
Citation: Ozpeynirci, Y.; Gorodezky,

M.; Sanches, A.F.; Mandava, S.; Solana,

A.B.; Liebig, T. Impact of Various Non-

Contrast-Enhanced MRA Techniques

on Lumen Visibility in Vascular Flow

Models with a Surpass Evolve Flow

Diverter. Diagnostics 2024, 14, 1146.

https://doi.org/10.3390/

diagnostics14111146

Academic Editors: Søren Møller,

Roohallah Alizadehsani, Sadiq

Hussain and Mohamad Roshanzamir

Received: 29 January 2024

Revised: 18 May 2024

Accepted: 27 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Brief Report

Impact of Various Non-Contrast-Enhanced MRA Techniques on
Lumen Visibility in Vascular Flow Models with a Surpass Evolve
Flow Diverter
Yigit Ozpeynirci 1,*, Margarita Gorodezky 2, Augusto Fava Sanches 1 , Sagar Mandava 3, Ana Beatriz Solana 2,4,†

and Thomas Liebig 1,†

1 Institute for Diagnostic and Interventional Neuroradiology, University Hospital,
Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377 Munich, Germany;
favasanches@gmail.com (A.F.S.); thomas.liebig@med.uni-muenchen.de (T.L.)

2 GE HealthCare, 80807 Munich, Germany; margarita.gorodezky@ge.com (M.G.);
anabea.solana@ge.com (A.B.S.)

3 GE HealthCare, Atlanta, GA 30318, USA; sagar.mandava@gehealthcare.com
4 Center for Neuroimaging Sciences, King’s College London, London SE1 7EH, UK
* Correspondence: yigitozpeynirci@yahoo.com
† These authors contributed equally to this work.

Abstract: Background: Silent MRA has shown promising results in evaluating the stents used for
intracranial aneurysm treatment. A deep learning-based denoising and deranging algorithm was
recently introduced by GE HealthCare. The purpose of this study was to compare the performance
of several MRA techniques regarding lumen visibility in silicone models with flow diverter stents.
Methods: Two Surpass Evolve stents of different sizes were implanted in two silicone tubes. The
tubes were placed in separate boxes in the straight position and in two different curve configurations
and connected to a pulsatile pump to construct a flow loop. Using a 3.0T MRI scanner, TOF and silent
MRA images were acquired, and deep learning reconstruction was applied to the silent MRA dataset.
The intraluminal signal intensity in the stent (SIin-stent), in the tube outside the stent (SIvessel), and
of the background (SIbg) were measured for each scan. Results: The SIin-stent/SIbg and SIin-stent/SIv

ratios were higher in the silent scans and DL-based reconstructions than in the TOF images. The
stent tips created severe artefacts in the TOF images, which could not be observed in the silent scans.
Conclusions: Our study demonstrates that the DL reconstruction algorithm improves the quality of
the silent MRA technique in evaluating the flow diverter stent patency.

Keywords: silent MRA; deep learning; flow diverter; intracranial aneurysm

1. Introduction

Three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) with-
out contrast media is a valuable non-invasive tool for evaluating intracranial aneurysms
following a flow diverter treatment [1]. However, it is limited by susceptibility artefacts
that may obscure the visibility of the parent vessel lumen [1–4].

Silent MRA is a sequence that GE HealthCare has just recently introduced. This
technique combines a zero echo time (ZTE) 3D radial sampling with an arterial spin-
labeling preparation module [5]. The arterial spin labeling preparation is applied at the
neck, tagging the flowing blood towards entering the imaging region, thus allowing to
visualize the flowing blood. Prior to the labeling pulse, native images (unlabeled images)
are made. After the labeling pulse, labeled images are acquired. Images of the flowing
blood are produced by subtracting the labeled images from the native images in a similar
fashion to digital subtraction angiography.

ZTE imaging can diminish magnetic susceptibility and minimize the phase dispersion
of the labeled blood flow signal resulting in the reduction in metallic artefacts from stents
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or other metallic objects, such as coils, enabling the visualization of the lumen [6–10]. In
studies investigating intracranial stents including flow diverters, the visualization ability
of silent MRA was found to be superior to that of TOF MRA [6–10].

