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Abstract: The diagnosis and identification of melanoma are not always accurate, even for experienced
dermatologists. Histopathology continues to be the gold standard, assessing specific parameters
such as the Breslow index. However, it remains invasive and may lack effectiveness. Therefore,
leveraging mathematical modeling and informatics has been a pursuit of diagnostic methods favoring
early detection. Fractality, a mathematical parameter quantifying complexity and irregularity, has
proven useful in melanoma diagnosis. Nonetheless, no studies have implemented this metric to feed
artificial intelligence algorithms for the automatic classification of dermatological lesions, including
melanoma. Hence, this study aimed to determine the combined utility of fractal dimension and
unsupervised low-computational-requirements machine learning models in classifying melanoma
and non-melanoma lesions. We analyzed 39,270 dermatological lesions obtained from the Interna-
tional Skin Imaging Collaboration. Box-counting fractal dimensions were calculated for these lesions.
Fractal values were used to implement classification methods by unsupervised machine learning
based on principal component analysis and iterated K-means (100 iterations). A clear separation was
observed, using only fractal dimension values, between benign or malignant lesions (sensibility 72.4%
and specificity 50.1%) and melanoma or non-melanoma lesions (sensibility 72.8% and specificity 50%)
and subsequently, the classification quality based on the machine learning model was ≈80% for both
benign and malignant or melanoma and non-melanoma lesions. However, the grouping of metastatic
melanoma versus non-metastatic melanoma was less effective, probably due to the small sample
size included in MM lesions. Nevertheless, we could suggest a decision algorithm based on fractal
dimension for dermatological lesion discrimination. On the other hand, it was also determined that
the fractal dimension is sufficient to generate unsupervised artificial intelligence models that allow
for a more efficient classification of dermatological lesions.

Keywords: melanoma; dermatological lesion; fractal dimension; machine learning; artificial intelligence

1. Introduction

As the largest organ in the human body, the skin is susceptible to a wide range
of alterations. However, the identification and classification of these lesions can be a
challenging task for physicians, especially non-specialists. This difficulty arises primarily
from the low contrast between each lesion and the surrounding skin tissue, the visual
similarities between different types of lesions and observation artifacts (e.g., bubbles, hair,
blood vessels) [1,2].

The accurate classification of skin lesions is a powerful tool for the early detection
of different dermatological diseases, including skin cancer. In developed countries, skin
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cancer is the most prevalent type of cancer according to the World Health Organization.
Early detection is crucial as it can lead to a 93% five-year survival rate. However, while
various types of skin cancer exist, melanocytic cancers are the most challenging to identify
and treat. Although they only represent 4% of skin cancers, they have a mortality rate of
up to 80% and a five-year survival rate of only 14% [3].

Melanoma is a neoplastic disease originating from melanocytes, predominantly affect-
ing the skin in 90% of cases (cutaneous malignant melanoma) [4,5].

The incidence of melanoma is on the rise, and in Mexico, it ranks third in frequency
among skin cancers (14.1%), following basal cell carcinoma and squamous cell carcinoma,
according to estimates from the International Agency for Research on Cancer in 2012 [6,7].

Melanomas undergo two growth phases, radial and vertical. During the radial growth
phase, malignant cells proliferate radially within the epidermis. Over time, most of the
melanomas progress to the vertical growth phase, during which malignant cells invade the
dermis and acquire the ability to metastasize. In this context, the depth of lesion invasion
can be measured using two main parameters: the Clark levels, providing a qualitative
measurement, and the Breslow index, offering a quantitative measurement. The latter index
measures depth in millimeters from the granular layer of the epidermis to the deepest point
of the tumor lesion across the various layers of the skin [8,9].

The identification and diagnosis of melanoma are attributed to the features encap-
sulated in the “ABCDE of melanoma”; A—Asymmetry; B—Irregular Border; C—Color
Variations; D—Diameter exceeding 6 mm and E—Elevated Surface [10,11].

