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Abstract: This study aims to determine whether it can distinguish odontogenic keratocyst (OKC)
and simple bone cyst (SBC) based solely on preoperative panoramic radiographs through a deep
learning algorithm. (1) Methods: We conducted a retrospective analysis of patient data from January
2018 to December 2022 at Pusan National University Dental Hospital. This study included 63 cases
of OKC confirmed by histological examination after surgical excision and 125 cases of SBC that
underwent surgical curettage. All panoramic radiographs were obtained utilizing the Proline XC
system (Planmeca Co., Helsinki, Finland), which already had diagnostic data on them. The panoramic
images were cut into 299 × 299 cropped sizes and divided into 80% training and 20% validation
data sets for 5-fold cross-validation. Inception-ResNet-V2 system was adopted to train for OKC and
SBC discrimination. (2) Results: The classification network for diagnostic performance evaluation
achieved 0.829 accuracy, 0.800 precision, 0.615 recall, and a 0.695 F1 score. (4) Conclusions: The
deep learning algorithm demonstrated notable accuracy in distinguishing OKC from SBC, facilitated
by CAM visualization. This progress is expected to become an essential resource for clinicians,
improving diagnostic and treatment outcomes.

Keywords: deep learning; differentiation; diagnosis; odontogenic keratocyst (OKC); simple bone
cyst (SBC)

1. Introduction

Machine learning is the most significant advancement in artificial intelligence (AI). AI
learns from algorithms, requiring data to learn patterns to make decisions or predictions
based on the interpretation of data without specific programming [1]. In machine learning,
building a training dataset with sufficient information and accurately categorizing the
data are the most important first steps. The tagged data is pre-processed to guarantee
appropriate training steps and exported in the right format. On the contrary, deep learning
develops predictions through autonomically perceived data rather than handcrafted data.
A convolutional neural network (CNN) architecture in two and three dimensions is used
for deep learning, with different training steps implemented. Multi-layered artificial neural
networks ensure that the system automatically accumulates and turns this data into output
by easily detecting the contours of the structure to be presented to the system [2].

Deep learning has been developed rapidly in medical radiographs [3], including the
detection of abnormalities, classification, separation of lesions or organs, measurement
of volume or length, and image transformation or reconstruction. Research has been
conducted on the use of deep learning methods in various fields of the dental profession [4].
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Many of them were related to dental morphology, other subjects such as gingival recession,
osteoporosis, and anatomical structures like inferior alveolar canals were also studied
through deep learning [5]. An especially deep learning algorithm has been implemented
for the detection of landmarks in cephalometric radiographs [6] and the diagnosis of
diseases like caries detection [7], periodontal bone loss [8], and periapical lesions [9].

Panoramic radiographs are a standard imaging modality and a typical diagnostic tool
that dentists often use in their routine clinical practice when patients first visit a dental
clinic, as well as for follow-up [10]. Panoramic radiographs are preferred because they
allow the complete dentition and surrounding anatomical landmarks to be assessed with a
single radiation exposure [11].

When a patient first visits a dental clinic, regardless of the patient’s chief complaint,
clinicians often accidentally discover cystic lesions on panoramic radiographs that do
not cause any symptoms [12]. Benign cysts and tumors in maxillofacial bones are usually
painless and asymptomatic unless they have expanded to the point where they affect
significant parts of the bone, for example, a pathological fracture caused by expanded
or thinned cortical bone [13]. Some intrabony lesions are asymptomatic in the early
stages, a delayed diagnosis and a poor prognosis are likely to follow when they are
misdiagnosed [14,15]. It is imperative to conduct a comprehensive analysis and diagnosis
of the lesion to determine the most suitable treatment.