A deep learning-based (DL) denoising and deranging algorithm was recently intro-
duced to the market by GE HealthCare as AIRTM Recon DL (GE HealthCare, Waukesha,
WI), which includes a deep convolutional neural network to support the reconstruction
process of raw data, thus increasing the signal-to-noise ratio and producing clean and
sharp images [11]. The purpose of this study was to compare the performance of several
non-contrast-enhanced MRA approaches regarding lumen visibility in flow models using
the Surpass Evolve flow diverter.

This is the first in vitro study evaluating the abilities of deep learning-based silent
MRA sequence in the imaging of a flow diverter stent.

2. Materials and Methods
2.1. Flow Diverter

Surpass Evolve (SE, Stryker Neurovascular, Kalamazoo, MI, USA) is a flow diverter
stent used in the endovascular embolization of intracranial aneurysms. It consists of 64
braided cobalt chromium wires interwoven with platinum–tungsten wires to improve
visibility under fluoroscopy.

2.2. Experimental Setup

Under fluoroscopic guidance, two stents of different sizes (width × length) (4.5 ×
25 mm2 and 5 × 20 mm2, respectively) were implanted in two silicone tubes with an inner
diameter of 4.4 mm (Figure 1). To confirm the optimal wall apposition of the stents, a
contrast-enhanced flat panel CT was performed.
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Figure 1. A close-up of the silicone tubes.

Three boxes were created for each scan set. The silicone tubes (one without a stent and
two with each stent) were placed in three separate transparent plastic boxes in the straight
position for the first series of scans and then in two different curve configurations (obtuse
angle curve (C1)) and (almost a) right angle curve (C2)) for the second and third series of
scans, respectively.

The water-filled boxes and silicone tubes were connected to a pulsatile flow pump
to construct a flow loop. The Flowcon1000 v1.5 software (αCandis GmbH, Pforzheim,
Germany) was utilized to control the pump.

The T1 relaxation time of the circulating water was reduced by adding gadolinium
contrast material, 0.7 mmol of Magnevist (Bayer Vital GmbH, Leverkusen, Germany),
in the closed water circuit of about 7 L to simulate the T1 characteristics of the blood
(T1 ≈ 1.6 s). A Coriolis flowmeter (PROMASS 83F08, Endress+Hauser GmbH, Reinach,
Switzerland), used to measure a ground-truth net flow value with a precision of ±0.5 mL/s,
was connected after the outlet of the models close to the pump.

The constructed object was then positioned in the center of the body coil with the
longitudinal axis of the tubes parallel to the main magnetic field. The acquisitions were
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conducted under pulsatile flow conditions (60 beats/min). For the confirmation of pulsatil-
ity of the flow and to trigger the sequences, a pulse oximeter was attached to the silicone
tube before entering the box. The mean flow rate was set to 400 mL/min, as determined by
the flowmeter, simulating the flow conditions of the internal carotid artery.

The setup can be observed in Figures 2 and 3.
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2.3. MR Imaging

MR images were obtained with a GE HealthCare 3.0T MRI scanner (Discovery MR750w,
GE Healthcare, Milwaukee, WI, USA), using the coils integrated in the scanner table. At
first, we obtained 3D TOF MRA with parameters as follows: spoiled gradient-echo sequence
with TR/TE/FA, 24 ms/3.4 ms/15◦; FOV/acq matrix, 200 mm × 200 mm/200 × 200; acq
slice thickness, 1 mm, reconstructed voxel size, 0.5 × 0.78 × 0.78 mm3; and ARC = 2. A
vein saturation slab was not used. The number of slices was 150. The scan time was 2 min
and 40 s.
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The parameters for the silent MRA were as follows: ASL-prep 3D radial ZTE sequence
with TR/TE/FA, 3.077 ms/0.028 ms/5◦; FOV/acq matrix, 180 mm × 180 mm/180 × 180;
and reconstructed voxel size, 1 × 0.7 × 0.7 mm3. The number of slices was 120. The scan
time was 4 min and 12 s.