The typical accuracy in diagnosing skin cancers through manual examination of
dermoscopic images ranges from 60% to 80%. This accuracy level can differ among derma-
tologists depending on their level of experience. Research suggests that a dermatologist
with three to five years of experience may achieve approximately 60% of accuracy, while
those with 10+ years of experience show a 20% improvement in accuracy [12].

In this sense, the identification of melanoma remains challenging even for an expe-
rienced dermatologist, with histopathological examination standing as the current gold
standard [9,13–15]. The challenges in early melanoma diagnosis have spurred the quest
for new tools to facilitate this process, including machine learning and mathematical tools,
particularly the fractal dimension [16–18].

Fractal dimension is a mathematical parameter that quantifies the complexity and
irregularity of non-Euclidean polygons. Although various studies to date have established
the utility of fractal dimension in melanoma diagnosis, its integration with diagnostic
algorithms remains an area of active investigation [11,19,20].

On the other hand, various models of artificial intelligence, machine learning and
deep learning have been developed, which have provided significant evidence to be
considered useful for diagnostic processes, especially for dermatological lesions. However,
most algorithms based on deep learning and machine learning utilize dermatoscopic
images for the development and training of their algorithms based on supervised machine
learning [12,21].

In this regard, there are some inherent limitations to supervised machine learning
models. Firstly, deep learning models require robust computational processes, which
unfortunately are not accessible to everyone at present, especially for clinical application
rather than research purposes. Additionally, these models require high-quality dermato-
scopic images (especially for training convolutional neural networks), which are not easy to
obtain, considering that primary care physicians typically do not have such devices [22–24].
Thirdly, supervised machine learning models greatly limit the machine’s ability to find un-
derlying characteristics that facilitate the classification of different types of dermatological
lesions, confining their capacity to training based solely on characteristics that, as humans,
we find relevant, thereby diminishing the great analytical and information-processing
capacity of unsupervised machine learning models [25–27].

Furthermore, it is important to mention that unsupervised machine learning models
do not require specialized equipment or large computing capabilities, which facilitates
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their potential translation into clinical practice, allowing even non-specialized physicians
to employ such technologies, even at the primary care level. Therefore, this study proposes
the use of fractal dimension as an objective, quantitative and reproducible metric that
has proven to be effective in diagnosing melanoma, for its use as a discriminating factor
by an unsupervised machine learning model. Thus, the objective of this study was to
determine the combined utility of fractal dimension and unsupervised low-computational-
requirements machine learning models in classifying melanoma and non-melanoma lesions.

2. Materials and Methods

Dermatoscopic records were obtained from the gallery archive of the open-source Inter-
national Skin Imaging Collaboration (ISIC), and only images captured with a dermatoscope
that exhibited no black borders (pixel-free) were selected. The dermatoscopic images were
categorized based on their histopathological diagnosis into non-metastatic melanomas,
metastatic melanomas, atypical melanocytic proliferation, nevi, verrucous lesions, vascular
lesions, squamous cell carcinomas, neurofibroma, basal cell carcinomas, Breslow 1 lesions,
Breslow 2 lesions and Breslow 3 lesions. Additionally, lesions were further classified into
benign (nevi, warts, neurofibromas and vascular lesions) and malignant lesion (Breslow
lesions, melanoma, metastatic melanoma, basal cell carcinoma and atypical melanocytic
proliferations) and later in melanomas (Ms) and non-melanomas (NMs). In the same way,
only melanoma lesions were subsequently classified into metastatic melanomas (MMs) and
non-metastatic melanomas (NMMs).

All images included in this study underwent fractal dimension analysis using custom-
built Python software v3.10.9, employing several libraries including os, numpy, pandas, PIL
(Python Imaging Library), tkinter and tqdm. To achieve this, the images were transformed
into 8-bit grayscale bitmaps at a resolution of 512 × 512 pixels. Subsequently, a binary
transformation and background elimination were performed (Figure 1).

