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Abstract: Spreading quickly throughout populations, whether animal or human-borne, infectious
illnesses provide serious risks and difficulties. Controlling their spread and averting disinformation
requires effective risk assessment and epidemic identification. Technology-enabled data analysis on
diseases allows for quick solutions to these problems. A Combinational Data Assessment Scheme
intended to accelerate disease detection is presented in this paper. The suggested strategy avoids
duplicate data replication by sharing data among edge devices. It uses indexed data gathering to
improve early detection by using tree classifiers to discern between various kinds of information.
Both data similarity and index measurements are considered throughout the data analysis stage to
minimize assessment errors. Accurate risk detection and assessment based on information kind and
sharing frequency are ensured by comparing non-linear accumulations with accurate shared edge
data. The suggested system exhibits high accuracy, low mistakes, and decreased data repetition to
improve overall effectiveness in illness detection and risk reduction.

Keywords: infectious diseases; edge technology; data assessment scheme; disease detection; risk
assessment; information analysis

1. Introduction

Communicable diseases are also known as transmissible diseases or infectious diseases.
Some of the infectious diseases are COVID-19, Tuberculosis, AIDS, etc. Edge computing is
widely used in identifying contagious diseases. An intelligent edge surveillance system
uses edge computing to identify infectious diseases [1]. It is a remote sensing or monitoring
system that is more effective and reliable than any other sensing system [2]. The smart edge
system helps physicians, public health authorities, and hospitals to know the details about
the affected person. This framework is mainly used to sense the communication chain of
the infected people in society. This model detects the infected person and helps monitor
their activities from the outside world. Edge computing stores the affected people’s data
and records them safely and securely [3]. Infectious diseases or transmissible diseases can
spread from one person to another by touching a contaminated surface or by physical
contact with each other. The leading cause of infectious diseases is viruses and bacteria
from animals or humans [4].

Communicable disease analysis is the main task performed in every healthcare de-
partment to provide a better environment for the people [5]. The analysis process helps to
identify the affected or infected people from society by monitoring every person through a
surveillance system. Without proper monitoring or analysis processes, infectious diseases
will spread all around the surroundings and cause severe problems for the citizens of the
whole world [6]. Fog computing is used to analyze contagious diseases. It is a real-time
analysis process by the healthcare department with the help of collected records, which is
used to provide a better environment for the people. It is more reliable and offers better
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performance when compared with any other analyzing process [7]. Edge computing is an
information technology model that keeps the data storage and the computation process for
the client closer. Edge computing is widely used to provide better service to the customer
via networking technologies [8]. Diseases that are spread from one person to another
by physical contact or touching contaminated surfaces are called communicable diseases
or infectious diseases. Infectious diseases are more dangerous than non-communicable
diseases [9].

To maximize efficiency as compared to conventional models and to improve esti-
mation accuracy, deep learning models are frequently used to extract high-level spatial
information [10]. They are also frequently used to identify and interpret biological data.
The decision tree is a critical tool for examining predictions that may be used to efficiently
and explicitly characterize beliefs. Despite its limits, it is a graph that shows every possible
outcome using division techniques [11]. The COVID-19 pandemic presented unique chal-
lenges and opportunities to alter global healthcare systems. Under these circumstances,
it is now necessary to use novel intelligence [12]. Technologies that offer the chance to
provide virtual health services effectively. The theory and methods of edge computing,
which help close the technological divide between network edges and the cloud, have
emerged with the rapid rise of mobile communication. It can expedite the content delivery
to raise the quality of networking service. It drives multimedia services across mobile
networks with the help of system intelligence [13]. Artificial intelligence (AI) algorithms
process and interpret large volumes of data, extracting insightful patterns and information
that help with accurate diagnosis, therapy selection, and disease prognosis [14]. Healthcare
practitioners can improve their decision-making processes and produce more individual-
ized and successful interventions by utilizing AI-driven predictive modeling. Emerging
technologies have transformed the field of infectious diseases, impacting different aspects
of the ecosystem, such as diagnosis, monitoring, treatment of chronic illnesses, prevention,
and tailored medicines [15]. The main contribution of the paper is stated below.

