms based on the Neer classification
system from six input text datasets, including X-ray and/or CT scan data and patient age
and/or sex information. They declared that these ML algorithms achieved satisfactory
performance, with one special model exhibiting good accuracy at 61% and an excellent one-
versus-rest score above 0.8, providing valuable assistance to radiologists and orthopedists
by speeding up the classification process.

7. Other Shoulder Pathologies

Scapulohumeral periarthritis, also known as periarthritis of the shoulder, is charac-
terized by a gradual development of shoulder pain, which is more pronounced at night,
with limited functions [68]. Yu et al. [69] examined the efficiency of combining an in-
telligent clustering analysis algorithm with musculoskeletal ultrasound imaging for the
differential diagnosis and rehabilitation of scapulohumeral periarthritis. The thickness and
clarity of the shoulder posterior capsule were observed in different pain groups. Factors
such as musculoskeletal ultrasound parameters, length of service, work nature, and work
busyness significantly influenced shoulder periarthritis pain. The proposed intelligent
algorithm indicated promising accuracy, sensitivity, and specificity when tested on clinical
ultrasound samples.

Subacromial impingement syndrome (SIS) is another common disorder causing shoul-
der pain. Shu et al. [70] included 17 participants performing shoulder abduction and
adduction while their ultrasound images were captured. The CNN model accurately de-
picted the trajectory of the humeral greater tubercle in relation to the lateral acromion.
Subacromial motion metrics from dynamic ultrasonography were extracted using different
CNN models. Consequently, the self-transfer learning-based (STL) CNN model performed
better than the traditional CNN model. The errors in measuring the minimal vertical
acromiohumeral distance were significantly smaller using the STL-CNN models. This
study successfully demonstrated the feasibility of using the CNN model for automatic
detection of anatomical landmarks and capturing essential motion metrics in dynamic
shoulder ultrasonography, which was helpful in diagnosing SIS. Jiang et al. [71] included
10 radiomic features for radiomics model construction in the ML-based ultrasomic analysis
of SIS stage evaluation. They stated that the ML-derived ultrasomics model could provide
reliable stage evaluations in patients with SIS.

Shoulder pain attributed to inflammation of the long head of the biceps tendon
is a prevalent condition. Bicipital peritendinous effusion (BPE) is the most frequently
occurring abnormality associated with the biceps tendon and is connected to different
shoulder injuries [72]. Obtaining a clear and accurate ultrasound image is difficult for
inexperienced radiologists [73]. An automated BPE recognition system was designed
by Lin et al. [74] to classify inflammation into four categories: normal, mild, moderate,
and severe in ultrasound imaging. Three experiments were accordingly conducted to
validate the classification performance of the recognition system under different settings
and situations. Ultimately, the proposed CNN model achieved an accuracy of 75% for
three-class BPE classification (normal, moderate, and severe) and revealed comparable
results to other state-of-the-art methods.
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Grauhan et al. [75] trained a CNN model to detect the most common causes of acute
or chronic shoulder pain in 2700 plain radiographs, which were reviewed and labeled for
six findings. The developed CNN model achieved high accuracy, with an AUC of 0.871
for PHFs, 0.896 for joint dislocation, 0.945 for osteoarthritis, and 0.800 for periarticular
calcifications. It also demonstrated near-perfect accuracy in detecting osteosynthesis and
endoprosthesis, with AUC 0.998 and 1.0, respectively, supporting that such a CNN model
could provide additional assistance and safety for the clinicians on duty.

8. Future of AI

AI technology is a high-tech production that adapts to the development of the contem-
porary era, and it represents a significant milestone in the ongoing scientific and technical
revolution. Similar to the steam and electrical revolutions of the past, AI is transforming
human life and driving societal progress.