2.4. Image Post-Processing and Analysis

A labeled database of 10,000 image pairs, representing near-perfect and conventional
MRI images, was used to train a DL model in a supervised manner [11]. The conventional
training data were synthesized from near-perfect images using established methods to
create lower resolution versions with more truncation artifacts and with higher noise levels.
The model was designed to remove the noise seen in ZTE scans and improve the perception
of image resolution. This trained model was used to reconstruct silent MRA raw data,
with the acquired data being processed through both the conventional approach and the
DL-based approach.

ImageJ Version 1.54 (US National Institutes of Health, Bethesda, MD, USA) was used
for the image analysis. The signal intensities inside the tubes and of the background were
measured. The measurements were conducted in the plane perpendicular to the course
of the tubes at three locations along the segments with the stents (both stent ends and
in the middle) and two areas outside of the stent (5 mm proximally and distally to the
stent ends) using circular regions of interest (ROIs). The mean value of the signal intensity
measurements from the stent-free areas are represented by the vessel SI (SIv) and that from
the stent segments are represented by the in-stent SI (SIin-stent).

The signal intensity of the background (SIbg) was measured in the plane through the
midsection of the stents. The ratios of SIin-stent to SIbg and of SIin-stent to SIv were calculated.

3. Results

The SIin-stent/SIbg and SIin-stent/SIv ratios were higher in both the silent MRA scans
with and without DL-based reconstructions than in the TOF images in models with the
straight and C1 configurations. However, this trend could not be consistently seen on
images in models with C2 configuration. SIin-stent/SIbg showed the strength of the DL
denoising algorithm in minimizing the background noise in all configurations and with
and without a stent (Tables 1 and 2).

Table 1. Ratio of the mean signal intensity in the stent (SIin-stent) to the signal intensity of the
background (SIbg).

SIin-stent/SIbg

TOF SIL DL

STR

No 5.3 7.1 80.1
4.5/25 2.0 6.1 57.1
5/20 2.4 3.3 35.3

C1

No 7.1 7.1 72.2
4.5/25 1.8 5.8 75.3
5/20 2.3 2.2 22.3

C2

No 8.7 2.1 20.2
4.5/25 5.1 1.5 10.4
5/20 2.2 1.4 8.0

TOF: time of flight; SIL: silent sequence; DL: deep learning; STR: straight; C1: curve1; C2: curve2; no: with-
out stent.
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The stent tips created severe artefacts on the TOF, which could not be observed in the
silent scans (Figures 4–6).
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Table 2. Ratio of the mean signal intensity in the stent (SIin-stent) to the mean signal intensity of the
vessel (SIv).

SIin-stent/SIv

TOF SIL DL

STR

No 1.0 1.0 1.0
4.5/25 0.5 1.0 0.9
5/20 0.4 0.9 0.9

C1

No 1.1 1.1 1.1
4.5/25 0.4 0.9 1.0
5/20 0.4 0.8 0.8

C2

No 1.5 1.0 1.2
4.5/25 0.7 0.8 0.6
5/20 0.8 0.9 0.5

TOF: time of flight; SIL: silent sequence; DL: deep learning; STR: straight; C1: curve1; C2: curve2; no: without stent.

4. Discussion

Our research sought to assess the efficacy of different non-contrast-enhanced MR
angiography methods in the evaluation of the stent lumen in vascular flow models carrying
the Surpass Evolve flow diverter. In the models with varied curves and two different stent
sizes, intraluminal SIs were measured in the areas with and without a stent.

The SIin-stent/SIbg and SIin-stent/SIv ratios were consistently higher in the silent scans
and DL-based reconstructions than in the TOF, except in the models with a tighter curve.
The stent tips caused severe artefacts in the TOF compared to the silent MRA.

One of the advantages of the silent MRA is the reduction in metallic artefacts from
stents or other metallic objects, such as coils or surgical clips due to the ZTE imaging,
enabling a better visualization of blood flow [5–10]. Additionally, the negative effect of
the turbulent flow observed in TOF MRA may diminish [5–10]. In studies evaluating
intracranial laser-cut and braided stents, the visualization capability of the silent MRA was
found to be superior to that of 3D TOF MRA. In addition, the silent MRA was able to reveal
neck remnants of coiled aneurysms with a greater accuracy than the TOF. The silent MRA
could thus identify aneurysm occlusion more effectively than the TOF. Moreover, the silent
MRA demonstrated a superior visualization of aneurysms treated with a flow diverter
stent regardless of the aneurysm location, the degree of in-stent stenosis, and the presence
or absence of additional coiling [5–10].