1. To present a Combinational Data Assessment Scheme (CDAS) to accelerate disease
detection.

2. To improve early detection by using tree classifiers to discern between various kinds
of information utilizing indexed data gathering.

3. To detect accurate risk and assessment based on information kind and sharing fre-
quency; these are ensured by comparing non-linear accumulations with accurate
shared edge data.

4. To improve overall effectiveness in illness detection and risk reduction by exhibiting
high accuracy, low mistakes, and decreased data repetition.

The remaining part of the manuscript is divided into sections: Section 2 engages with
related works, Section 3 covers proposed CDAS approaches and analysis, the performance
analysis is covered in Section 4, and finally, Section 5 is covered with a conclusion along
with future works.

2. Related Works

Dong et al. [16] proposed an edge perturbation method for predicting microRNA
(miRNA)-disease association or the EPMDA method. It is used in the miRNA method for
prediction. Structural Hamiltonian information is used to design a feature vector for each
edge in the graph. The planned feature vector is used in the disease prediction process.
Compared with the Human miRNA Disease Database, EPMDA is more effective and
improves the value of AUC.

Wu et al. [17] proposed a learning framework for miRNA for the positive-unlabeled
problem. For the negative extraction process, a semi-supervised K-means model is used.
Training samples are generated using the sub-gagging method. The proposed method
reduces the negative sample rate and helps find the exact names of the diseases using the
positive sample set of information. The proposed method outperformed when comparing
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it with other traditional prediction methods, and the prediction accuracy rate was higher
and more accurate than any other method.

M. Safa et al. [18] proposed a novel prediction method for cardio stress using a machine
learning algorithm in IoT devices. The proposed method uses the K-nearest algorithm
and supports vector machine approaches. Here, new information interacts with the old
information to avoid the duplication of information that will be saved. The proposed
framework outperformed the traditional prediction method by increasing the inaccuracy
rate in the prediction process.

Pham et al. [19] proposed a new multiple-disease prediction method using a machine
learning algorithm. This method helps to identify the relationship between the different
types of diseases based on the categories. The proposed method helps analyze the graph by
calculating both positive and negative sets and helps identify the symptoms of the disease.
The experiment result shows that the proposed method outperformed the traditional
method by increasing the multiple classification process and improving the efficiency rate
of the prediction process.

Rahman et al. [20] found that to provide healthcare to all people, everywhere, technol-
ogy is essential. To tackle the challenges of collecting, monitoring, and securely storing data
on patients’ essential body parameters through sensor technology, a healthcare architecture
based on blockchain is suggested. Elements such as an Ethereum-permissioned blockchain,
an IoMT device, and a Markov state chain are utilized by the framework. The technology
outperforms previous systems in terms of node and transaction scalability by an impres-
sive 80%. The framework is evaluated in comparison to current methods for improved
performance, and it employs smart contracts for access control.

Xu et al. [21] proposed a new pathogenic genes prediction method using a network
embedding approach named multipath2vec. The pathogenic prediction process is most
widely used for disease prediction in every medical healthcare center. A multipath method
is used to identify the random walk in the gene–phenotype network. A learned vector is
used to calculate the similarities of the unexpected path from the heterogeneous network—
the proposed method, named the pathogenic genes prediction method (PGPM), results in
high accuracy for the pathogenic prediction process.

Li et al. [22] invented a new prediction method named FCGCNMDA, which was
a fully connected graph convolutional network for a mi-RNA disease-related approach.
Edge weight is represented using a fully connected graph; then, it combines with mi-RNA
features for disease prediction. AUC values are high when compared with traditional
prediction models. The proposed FCGCNMDA method is more reliable and increases the
exact miRNA disease prediction system.