Given that most cysts and tumors typically manifest on radiographs as radiolucent
lesions with corticated margins, establishing a precise differential diagnosis can pose chal-
lenges. [16]. Odontogenic keratocyst (OKC) and simple bone cyst (SBC) exhibit similar
characteristics on panoramic radiographs yet necessitate different treatments and result
in distinct prognoses. SBC mostly affects the mandible and is typically asymptomatic. It
is more prevalent during the second decade of life [17]. Conversely, OKC predominantly
affects the mandible in a 2:1 ratio to the maxilla and occurs during the second and third
decades of life [18,19]. OKC demonstrates a biological pattern like that of a benign tumor,
necessitating surgical excision for treatment, and is associated with a high recurrence
rate [20]. In contrast, SBC tends to be self-limiting, with spontaneous resolution occurring
frequently, sometimes eliminating the need for surgical intervention [17,21]. Due to the sim-
ilarities of SBC to OKC on panoramic radiographs, its differential diagnosis of SBC requires
additional cone beam computed tomography (CBCT) imaging and sometimes biopsy. This
not only consumes more time in the examination process but also poses potential risks
to patients, including unnecessary radiation exposure and surgical procedures, which are
typically not warranted [22].

OKC shows a biological pattern like that of a benign tumor, requires surgical excision
as a treatment method, and has a high recurrence rate [23], while SBC is self-limiting [24].

Considering these facts, the competence of clinicians is crucial in determining both the
patient’s prognosis and the selection of appropriate treatment. Particularly, in the field of
dentistry, individual knowledge, expertise, and biases significantly influence the agreement
rate (a proxy for diagnostic performance) between dental practitioners’ interpretations of
radiographs [25].

Therefore, this study aims to determine whether a deep learning algorithm can effec-
tively differentiate between OKC and SBC, two lesions with similar radiographic character-
istics, solely based on preoperative panoramic radiographs.

2. Materials and Methods

The ethics committee of Pusan National University Dental Hospital approved this
study (No. 2024-03-010-004), which followed the principles outlined in the Declaration of
Helsinki. Since the study was retrospective, informed consent was not required.

Patients with SBC and OKC who visited Pusan National University Dental Hospital
between January 2018 and December 2022 had their panoramic radiographs taken. All
panoramic radiographs were obtained utilizing the Proline XC system (Planmeca Co.,
Helsinki, Finland), which already had diagnostic data on them. CBCT was used to support
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the preliminary diagnosis of SBC and OKC. This study included 63 cases of OKC confirmed
by histological examination after surgical excision and 125 cases of SBC that underwent
surgical curettage (Figure 1). All 63 OKC cases were confirmed by histopathological exami-
nation after surgical excision. The 125 SBC cases underwent curettage because the cavity
was empty and often contained connective tissue, so a biopsy was unnecessary. Periodic
follow-ups were performed for both OKC and SBC patients before they were discharged.
All cases were in the mandible, not associated with impacted teeth, and panoramic radio-
graphs were acquired using a single imaging system. Only images with clear depictions of
well-defined circumscribed lesions were included. Images were preprocessed by cropping
the region of interest (ROI) to improve the prediction accuracy of the deep learning system.
The processed panoramic images were analyzed using the Inception-ResNet-V2 [26] net-
work framework to learn the lesion’s morphology and obtain an algorithm. The accuracy
and specificity of lesion identification were then analyzed.
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Figure 1. Flow diagram for identification of subjects and inclusions.

2.1. Data Preprocessing

We converted 2943 × 1435 panoramic images into learnable data [27]. Panoramic
images with histopathological diagnoses of OKC and SBC were converted to ground truth
images and labeled using MATLAB 2023b (MathWorks, Inc., Natick, MA, USA). The ROI
was retrieved from panorama images using element-wise augmentation and cropped into
a square form scaled to 299 × 299 to retain the horizontal and vertical ratios (Figure 2).