Figure 1. Image-processing pipeline. The image was transformed to 8-bits grayscale and after binary
transformation and background elimination were performed and cover it with the maximum number
of boxes.

Following these preprocessing steps, boxes of varying sizes were drawn within the
lesion, and the maximum number of boxes required to cover the lesion and their sizes were
calculated for substitution in the following formula:

Db = lim
ϵ→0

logN(ϵ)

log
(

1
N(ϵ)

)
where Db represents the fractal dimension of the box counting, ϵ is the size of the boxes
and N is the maximum number of boxes required to completely cover the margin of the
analyzed image.

Fractal dimension values were stored in a Pandas Data Frame and subsequently
exported in an Excel file.

To ascertain whether significant differences existed among the fractal dimension values
for various histopathologically categorized lesions or based on their Breslow index, Kruskal–
Wallis tests with Dunn’s multiple comparison were conducted. Similarly, to identify
significant differences between melanoma and non-melanoma or metastatic melanoma and
no metastatic melanoma dermatoscopies, a Mann–Whitney U test was employed.
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On another note, ROC curves were generated to determine the sensitivity and specificity
of fractal dimension for discriminating between melanoma and metastatic melanoma. All
statistical analyses were performed in Graph Pad PRISM v.9.0 for MacOS, Boston, MA, USA,
with a p < 0.05 significance and confidence intervals of 95%.

Additionally, to use low-computational-requirements machine learning models, princi-
pal component analysis (PCA) and k-means analysis were performed. PCA was analyzed in
Graph Pad PRISM v.9.0 for MacOS, Boston, MA, USA, from lesions fractal values according
to histopathological diagnosis classification, malignant or benign classification, M or NM
classification and MM or NMM classification.

K-means clustering models were run using custom-built Python software, employing
the libraries tkinter, pandas, seaborn and matplotlib.pyplot. For the analysis, a graphical
user interface (GUI) was developed using tkinter to facilitate the selection of an Excel
file containing fractal values data. From the dataset, we extracted two key features: the
qualitative diagnosis (Dx) and the fractal dimension (FD). To enable numerical analysis, we
encoded the qualitative diagnosis using the LabelEncoder from the sklearn.preprocessing
module. Next, we applied the K-Means clustering algorithm to the dataset to identify
distinct clusters within the data, and all K-means clustering analyses were performed with
100 iterations.

Encoded qualitative diagnosis was based on histopathological diagnosis classification,
malignant or benign classification, M or NM classification and MM or NMM classification.

For evaluating the K-means clustering results, we calculated the inertia and the silhouette
scores. These metrics were computed using functions available in the sklearn.metrics module.

To visualize the K-means clustering outcomes, we utilized seaborn and matplotlib.pyplot
to generate scatterplots.

3. Results
3.1. Dermatoscopic Records

A total of 43,966 dermatoscopic records were obtained from the open-source Interna-
tional Skin Imaging Collaboration (ISIC) from the gallery archive.

Images not captured with a dermatoscope or those containing black borders (pixel-
free) were excluded, resulting in the exclusion of a total of 4696 images. This led to a final
dataset of 39,270 dermatoscopies.

Based on histopathological diagnosis, the dataset comprised 5858 non-metastatic
melanomas, four metastatic melanomas, 99 atypical melanocytic proliferation lesions,
28,778 nevi, six verrucous lesions, 259 vascular lesions, 687 squamous cell carcinomas,
seven neurofibromas, 3399 basal cell carcinomas, 150 Breslow 1 lesions, 14 Breslow 2 lesions
and nine Breslow 3 lesions. Additionally, the various dermatological lesions were catego-
rized into benign (29,050) and malignant (10,220) lesion and, subsequently an additional
classification was performed into melanomas (Ms) and non-melanomas (NMs), resulting
in totals of 6035 and 33,235 lesions, respectively. All melanoma lesions were consequently
classified as either metastatic melanoma (MM) or non-metastatic melanoma (NMM), with
respective counts of 4 and 6031.