A feature selection method was proposed by Khamparia et al. [23] and used a deep
learning neural approach named genetic algorithm. Neuromuscular disorder prediction
is performed using this method. The genetic algorithm identifies gene subsets, and the
Bhattacharya coefficient method determines the most effective gene subsets. The proposed
integrated method improves the accuracy rate and is more effective when compared with
other integrated prediction methods.

Zhang et al. [24] proposed a new method for a miRNA–disease association named
multiple meta-paths fusion graph embedding models. MiRNA–disease interactions are
used to collect information about diseases. The graph embedding model calculates the info
related to the miRNA disease. The proposed model is used as a self-learning approach for
the disease prediction process. From the comparisons, it is seen that the proposed model
outperformed the traditional prediction method.

Badidi, E [25] proposed Edge AI’s potential to enhance public health while reviewing
its function in early health prediction. This article addressed the difficulties and constraints
that Edge AI faces in predicting health outcomes early on. It also highlighted the need for
further research to tackle these issues and how these technologies can be integrated into
current healthcare systems to fully realize the potential of intelligent health technologies. It
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is also critical to keep up with new developments and moral dilemmas as Edge AI advances
in early health prediction.

Al-Zinati et al. [26] introduced a redesigned bio-surveillance system that utilizes
mobile edge computing and fog to detect how these technologies can be integrated into
current healthcare systems to fully realize the potential of intelligent health technologies
and localize biological threats. The order of fog nodes in the suggested architecture is
responsible for compiling monitoring data from all across their respective regions and
identifying any possible dangers. The evaluation results demonstrate the framework’s
capacity to identify contaminated areas and pinpoint biological hazards. Furthermore, the
outcomes demonstrate how well the reorganization mechanisms modify the environment
structure to deal with the highly dynamic environment.

To solve the issues with manual blood smear examination in tracking patients and
result verification, Kamal, L. and Raj, R. J. R. [27] suggested an improved convolutional
neural network approach for automated blood cell recognition and categorization. The
proposed method automatically detects whole blood cells in blood smear images by com-
bining sophisticated image-processing methods and deep learning algorithms. With rig-
orous training and validation, the suggested model obtains remarkable metrics such as
91.88% accuracy, 91% precision, 91% recall, and an 88% F-score, outperforming traditional
Computer-Aided Diagnosis systems in clinical labs.

Yadav et al. [28] provided a strategy for Computation Offloading using Reinforcement
Learning (CORL) to reduce power consumption and latency in healthcare devices that use
IoMT. By identifying the best resources to offload work to, the system overcomes the prob-
lems of low battery capacity and time restrictions caused by service delays. When tested in
an iFogSim simulator with realistic assumptions, the experimental results demonstrate that
the strategy reduces power consumption, delays data transmission, and makes the most
efficient use of node resources in edge-enabled sensor networks.

Nandy et al. [29] introduced a novel healthcare system that utilizes Wearable Sensors
(WSs) and an advanced Machine Learning (ML) model called Bag-of-Neural Network
(BoNN) to remotely monitor health and anticipate the onset of diseases. Distributed edge
devices gather patient health symptoms and preprocess data in the epidemic model. At
centralized cloud servers, the BoNN model is used to detect COVID-19 disease on an
improved dataset. On a benchmark dataset from Brazil called COVID-19, the system
achieved a 99.8 percent accuracy rate.

Methods for edge perturbation, learning frameworks, multiple-disease prediction,
healthcare architectures based on blockchain, methods for predicting pathogenic genes, and
methods for feature selection are all covered in the research papers that are included in the
text. Among the many healthcare-related topics covered in these articles are multipath2vec,
disease prediction, and the prediction of pathogenic genes. New bio-surveillance systems
that make use of mobile edge computing and fog are introduced, and edge AI shows
promise for enhancing early health prediction. For automated blood cell recognition
and categorization, an upgraded convolutional neural network method beats out the old
Computer-Aided Diagnosis methods.