2.2. Image Augmentation

To prevent overfitting due to the insufficient amount of data, we increased the number
of training images by rotating them from −10 to 10 degrees and translating them from −5
to 5 pixels horizontally and vertically [28]. This work was conducted using a workstation
(i7-8700K CPU, 32GB RAM) with an NVIDIA Titan RTX GPU(NVIDA, CA, USA).
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Figure 2. Two examples of manually cropped images of panoramic radiography: (a) OKC, (b) SBC.

2.3. Data Preperation Using 5-Fold Cross-Validtion

After preprocessing, we created five sets for training the AI deep learning algorithm,
with each set containing 204 images categorized into two groups for 5-fold cross-validation.
The dataset was divided into training and validation sets, yielding 163 images for the
training group and 41 images for the validation group.

We used 5-fold cross-validation to prevent bias due to the limited quantity of data used
to train the deep learning models for image classification. The validation set was reserved
for the final evaluation of the model’s performance and used only once. The training set
was then split into five equal parts. During the cross-validation process, each part was used
as a validation set once, with the remaining four parts forming the new training set. This
ensured that every data point was used for both training and validation exactly once. The
network was trained with these images, and its performance was validated.

2.4. Network Architecture

We used Inception-ResNet-V2 [26] network(see Table 1), pretrained on over a million
images from the ImageNet archive, allowing the deep learning algorithms to learn a wide
range of images. To reduce diagnostic mistakes resulting from class imbalance, inverse-
frequency class weights were implemented since the data ratio was OKC:SBC = 1:2.

Table 1. Properties of Inception-ResNet-V2.

Network Model Depth Size (MB) Parameters (Millions) Input Image Size

Inception ResNet-V2 164 209.0 55.9 299 × 299 × 3

2.5. Training Options

We used a workstation (i7-8700K CPU, 32GB RAM) with an NVIDIA Titan RTX GPU
for training the networks using MATLAB 2023b (MathWorks, Natick, MA, USA).

Models were trained using the Adam optimizer for a maximum of 500 epochs [29].
The initial learning rate was 10−4, and the mini-batch size was 16. Early stopping of the
training procedure occurred if validation accuracy did not increase for more than 30 epochs
to prevent overfitting.

2.6. Accuracy and Precision Assessment

The accuracy and precision assessment and time analysis were performed in two
groups: the model and human clinicians. The human clinicians consisted of an OMR
specialist and three general practitioners (GPs). The Oral and Maxillofacial Radiology
Specialists (OMR) have over 10 years of experience in diagnostic interpretation. The
general practitioners (GPs) are interns at Pusan National University Dental Hospital who
have passed the dental board test but have not yet started specialized training. Accuracy,
precision, recall, and F1 score were defined from the confusion matrix. True positive
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(TP), false negative (FN), true negative (TN), and false positive (FP) metrics were used to
calculate accuracy and F1 scores.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2 × (Recall × Precision)

Recall + Precision
TP: true positive, FP: false positive, FN: false negative, TN: true negative

2.7. Visualizing Model Decision

Class Activation Mapping (CAM) is a method that removes the fully connected layer
from CNN while preserving location information, allowing visualization of which part
of the image AI is classifying [30]. A gradient-based heat map was created as a guide to
highlight the important regions of the class label on the image in a reddish color [31].

3. Results

The trained model showed 0.829 accuracy, 0.800 precision, 0.615 recall, and 0.695 F1
score. Human performance is estimated in Table 2. The diagnostic accuracy of the model
resulted in 0.805, and OMR specialists showed similar accuracy (0.805), while GP 1, 2,
and 3 showed lower results (0.439, 0.707, and 0.463). The model demonstrated immediate
detection and classification competence, while human physicians (OMR specialists and
GPs) took an average of 415 s to analyze all 41 validation set images.

Table 2. Comparison of diagnostic performance between trained models, OMR * specialists, and GP **.

Accuracy Precision Recall F1 Score
Mean Time For Interpretation

(Validation Data Set,
Sec.)