The future development of AI technology in shoulder diagnosis and treatment is
promising. AI technology will continue to evolve and improve in its ability to analyze
medical imaging, which enables faster and more accurate identification of degenerative
diseases, fractures, and other shoulder pathologies. It also will facilitate personalized pre-
operative planning by analyzing patient data, including medical imaging, clinical records,
and biomechanical parameters. Clinicians can utilize AI-based simulation tools to optimize
surgical plans, predict outcomes, and simulate procedures virtually. Moreover, AI-powered
surgical robots will become increasingly sophisticated, assisting orthopedic surgeons with
precise intraoperative navigation, implant placement, and tissue manipulation, enhancing
surgical accuracy, reducing complications, and enabling minimally invasive procedures,
ultimately improving patient recovery times and postoperative outcomes. In addition, AI-
powered wearable devices and sensors can track shoulder function, range of motion, and
strength during rehabilitation. These data can be analyzed by AI models to provide person-
alized feedback, exercise recommendations, and progress tracking. It can also help monitor
patients remotely, allowing for early identification of any complications or deviations from
the expected recovery trajectory [76].

However, despite the rapid advancement and potential benefits of AI technology, its
widespread application has been hindered by several factors. The main concerns are the
need for retraining, associated costs, and a perceived lack of comprehensive education,
contributing to a reluctance of clinicians to engage with the technological tools available
fully, thus influencing their integration into clinical practice [77]. Thus, providing compre-
hensive education and training programs tailored to clinicians can help alleviate concerns
and foster greater confidence in utilizing AI technology.

In addition, AI models often deal with vast amounts of sensitive patient data. Ensuring
the security of these data is paramount to prevent unauthorized access, breaches, or
misuse that could compromise patient confidentiality and trust in the healthcare system.
Legislative measures should be taken to establish guidelines for the collection, storage,
and usage of the data. Many AI algorithms, particularly DL models, operate as black
boxes, making it difficult to interpret their decisions and predictions [78]. Additionally, AI
algorithms should be robust and reliable across diverse patient populations and clinical
settings. Thus, it is difficult to keep their reliability and generalizability. In the face of
resistance to adopting new technologies or changes in workflow processes, integrating AI
solutions into existing clinical workflows shows logistical and organizational challenges.
Implementing AI technology can be costly and resource-intensive, particularly for smaller
healthcare organizations with limited budgets and infrastructure. The regulatory and legal
frameworks are complex and evolving. Compliance with regulatory requirements, such as
data privacy and security and medical device regulations, adds another challenge to AI
deployment for developers and healthcare organizations [16,79].

Ethical issues should be taken into consideration in the application of AI technology
to ensure patient well-being, safety, privacy, and fairness [80]. All patients regardless
of socioeconomic background have equitable access to AI-powered healthcare solutions.
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Telehealth and remote monitoring technologies are able to offer promising avenues for ex-
tending healthcare services to remote or marginalized communities, bridging geographical
divides and improving healthcare access. Continual monitoring and evaluation should be
conducted to assess their impact on patient care, identify potential biases or errors, and
make necessary improvements to enhance ethical performance. AI technology should
prioritize patient safety and the delivery of high-quality care by rigorous testing, valida-
tion, and monitoring to minimize errors and improve patient outcomes. It should also be
transparent and explainable in its development, validation, and deployment, including
disclosing potential limitations, biases, and uncertainties associated with AI predictions or
recommendations, respecting patients’ autonomy and rights to make informed decisions.

There are several potential limitations in the current data available for training AI
models for shoulder pathology. Firstly, the quality of medical imaging data can vary signif-
icantly due to image artifacts, positioning errors, and inconsistent acquisition protocols,
potentially compromising the efficacy of AI models trained on such data. Furthermore,
access to large and diverse datasets is often limited, leading to potential issues of overfitting
and inadequate generalization. Manual annotation of medical images for labeling shoulder
pathologies is both time-consuming and prone to subjectivity, resulting in potential errors
or inconsistencies that may affect the reliability of AI model predictions. Moreover, the
datasets may exhibit biases towards certain patient demographics, imaging modalities, or
healthcare institutions, which can significantly impact the AI model’s performance and
exacerbate healthcare disparities. Longitudinal data tracking the progression of shoulder
pathologies over time is valuable for understanding disease trajectories and predicting
treatment outcomes. However, such data may be scarce or fragmented, making it difficult
to train AI models to predict disease progression accurately.
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