3. Proposed Combinational Data Assessment Scheme

The proposed scheme relies on sharing data between the edge devices to prevent multi-
source replications. Television, multimedia, graphics, cell phones, etc., do not transmit
infectious diseases. Most cases of these infections spread through close personal contact
with an infected person, contaminated objects, or respiratory droplets. In order to stop the
dissemination of false information, it is essential to use reliable sources while discussing
the spread of infectious illnesses. It helps extend and prevent false information about
contagious diseases. A preventer is a group of software and hardware components that
collect and process information accumulated from the healthcare center environment. The
disease is controlled through various sources with sensor units to collect data such as
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frequency occurring, disease matching, data features, etc. Figure 1 portrays the proposed
scheme in a real-time environment.
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The deploying technology for analyzing disease-related information swiftly responds
to the above problems. In the proposed CDAS, precise data sources and edge device control
are prevented using the detection/recommendations of the analysis. The classifier performs
similarity checks, difference data identification, and indexing in this analysis scheme. The
indexed data are selected alone for feature extraction to identify the risks, as shown in
Figure 1. The proposed CDAS improves disease detection swiftness, disease outbreak, risk
assessment, and controlling infectious disease spread.

The edge disease consists of a specialized control unit that performs the functions of
the edge devices (TV and MM) through edge devices and analysis (A). The functions of the
edge devices are maintained using aggregators. The CDAS method serves as a data source
and detection/recommendation. The aggregation unit rectifies the edge devices; therefore,
it is predominant in controlling the spread and preventing false information from being
built. It contains the spread of infectious diseases pursued using the data sources from the
analysis (A). The CDAS analysis can be performed by four methods, namely, occurring
frequency, classifier, data features, and matching. The input of data sources from the sensor
(A) is functioned by the aggregation, then the matching function is transmitted. Therefore,
CDAS is designed for actual data and replicating data analysis.

3.1. Data Analysis

The aggregators notice human and animal health conditions from infectious diseases.
The input can be related to increased body temperature, coughing, fatigue, etc. In a noticing
sequence, the data source received (Ds) derived as:

Ds = A
±(Amax × Amin)

A
+ Amin such that ε =

1√
2πA


∣∣∣ Amin

Amax
− α

A

∣∣∣
3
∣∣∣Ds − Ds*

∣∣∣
} (1)

where the variable α, denotes an active aggregator, and α ∈ A, Amax and Amin are the
minimum and maximum data sources observed in varying instances. The variables Amax
keep information and previous information from being Amin. They are used to avoid
noticing incorrect information, and prior information is used to prevent false information
and previous information from being noticed. In the sense of a hoax, the wrong infor-
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mation is estimated as the number of mismatching analyses observed at continuous A
observations. Therefore, some conditions of error Ds due to multi-source replications and
disease detection swiftness α. This problem impacts the Ds at a given instance, for which
the normalization is computed as:

n(Ds) =
∆*

∆*
[

Amax
Amin

− σs

]2 such that σs =
2
A

√√√√√ 3
A + j

A

∑
j+1

(Ds − Ds*

Ds

)2

× 1√
2πA

} (2)

The above equation specifies that the normalization comes after the maximum Amax
and standard deviation Amin data sources observed standard deviation σs. Therefore, n(Ds)
is a normalized condition.

The symbols * and ∆ in Equations (1) and (2) stand to mean as follows: In mathematical
equations, the symbol * usually means to multiply. The product of two integers, A and B, is
represented by A * B. The delta sign, often used to indicate a change or difference between
two values, is represented by ∆. The symbol ∆, when used in equations, can represent a
change in a variable or a particular mathematical procedure tied to the idea of difference.