Trained model 0.829 0.800 0.615 0.695 0.14
OMR specialist 0.805 0.727 0.615 0.667 7.19

GP
1 0.439 0.273 0.462 0.343 7.78
2 0.707 0.529 0.692 0.600 8.48
3 0.463 0.355 0.846 0.500 13.93

* OMR: Oral and Maxillofacial Radiology Specialists, ** GP: General Practitioners.

3.1. A Confusion Chart

We calculated the accuracy using elements of the confusion matrix (Figure 3). For
OKC (Group 1), the classifier correctly identified 26 cases but misclassified 2 cases as SBC.
For SBC (Group 2), the classifier correctly identified eight instances but misclassified five
instances as OKC.

3.2. Visualization of Model Classification

In Figure 4a, AI was classified as SBC with a probability of 99.46%, whereas in
Figure 4b, OKC was classified as OKC with a probability of 69.28%. Upon compari-
son of the CAM images of SBC and OKC, it was evident that the interior of the OKC
lesions exhibited a notably redder appearance. Additionally, our analysis identified that
the CAM hot spots were situated at or near the lesion’s periphery. In Figure 4c, OKC was
misclassified as SBC with a probability of 87.14%, and in Figure 4d, SBC was misclassified
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as OKC with a probability of 75.84%. In both of these images, the CAM hot spots are
looking at unrelated areas, not at the lesions.
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Figure 4. Four examples of cropped images alongside their corresponding class activation maps
(CAM): correctly classified cases: (a) SBC and (b) OKC; incorrectly classified cases: (c) OKC misclassi-
fied as SBC, and (d) SBC misclassified as OKC.

3.3. Cross-Tabulation of OMR Specialists and AI Results

To further evaluate whether the AI mimics the human decision process or employs a
different strategy, we conducted a cross-tabulation of the diagnostic results of the AI model
against those of the OMR specialist. The comparison is summarized in Figure 5. The AI
model and the OMR specialist agreed on 26 cases of OKC and 8 cases of SBC. However, the
AI model identified five cases as OKC that the OMR specialist identified as SBC, and two
cases as SBC that the OMR specialist identified as OKC.
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Figure 5. Cross-tabulation of specialists and AI diagnoses. This figure shows a cross-tabulation table
comparing the diagnostic results of an oral and maxillofacial radiologist (OMR) specialist and an
AI model.

3.4. Confidence Levels of AI Model Predictions

The confidence levels provided by the AI model are crucial for assessing the reliability
of its diagnostic predictions. The distribution of confidence levels for correct and incorrect
classifications is summarized in Figure 6. Most predictions are highly confident, with
32 predictions above 0.95 and only a few predictions below 0.8.
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4. Discussion

Clinicians identify diverse lesions, from salivary stones and cysts to benign tumors and
malignancies, through panoramic radiographs, minimizing patient radiation exposure [32,33].
However, distinguishing between OKC and SBC is challenging for clinicians due to their
similar appearance on panoramic radiographs. Both may appear as well-defined radiolucent
lesions in the posterior mandible with scalloped margins [16]. Misdiagnosing SBC as OKC
may lead to unnecessary surgical interventions for patients, especially when SBC typically
necessitates conservative follow-up care. Conversely, misidentifying OKC as SBC may result
in missing the optimal time for surgical intervention or delayed detection of recurrence. Hence,
differential diagnosis holds significance as the treatment modalities and prognostic outcomes
differ between the two lesions.
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Deep learning algorithms can be beneficial for clinicians to make more precise diag-
nostic impressions. Birdal et al. reported the efficient use of various automatic diagnostic
methods for panoramic image interpretation as an assistant for examination [34]. Com-
pared to manual segmentation, a deep learning-based automatic method showed faster
and more precise performance in detecting and segmenting subjects on panoramic ra-
diographs [35]. Ari et al. reported that the present algorithm is well-trained to reliably
distinguish SBC with excellent accuracy in panoramic images from odontogenic cysts or
tumors [34]. Several studies have demonstrated that deep learning algorithms have proven
to be able to differentiate between OKC and ameloblastoma with sufficient accuracy. This
can assist surgeons in determining appropriate treatment strategies and intervening at the
appropriate time [36,37].