3.2. Fractal Dimension Analysis in Histopathological Classification of Dermatologic Lesions

According to the fractal dimension of lesions classified by histopathological diagnosis,
lesions with a higher fractal dimension were associated with Breslow 3 (median 1.859,
95% CI 1.793–1.902), while lesions with the lowest fractal dimension values were linked
to atypical melanocytic proliferation (median 1.636, 95% CI 1.582–1.651). However, to
determine whether significant differences existed between the fractal dimension values
of different lesion types, a Kruskal–Wallis analysis was conducted, yielding a significant
result (p < 0.0001). Subsequently, a post hoc analysis was performed to identify significant
differences between the fractal dimension values of various lesions compared to melanoma
lesions. Significant differences were found in squamous cell carcinoma lesions (p < 0.0001),
vascular lesions (p < 0.0001), nevi (p < 0.0001) and basal cell carcinoma (p < 0.0001) (Figure 2).
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Figure 2. Distribution of fractal dimension values of dermatologic lesion according to histopathologi-
cal classification.

3.2.1. Principal Component Analysis for Dermatological Discrimination According
Fractal Dimension

Furthermore, a principal component analysis (PCA) was conducted to evaluate the
underlying structure of dermatological lesion characteristics, utilizing fractal dimension
as a relevant measure. The analysis revealed that lesions such as “BL3”, “Neurofibroma”,
“Nevus” and “Melanoma” had significant positive loadings, suggesting similarities in
associated characteristics. In contrast, lesions like “Melanoma-metastatic”, “Verruca” and
“Basal-Cell-Carcinoma” had significant negative loadings, indicating marked differences
from other lesions.

The “BL2” lesion stood out with a significant positive loading, suggesting distinctive
associated characteristics. Conversely, lesions of “Atypical-Melanocytic-Proliferation” had
a significant negative loading, indicating characteristics opposite to those of “BL2”.

The “BL2” lesions exhibit a significant positive loading in PC3, emphasizing specific
characteristics. Additionally, lesions of “Squamous-Cell-Carcinoma” show a significant
negative loading, suggesting differences in characteristics compared to “BL2” (Figure 3).
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Figure 3. Principal component analysis of dermatologic lesions according to histopathological
classification. x axis corresponds to PC1; y axis corresponds to PC2 and color gradient corresponds to
PC3. PC = principal component.

3.2.2. K-Means Analysis for Dermatological Discrimination According to Fractal
Dimension

Subsequently, to validate the clustering data obtained through the PCA based on
fractal dimension, a lesion classification was performed using unsupervised machine
learning with the K-means technique, considering three grouping centroids to simulate the
PCA-obtained data. Similar characteristics were found among Breslow 1, 2 and atypical
melanocytic proliferation lesions. Another group included Breslow 3 lesions, melanoma,
metastatic melanoma and basal cell carcinoma. The third group comprised squamous cell
carcinoma, neurofibroma, vascular lesions and warts. The groupings were achieved with a
strong differentiation between clusters, exhibiting a silhouette index of 0.89 and an inertia
of 5848.3 (Figure 4).

Figure 4. K-means clusterization of dermatological lesion according to histopathological clas-
sification. Color keys represent the different centroid aggrupations. FD = Fractal dimension;
Dx = Histopathological lesion diagnosis.
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3.3. Fractal Dimension Analysis for Malignant or Benign Lesion Classification

Later, a classification of different types of lesions was conducted, distinguishing
between malignant (n = 10,220) and benign (n = 29,050) lesions. Through a U Mann–
Whitney analysis, statistically significant differences were observed (p < 0.0001), with
malignant lesions displaying higher values of fractal dimension (median 1.74, 95% CI
1.690–1.698) (Figure 5A). A ROC curve was generated, yielding a sensitivity of 72.4% and
specificity of 50.1% (Figure 5B).