In contrast, it is the aggregation condition for which the proper estimation, therefore,
Ds is normalized. In comparison, increment A by j as A + j is the aggregation condition
for which the appropriate estimation action Ds is obtained. Based on Ds and n(Ds), the
instance of aggregation takes place, which is computed as follows:

ε[Ds, n(Ds)] =

√√√√[n(Ds)
Ds

]3

a
−
[

n(Ds)
Ds

]3

b
− . . . −

[(
j − Ds*

Ds

)
∆*

]3

α

, α ∈ A (3)

As per the above Equation (3), the instance of aggregation for a sequence until α is
achieved in transmitting information from the healthcare centers the following example of
aggregation is observed using machine learning. In an infectious disease scenario, data from
the source must be transformed into controls to manage the spread of the disease effectively
and ensure high accuracy for a prompt response. Additionally, it is essential to prevent the
dissemination of false information (‘t’) to meet the healthcare requirements of edge devices.
In this process, the early detection of infectious disease is allowed to protect humans and
animals. In this way, the machine available used in infectious disease or ε[Ds, n(Ds)]α
is accessed. The output of the shared edge data of the machine learning is to find and
separate the replicating data sequence through Ds evaluating and an operator − based
analysis. Operator-based analysis refers to a method of data analysis that involves the use
of mathematical operators or functions to manipulate and process data. This approach
typically involves performing operations such as addition, subtraction, multiplication,
division, comparison, or other mathematical functions on the data to derive meaningful
insights or results. The first method of this learning is the frequency occurrence of the Ds
instance if ε is observed. The concentration on achieving

(
j − Ds∗

Ds

)
∆∗ at any instance is the

output for separating the data. As per the process, two sequences of sample inputs of Ds at
any varying instances of ϑ and τ are given as the input for the machine learning. Hence, in
an ε aggregation, the sequence of disease detection takes place as per Equation (4).

ϑ = Dsτ = 1}, the f irst instance is observed ϑ = n(Ds)τ
= σs

∆* }, f or the consecutive instances such that, ϑ + τ

= Ds, is the f irst data source where n(Ds)
× σs

∆* , is the sequence o f sample data sources}

(4)

The machine learning model assessment initiates from the sequence of sample inputs
with the first edge device as Ds. This Ds is the ease of information analysis for evaluation;
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if the aggregation is observed in any varying instance, conjunction takes place. In Figure 2,
the data analysis process is presented.
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The conjunction process is performed using detected sequences based on occurrences.
This occurrence factor is considered for identifying false (replicated) data. The specified data
are segregated for further utilization. Here, the features associated with the classification
are identified for detection (Figure 2). Therefore, in the machine learning used in infectious
diseases, the shared edge data features are merged with a non-linear accumulation of data.
The sequence of ϑ + τ = n(Ds)× σs

∆∗ is analyzed to find the actual shared edge data in the
edge devices. Machine learning classifies the process into two analyses of real data and
replicating data based on the occurring frequency. The occurring frequency ε[Ds, n(Ds)]α
functions and its related things served by the edge device are discussed as per Equation (5).

ε[Ds, n(Ds)]α = {
[

n(Ds)
Ds

]3

a
, ε[Ds, n(Ds)]j > εn(Ds)

[
n(Ds)

Ds

]3

b
,

ε[n(Ds)]j ≥ 0ε[Ds, n(Ds)]

= XD +
n
∑

j+1

[ n(Ds)
Ds

]3

a
cos cos

XDδ

([
n(Ds)

Ds

]3

a

)
εn(Ds)

+
[

n(Ds)
Ds

]3

b
sin sin

XDδ

([
n(Ds)

Ds

]3

a

)
εn(Ds)

εn(Ds)

=
−XD±

√
ε[Ds,n(Ds)]+α(j)
3cosαj

}

(5)

where the variable XD denotes the partial output of the edge device, and δ is the disease
outbreak by the crowd observed in Ds. The frequency-varying instance can be analyzed
by this occurring frequency method and then the classifier performs the next instance of
functions. The classifier is used to identify the original data and replicate data in the edge
device. If the classification is ε[n(Ds)]j, then the method and its related thing are served by
the machine learning. In this manner, the tree classifier method is deployed for classifying
the data into two ways, namely, original data and replicating data, and then it is used for
distinguishing contrast information analysis. For this purpose, two sequence data of Ds
at any instance of ϑ and τ are used as the input for the machine learning. From a given
instance, ε[Ds, n(Ds)] followed by the tree classifier are analyzed by the machine learning
method.