The analysis of preoperative panoramic radiographs using a deep learning algorithm
showed reliable accuracy in distinguishing between OKC and SBC. The ROI classification
was established, incorporating augmentation through random rotation between 0 and
10 degrees. This implies that the inclusion of a rotational parameter likely contributed to
the development of a more efficient deep learning model by enhancing data representation
across diverse cases [38]. Our data showed reliable classification performance, with an
accuracy of 82.9%. Due to the prevalence of SBC cases, we assigned additional class
weight to OKC to counterbalance the random selection bias towards SBC. The confusion
matrix shows that the deep learning algorithm attained a higher accuracy rate in predicting
OKC cases.

The cross-tabulation (Figure 5) of the AI model’s results with those of the OMR
specialist shows a high level of agreement. To quantify the level of agreement between
the AI model and the OMR specialist, we calculated Cohen’s Kappa coefficient, which
measures inter-rater agreement for categorical items. The calculated Kappa value (κκ)
was approximately 0.58, indicating a moderate to substantial agreement between the
AI model and the OMR specialist [39]. This high level of agreement suggests that the
AI model has learned to identify similar patterns to those recognized by experienced
human diagnosticians, indicating that it mimics the human decision-making process to a
considerable extent.

Figure 3 shows that CAM highlights the border region between the lesions and teeth,
emphasizing crucial structures like the tooth root and parts of the lesion’s margin. Typically,
a periodontal ligament (PDL) space is located at the lesion’s border. OKC is sometimes
associated with nonvital teeth [40,41], while SBC usually corresponds with vital teeth [42].
In our study, most SBC cases exhibited normal PDL space where teeth were adjacent to the
lesion’s margin.

The density and depth of cysts serve as additional features for lesion characterization,
providing valuable information for differential diagnosis. O. Ferreira Ju’nior et al. examined
the pixel gray levels within the cysts of OKC and SBC. The varying gray levels observed in
OKC indicate denser content within the cyst compared to the empty or partially empty cav-
ity of SBC. Pixel values inside OKC were found to be higher than those in SBC images, with
these values closely associated with the density of the lesion contents. [43]. Similarly, when
compared to the CAM of SBC, the CAM for OKC demonstrates the lesion interior being
significantly redder. The information regarding the contours of OKCs and SBCs, along with
the pixel gray level representing the density of their fluid content, proved to be valuable in
distinguishing between these lesions [44]. In our results, we also observed that hot spots of
the CAM were partially located around the margins of the lesion. This knowledge provides
the deep learning system with an indicator as to how to differentiate between OKC and SBC.
With the collection of more data in the future, the regions highlighted by CAM will become
more discernible for clinicians, thereby facilitating easier differentiation between them.
Utilizing CAM, the provided images of highlighted lesions may expedite the detection of
characteristic features of these lesions on panoramic radiographs, potentially obviating the
need for additional CBCT scans.
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This study highlights the potential of the deep learning model to reduce the reliance
on CBCT scans. Deep learning algorithms can be beneficial for clinicians, especially general
practitioners. The OMR acquired as much high accuracy and precision as the deep learning
algorithm, but the GP showed comparably low accuracy in making differential diagnoses,
possibly leading to misdiagnosis results. However, given the current predictive values,
the approach may not completely eliminate the need for CBCT in all cases. Instead, it
could serve as a robust preliminary diagnostic tool to identify cases where further imaging
is most necessary, thus optimizing the use of CBCT and reducing unnecessary exposure
for patients.