Figure 5. (A) Fractal dimension distribution values according benign or malignant lesion classification.
(B) ROC analysis of fractal dimension for malignant or benign lesion discrimination.

Principal Component Analysis and k-Mean Analysis for Malignant or Benign Lesion
Discrimination According to Fractal Dimension

Subsequent principal component analysis (PCA) revealed two principal components,
distinctly segregating between malignant and benign lesions, with loading values of
0.710 (PC1) and −0.704 (PC2) for malignant lesions, and 0.710 (PC1) and 0.704 (PC2) for
benign lesions (Figure 6A). To validate these findings, clusterization using k-means was
conducted, using two grouping centroids, demonstrating a clear differentiation between
malignant and benign lesions through the machine learning approach, with a strong silhou-
ette index (0.79) and inertia of 1851.6, suggesting a high fidelity in discriminating between
benign and malignant lesions (Figure 6B).

Figure 6. Cont.
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Figure 6. Benign and malignant lesion classification methods. (A) Principal component analysis. A
clear separation between the two lesions kind groups is observed along the PC2 axis. (B) Dot plot
showing the distribution of benign and malignant lesions in the different clusters of the k-means
analysis. Cluster 0 contains mainly benign lesions, while cluster 1 contains mainly malignant lesions.
PC = Principal component; Dx = Lesion classification into malignant or benign lesions; FD = Fractal
dimension value.

3.4. Fractal Dimension Analysis for Melanoma or Non-Melanoma Lesion Classification

Furthermore, for the M (n = 6035) and NM (n = 33,235) classifications, a Mann–Whitney
U test was conducted to determine whether there were significant differences in their
fractal dimension. The M group was found to have a significantly higher fractal dimension
(median 1.755, 95% CI 1.726–1.734) compared to the NM group (median 1.651, 95% CI
1.611–1.616) with p < 0.0001 (Figure 7A). Subsequently, sensitivity and specificity of the
fractal dimension were found between M and NM, resulting in an area under the curve of
0.67 (95% CI 0.6627–0.6774, p < 0.0001) with a sensitivity of 72.8% and specificity of 50%,
using a classification threshold >1.755 for fractal dimension (Figure 7B).

Principal Component Analysis and k-Mean Analysis for Melanoma or Non-Melanoma
Lesion Discrimination According to Fractal Dimension

Additionally, PCA between Ms and NMs yielded two principal components. The
first component (PC1) had a positive coefficient for both M lesions (0.011) and NM lesions
(0.218). The second component (PC2) showed a negative coefficient for M lesions (−0.171)
and a positive coefficient for NM lesions (0.008). Therefore, the M and NM categories
are primarily separated along the PC1 direction, with NM contributing significantly to
the variability in that direction. This demonstrates a differential grouping of each lesion,
allowing their separation based solely on the obtained fractal dimension (Figure 8A).

K-means learning process, within two grouping centroids, shows a clear separation of
both lesion types with a silhouette index of 0.79 and an inertia of 1836.3 (Figure 8B).

3.5. Fractal Dimension Analysis for Metastatic Melanoma or Non-Metastatic Melanoma
Lesion Classification

Subsequently, MM and NMM classification showed no significant differences (p = 0.976)
(Figure 9A).
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Figure 7. (A) Fractal dimension distribution values according to melanoma or non-melanoma
lesion classification. (B) ROC analysis of fractal dimension for melanoma or non-melanoma
lesion discrimination.

Principal Component Analysis and k-Mean Analysis for Metastatic Melanoma or
Non-Metastatic Melanoma Lesion Discrimination According to Fractal Dimension

PCA resulted in only one principal component with a loading value of −0.115 for
MM and 0.292 for MNM. This may indicate an inversely proportional relationship to the
fractal dimension values of this classification. To confirm this relationship, a Spearman
correlation test was conducted, yielding a correlation coefficient of r = 0.012 (p = 0.346),
thus dismissing the observations from the PCA analysis. Subsequently, ROC analysis of
the fractal dimension to discriminate between MM and NMM lesions showed an area
under the curve of 0.50 (95% CI = 0.23–0.76, p = 0.97), sensitivity of 59.39 and specificity of
75 (Figure 9B).