R{ε[Ds, n(Ds)]} = −ϑ( f )± τ(Ds)− f (Ds)π such that ϑ
f (Ds)

Ds
= ∀[Ds + π( f )]τ

Ds
∆* = ∀[ϑ − π( f )]} (6)

As per the above Equation (6), the variable f is the output of the original data and π is
the replicating data observed by the varying instance Ds. In the above equation, ϑ

f (Ds)
Ds

and τ Ds
∆∗ are the related thing that is used for classifying the data of the R{ε[Ds, n(Ds)]}. In

this manner, the aggregation method either satisfies ϑ
f (Ds)

Ds or τ Ds
∆∗ for all the sigmoid based

[Ds ± π( f )] and [ϑ ± π( f )]. The true and false information of the above accumulation
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generates the non-linear ϑ± τ to achieve the above classification. Therefore, the aggregation
process of ϑ

f (Ds)
Ds and Ds

∆∗ and the non-linear accumulations of ∆∗ and n(Ds) together
give the output of R{ε[Ds, n(Ds)]} at its shared edge data. The machine learning of
tree classifier analyzes ϑ, τ and ε[Ds, n(Ds)], and it is followed by the sigmoid-based
classification through Ds∗ and ∆∗. Figure 3 presents the data classification process.
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The replication factor is classified for the input data sequence based on n(Ds). Such
classifications are performed for 0/1 augmentation in identifying the difference. This
requires the matching of different instances. The occurrence f1, f2, . . ., fn are used for
matching different instances. This is extracted from the replication classified as presented
in Figure 3. The output of the original data using the swift response {Ds, ∆∗, σs} is derived.
Therefore, the first instance of replicating data provides indexed data collection and aug-
ments the early detection process. The replication processes are as computed in Equation
(5) and (i.e.,)

[
(∆∗ = σs) = 1

]
is the output of the next instance, and hence, the occurring

frequency is maintained without aggregation. Alternatively, the sequence of instance is
observed, whereas the replicating data such as ϑ

f (Ds)
Ds or τ Ds

∆∗ impact the following data.

Specifically, the occurring frequency of the above representation is either ϑ
f (Ds)

Ds or τ Ds
∆∗ .

The data sources of the inputs ϑ and τ are actual shared data such that the probability of
matching the data is 1 or 2 for the sequence. Based on this example, the π conditions (i.e.,)
π > σs

∆∗ or π ≤ σs
∆∗ are analyzed. The π and its accumulations are matched for their features

by preventing assessment errors and is computed as:

π = 2 ∗ ρτ

ρϑ
where ϑ

f (Ds)
Ds

matching with Ds, i f π >
σs

∆* else ϑ
f (Ds)

Ds
matching to σs or ∆*, i f π ≤ σs

∆* } (7)

where ρτ and ρϑ denotes the accumulations of ϑ and τ in the given equations. It is a
way to identify if all the accumulated data matched for their features can be accumulated
with both ϑ and τ. Now, the shared information between the edge device to overcome
the multi-source replications for the output of π > σs

∆∗ and π ≤ σs
∆∗ condition is derived in

Equations (8) and (9).

f1 = n(Ds)1 f2 = n(Ds)2 +
(

σs
∆*

)
1
−
(

ε
α

)
1 f3 = n(Ds)3 +

(
σs
∆*

)
2
−
(

ε
α

)
2 such that fn

= n(Ds)n +
(

σs
∆*

)
n+1

−
(

ε
α

)
n+1, i f π > σs

∆* }
(8)

f1 = Ds1 ± τ
(

Ds
∆*

)
1

f2 = Ds2 + τ
(

Ds
∆*

)
2
−
(

π×ε
α

)
1 f3 = Ds3 + τ

(
Ds
∆*

)
3
−
(

π×ε
α

)
2such that fn

= Dsn + τ
(

Ds
∆*

)
n
−
(

π×ε
α

)
n+1, i f π ≤ σs

∆* }
(9)