Further advantages of silent MRA are insensitivity to motion artefacts due to radial
sampling and the elimination of noise, increasing patient comfort and resulting in less
anxiety in the scanner with better compliance [12,13].

However, as Holdsworth et al. [5] also stated, silent MRA has some intrinsic problems,
mainly due to the known limitations of the arterial spin labeling technique in the regions
of slow flow. In their study, they observed poorly defined and smaller caliber vessels
suggesting wall irregularities in the silent scans, most probably related to the slower flow
along the vessel wall compared to the center. A second issue they pointed out was the
attenuation or absence of patent vessels. In another study, in 5 of 27 silent intracranial
MRAs, distal vessels could not be evaluated due to a poor inflow [14]. Therefore, caution
was advised, since it could mimic vascular pathologies.

We observed this finding especially in the models with a tighter curve (C2) (Figure 6).
In the model without a stent, the intraluminal signal was overall very poor but poorer in
the regions where the tube enters and exits the box. In the models with stents, there was
almost no signal in the stent. One explanation for this could be the slow flow caused by a
kinking or stenoses of the silicone tubes at the entry or exit points of the boxes. Another
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explanation for the poorer results in the C2 models could be that the labelling location,
which was placed 10 cm below the imaging volume, tagged less flowing water in the model
with respect to the other models, decreasing the signal within the tube. A potential reason
for the poorer results could also be the model’s instability within the phantom, causing
movement with each pulse. This movement likely affected the silent MRA, as it relies on
reference measurements obtained by subtracting two images.

The DL-based denoising algorithm could partially overcome the limitations of the
silent MRA scan in these regions. In most of the models, the SIin-stent was higher after DL
reconstruction compared to the silent MRA scans. DL could enhance the stent signal and,
at some points, restore the signal loss, which could especially be appreciated in models
with a tighter curve (Figure 6). The silent MRA scans in this study use a self-calibrated
coil sensitivity method that can lead to sub-optimal coil sensitivity estimates, especially in
regions with very low signal intensities. The use of a dedicated external calibration is likely
to improve performance and will be explored in future work.

The last thing to discuss is the absence of artefacts at the stent tips in the silent MRA
compared to the severe artefacts seen in the TOF sequences in the same regions.

A more pronounced signal loss at the ends of stents is typically observed with stents
that contain additional radiopaque markers at their tips, which raises the quantity of metal
and increases susceptibility and radiofrequency artefacts [4,15]. However, Surpass Evolve
does not have extra radiopaque markers at its tips. Moreover, this phenomenon was not
related to the configuration of the curve, as it has been demonstrated that artefacts may
increase as the angle between the magnetic field and stent orientation grows [16].

The turbulent flow pattern seen at the edges of the stent may explain the focal signal
loss on the TOF. Additionally, exposed loop wires at the stent tips can exacerbate eddy
currents, resulting in increased radiofrequency shielding the artefacts [17].

The reported better background signal suppression and visualization of blood flow in
regions with a turbulent pattern [18] with the silent MR imaging technique could explain
the absence of this artefact.

Our limitations were as follows:
Each of the models were scanned independently and, although we tried to build the

models similarly and place them similarly in the MRI scanner, the experimental conditions
were not exactly equivalent.

Our models’ magnetic field interactions are unable to represent the interactions be-
tween intracranial vessels and their surroundings. As a result of the experiment’s geometry,
variations in the labeling’s magnitude relative to a human are to be anticipated. To sur-
mount the limitations of the present investigation, in vivo research must be conducted.

We evaluated models that lacked aneurysms. Not investigated was the interaction
between the aneurysm and the flow diverter stent. Therefore, this investigation cannot
draw a conclusion regarding the status of aneurysm occlusion evaluation.

5. Conclusions

Our study demonstrated that DL-based denoising reconstruction may overcome the
limitations of the silent MRA technique and be useful in the evaluation of the stent patency
after a flow diverter treatment. To investigate the significance of this sequence in the follow-
up of aneurysms treated with stents, additional in vitro and in vivo research is required.
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