Additionally, a K-means test into two clusters yielding separation was observed
between these lesions with a silhouette index of 0.58 and an inertia of 72.8. However, it is
important to consider that the difficulty in classification by machine learning, and even the
absence of significant differences between MM and NMM lesions, is limited by the small
sample size included in MM lesions (Figure 9C).
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Figure 8. Melanoma and non-melanoma lesion classification methods. (A) Principal component
analysis. A clear separation between the two lesion groups is observed along both PC axis. (B) Dot
plot showing the distribution of melanoma and non-melanoma lesions in the different clusters of
the k-means analysis. Cluster 0 contains mainly melanoma lesions, while clusters 1 and 2 contain
non-melanoma lesions. PC = Principal component; Dx = Lesion classification into melanoma or
non-melanoma lesions; FD = Fractal dimension value.
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Figure 9. Fractal dimension analysis in metastatic or non-metastatic melanoma lesions. (A) Fractal
dimension distribution values according to metastatic or non-metastatic melanoma lesions. (B) ROC
analysis of fractal dimension for metastatic or non-metastatic melanoma lesion discrimination.
(C) Dot plot showing the distribution of metastatic or non-metastatic melanoma lesions in the differ-
ent clusters of the k-means analysis. MM = Metastatic melanoma lesions; NMM = non-metastatic
melanoma lesion; PC = Principal component; Dx = Lesion classification into melanoma or non-
melanoma lesions; FD = Fractal dimension value.

4. Discussion

In the natural world, irregularity is a constant, with most structures in biological
systems exhibiting irregular aggregations. The study of the aggregation and morphology
of these structures is challenging and cannot be easily approached using classical Euclidean
geometry. In cancer, cellular aggregation is evidently characterized by “quasi” random
distributions, promoting an irregular and complex yet self-similar spatial arrangement.
Therefore, the application of fractal geometry provides a suitable approach to understand-
ing the morphological complexity of this group of diseases [28–32].

Obtaining imaging data for all types of neoplasms is currently challenging. Melanoma,
from an imaging perspective, holds a privileged position, allowing for visual records
without invasive approaches. This facilitates the study of the complexity of melanocytic
lesion aggregation and promises a viable application for the diagnosis and screening of
dermatological diseases [33]. Fractal dimension, by itself, proves useful in discriminating
melanoma lesions from squamous cell carcinomas, nevi, vascular lesions and basal cell
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carcinomas. It is noteworthy that, although fractal dimension had been implemented
in previous reports, they were limited to recognizing melanoma and non-melanoma le-
sions, reporting significant differences in this classification, consistent with the findings in
this study.

This work proposes the study of the fractal dimension of dermatological lesions for
classification using cutting-edge tools, such as unsupervised machine learning. While
dermatoscopy enables more accurate diagnoses, its success remains operator-dependent,
requiring precise training to identify lesions like melanoma. Therefore, the development of
automated screening, classification and referral processes is crucial, given that skin cancers
are the most common and deadly.

The use of AI for melanoma classification is not new, with research groups implement-
ing technologies like convolutional neural networks (CNNs). However, these technologies
have drawbacks, including high computational requirements and the need for high-quality
images or videos for processing. Although they achieve classifications with around 90% ac-
curacy using dermatoscopic images alone, other algorithms like K-nearest neighbor (KNN)
exhibit lower classification accuracy than CNNs. Moreover, they require data extraction,
such as color, roughness, three-dimensional arrangement, area and diameter of lesions,
as well as features derived from the ABCDE criteria of melanoma. These AIs belong to
supervised machine learning, relying on previously labeled data to define lesion groups,
and may retain human bias in classification [34–38].