The above-given representation is followed by the n sequence of the instance, where
the early-detection Ds is augmented for classifying the output of the tree classifier. There-
fore, the aggregation operation as in Equation (4) is analyzed for its frequency occurrence
concerning the above-mentioned conditions of π > σs

∆∗ and π ≤ σs
∆∗ , utilizing the following
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determinations. These matching processes require some data features and also secure
communicable disease information. Figure 4 presents the data feature matching process.
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The classified data are indexed based on fn, after which the similar data are grouped
based on identified instances. The sequence is reselected if the similarity grouping fails
and, hence, a new input is accessed for analysis (Figure 4). The data features in the
sensitive information types and sharing frequency prevent similar data analysis, indexed
data collection, and augmenting the early detection process. This requires a similar data
analysis of f and π in Equation (6) for determining the instance of matching.

R{ε[Ds, n(Ds)]} = (Ds + π f ) f − (ϑ − π f )Ds − f (Ds)π, f or matching instance
= ±(Ds) f + π f n − ϑ(Ds){4Aminn(Ds) + π, i f α = A and Amax = 1 ± 4Amaxn(Ds) + π

= ρτ
ρϑ

+ 4Amaxn(Ds)− 2 = ∀Amaxn(Ds), i f ρτ
ρϑ

= 0 and αmin = 1, and α = A}
(10)

In this process, in the above Equation (10), 4Amaxn(Ds) + π denotes the sequence of
matching instances, and the assessment error indicates the end of the input data sources.
Similarly, the next instance of matching for R{ε[Ds, n(Ds)]} is designed for the similar-
ity measures of the index, and the data are analyzed for the function π ≤ σs

∆∗ , as in
Equation (11).

R{ε[Ds, n(Ds)]} = ±(Ds) f + π f n − ϑ(Ds) = ±Ds(Ds − τ) + π
(

Ds − τ)3 − ϑ(Ds),
Similarity measures o f data = ±Ds3(2 − π) + (Ds)π(3 + 2π) ∗ πτ3 − ϑ(Ds)
= ±Ds3(2 − π) + (Ds)π(3 + 2π) ∗ πτ3 − ϑ(Ds)± Ds3 + (Ds)τ − ϑ(Ds),
i f π is negligible π → 1 = Ds(τ − ϑ) + Ds3 = (Ds)τ − Ds3

[
τ
(

Ds
∆*

)
is assesment error

]
}

(11)

As per the above equation, the similarity measures the Ds analysis, as (Ds)τ − Ds3 is
an assessment error during the sequence of ±4Amaxn(Ds) + π. Therefore, the sequence
of the instance as in Equation (11) occurs on R{ε[Ds, n(Ds)]} as in Equation (10). Now,
preventing false information and spreading control are initiated. This spread control
represents the changes in the communicable disease of the edge device.

3.2. Spread Control

In the spread controlling process, the edge device takes the aggregation-based data
analysis and decides the functioning part of the devices. The overall working of the device is
synchronized based on R{ε[Ds, n(Ds)]} outputs, respectively. Therefore, the initial spread
control XD = 1, such that if XD = 2, then the edge device functions through signaling from
the aggregation. This depends on the π condition R{ε[Ds, n(Ds)]} such that the probability
of the spread control (ρXD ) is computed as:

ρXD =

[
count

(
XD)]α ×

(
δ)n+1 ∗ (Ds) f + π f n

∑α∀A [count(XD)]
α × (δ − π)n+1

(12)

From the given Equation (12), the probability of spread control is used to detect if the
edge devices are working or not. If XD ≥ 1 ∪ > σs