The confidence levels provided by the AI model are crucial in assessing the relia-
bility of its diagnostic predictions (Figure 6). The model outputs a probability score for
each classification, reflecting its confidence level. In our study, the AI model achieved a
substantial confidence level in its predictions, with a mean probability score of 0.985 for
correct classifications. Notably, 87% of the predictions had confidence levels exceeding 95%,
supporting the reliability of the AI model for initial diagnostic purposes.

To integrate this approach more concretely into the diagnostic pipeline, a tiered
diagnostic strategy is proposed. Initially, panoramic radiographs can be analyzed using the
deep learning model to identify potential OKC or SBC cases. Cases with high confidence
levels in the AI predictions may proceed with treatment based on these findings, while
cases with lower confidence or ambiguous results can be referred for CBCT imaging for
further evaluation. This approach leverages the strengths of both modalities and ensures a
balance between diagnostic accuracy and patient safety. The high proportion of predictions
with confidence levels above 95%, as shown in Figure 6, validates the proposed tiered
diagnostic strategy and supports its implementation.

This study was limited by the inability to use a large amount of clinical data due to
constraints, potential biases introduced by the retrospective design, and the limitations of a
single-center study environment. To mitigate these biases and limitations, future studies
should consider prospective designs and multicenter collaborations. Multicenter trials can
be more explainable and supportive of the study results, providing larger sample sizes that
could be more broadly applied and generalizable. Collecting more data in collaboration
with other hospitals will yield more accurate results.

Although panoramic radiographs alone are important for clinicians to make a pro-
visional diagnosis, image distortion may occur in panoramic radiographs when X-rays
penetrate the cyst wall at an oblique angle, causing the focal layer to be narrower in the
anterior region. The mandibular thickness, the patient’s position, and the ghost image of
the spine may also be attributed to this distortion [16].

As a complement, CBCT serves as an excellent imaging modality for the maxillofacial
region, offering clear, highly contrasted images of anatomical structures and a valuable
tool for bone evaluation [44,45]. Deep learning combining CBCT images also enhanced the
quality of radiograph interpretation. For example, a study on airway volume measurement
on CBCT radiographs shows that automatic segmentation trained by a deep learning model
is proven to be reliable [46]. Several studies have investigated the boundaries of OKC and
SBC on CBCT images. Specifically, in OKC, the sclerotic border of the lesion was found to be
more prevalent, especially in the posterior region. A scalloping appearance can also be seen
on the superior border of the SBC. Jiang et al. emphasized that SBC showed a scalloped
margin on the panoramic radiograph, with the upper boundary of the cyst extending to the
tooth root. Additionally, they noted that, on CBCT imaging, the cyst appears fan-shaped
with distinct hard bone lines, resembling the shape of a shell [47]. They also observed
that the rate of cortical bone perforation in OKC was 36.8%, with bone thinning present
in 89.5% of cases. In SBC cases, only cortical bone thinning was noted, with no instances
of perforation [47]. CBCT also offers clear imaging advantages [48], supports superior
dental diagnoses with deep learning [9,49,50] and automates lesion detection to reduce
radiologists’ workloads. Therefore, for improved accuracy and precision, we intend to
pursue a future study to incorporating the use of CBCT. This can be achieved by integrating
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a deep learning algorithm with additional three-dimensional information provided by
CBCT scans.

5. Conclusions

This study highlights the utility of panoramic radiographs in the initial diagnosis of
oral lesions, emphasizing the minimal radiation exposure benefit. Distinguishing between
OKC and SBC presents a challenge due to their similar appearances on radiographs,
where accurate differentiation is crucial for appropriate management. Deep learning
algorithms have proven effective in enhancing diagnostic precision, and leveraging lesion
characteristics to improve differentiation. While our findings indicate the potential of deep
learning to streamline the diagnostic process on radiographs and reduce the reliance on
additional CBCT scans, limitations in clinical data underscore the need for further research.
Incorporating CBCT with deep learning for future studies appears promising for advancing
diagnostic accuracy and patient care in oral lesion management.
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