Given the above, this study focused on implementing unsupervised low-computational-
requirements machine learning techniques to allow for free lesion classification by algorithms
based on an objective and intrinsic characteristic of dermatoscopic images—their fractal
dimension. With this strategy, specific high-quality clusters were identified by the K-means
clustering technique, emphasizing the grouping of melanoma lesions, metastatic melanoma
and Breslow 3 lesions without the need for prior labeling. This suggests that this technique can
be implemented in clinical practice, with low acquisition-costs for lesion determination and
may also align with histopathological classification criteria without the need for an invasive
biopsy procedure. However, it is imperative to mention that this type of analysis does not
aim to replace the gold standard of histopathology but intends to be an early screening tool
applied at the primary care level for prompt referral to oncological dermatology services
if needed.

It has been reported that the diagnosis of dermatological tumor lesions at the primary
care level, by non-dermatologist physicians, currently exhibits low sensitivity (approxi-
mately 20%) and up to 94% specificity, alongside poor agreement. Coupled with extended
referral periods and treatment initiation, malignant skin lesions have emerged as a signif-
icant health issue due to underdiagnosis [39]. Consequently, the results obtained in this
study could enhance early diagnosis at the primary level by facilitating image processing
of lesions through their fractal dimension.

Given the findings, two courses of action are proposed, both rooted in fractal dimen-
sion. The first, without the need for artificial intelligence classification methods, allows,
based on ROC curve results, for differentiation between benign and malignant lesions (Sen-
sitivity = 72.4% and Specificity = 50.1%). Within malignant lesions, it enables the distinction
between melanoma and non-melanoma under a dichotomous classification method, with
an approximate sensitivity of 72% and specificity of 50%. This approach can be applied at
the primary care level by non-dermatologist physicians to enhance accurate skin tumor
diagnosis. Unfortunately, due to the obtained statistical significance, this proposal can only
extend to melanoma or non-melanoma lesions (Figure 10).

In this regard, the dichotomous method based on ROC curves, applied at the primary
care level, potentially allows for the avoidance of underdiagnosis of melanoma lesions,
increasing the current sensitivity from 20% to 72%; however, it decreases specificity from
94% to 50%. Nevertheless, even though this proposed method still encounters issues in
identifying true negatives, it serves as a better model than the current one by identifying at
least 72% of true positives. It is important to emphasize that this method is proposed for
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initial screening at the primary care level, and findings at this level should be validated by
a dermatologist specialist.

Figure 10. Suggested algorithm for dermatological lesion classification according to fractal
dimension value.

The second proposal leverages artificial intelligence-based K-means classification
capabilities, yielding clusters with a quality exceeding 0.80 in all cases. However, the
application of this proposal is restricted to the development of mobile applications available
for use by non-dermatologist physicians.

Although only the fractal dimension was implemented as a classification variable in this
study, yielding robust clusters, it is suggested to enrich these methods with other clinical–
pathological variables to enhance the quality of unsupervised artificial intelligence clusters.

5. Conclusions

The present study was able to determine that the fractal dimension, by itself, is an
appropriate metric to discriminate between benign and malignant dermatological lesions,
and between melanoma and non-melanoma lesions. However, this metric was not suitable
to discriminate between metastatic and non-metastatic melanoma lesions.

On the other hand, it was also determined that the fractal dimension is sufficient
to generate unsupervised artificial intelligence models that allow for a more efficient
classification of dermatological lesions. However, it is suggested to strengthen the training
of machine learning models with clinical–pathological parameters to evaluate whether it is
possible to establish better classification algorithms based on even more efficient machine
learning tools.

It is also important to consider that the development of this type of tool does not aim
to replace the criteria of a dermatologist, but to provide an additional tool for the rapid
and accurate diagnosis of skin diseases. This tool could be applied in remote locations,
even through mobile applications, and therefore be easily accessible for use by medical
personnel only.
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