∆∗ , then the count of XD is incremented
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by one which means the edge device is working; otherwise, it is not working. Where δ
represents the futuristic estimation of the replacement of XD between 1 and 2 and this
method is computed as:

δ = {
∑n

j+1 πj

i + ∑n
j+1[count(XD)]j

, i f πj < ρXD , j ∈ n
2

i + ∑n
j+1[count(XD)]j

, i f πj ≥ ρXD , j ∈ n (13)

This futuristic computation of communicable disease spread controlling following all
the instances of n. From these appropriate detection/recommendations of δ outputs in an
unsynchronized edge device control, the δ is derived from a sequential set of information
instances. The communicable disease control output (Dz) is computed as the non-linear
matching of ρXD , R{ε[Ds, n(Ds)]} and π as:

Dz = {R{ε[Ds, n(Ds)]} × ρXD − π, i f πj < ρXD , j ∈ nR{ε[Ds, n(Ds)]} × ρXD +
π

count(XD)
, i f πj ≥ ρXD , j ∈ n (14)

In this process of detection, the result is represented as the state of the edge device
of πj and count

(
XD) for all the n. The result of Dz is based on πj < ρXD and πj ≥ ρXD .

Hence, ω > σ
∆ denotes a certain assessment of Ds in n. Similarly, the communicable disease

spread controlling for retaining the high accuracy and also less replication occurs. In the
Figure 5 series, the sequences and errors for different normalization factors are presented.
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An analysis of sequences and errors for different normalization factors is portrayed
in Figure 5. The n(DS) optimizes the detection sequences by mitigating ε. This is rec-
ommended based on the classification R{.} This was pursued and hence the assessment
errors were reduced. As the sequences migrate from −ve to +ve normalization, error
reduces. However, the alternate matching for f1 to fn addresses the errors and thereby the
normalization is retained. The ε[.] induces further sequences in identifying and mitigating
errors. Therefore, as normalization increases, the error is reduced, stabilizing the data
analysis. Figure 6 presents the replication and estimation ratio for different occurring
frequency values.
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The ε[.] in different DS inputs and R{.} functions reduce the replication by increasing
the analysis. The estimations are based on Equation (7) followed by SD. This estimation
increases the recommendations on classification for increasing the indexes and occurrences.
The changes are updated in the subsequent classification instances, reducing errors. There-
fore, the replications are confined without requiring additional computation. In the further
estimations, f1 to fn sequences are required to identify further ε[.]. This is required for
reducing replications, through ε[.] maximization and sequence assigning. An analysis of
the same is portrayed in Figure 6. In Figure 7, analysis for matching ratios for different ρXD

is presented.
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The matching ratio for different spread control probabilities is presented in Figure 7.
As the classification instances vary the matching ratio increases for different ε[.]. This
is due to the R{.} in the multiple iterations as classified by the learning process. The
recurrent analysis is performed based on matching instances post the n(DS) based on ϵ[.].
This is however performed for −ve to +ve moves until the classification is before multiple
iterations. Therefore, the matching increases as the ρD

X is high regardless of the data sources.
For edge device infectious disease monitoring, Algorithm 1 coordinates spread control.

Based on signs of disease transmission and device operation, it calculates the spread proba-
bility, ρXD . Counts are increased if device usage or communication is above predetermined
levels. The control decisions are guided by δ, a futuristic estimation. Considering ρXD and
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π, the spread of the disease control Dz is calculated. To prevent duplication and stabilize
data analysis, the program modifies device functioning and spread probability. Iteratively
evaluating both illness incidence and gadget performance improves spread control tac-
tics. Enhancing disease identification and response effectiveness in edge devices entails
assessing spread probabilities, modifying device functionality, and reducing replication.

Algorithm 1: for Edge Device Spread Control in Infectious Disease Monitoring

Function SpreadControl(Ds, n(Ds), π, XD, σs, ∆*, α, A)
Input : (Ds, n(Ds), π, XD, σs, ∆*, α, A)
Output : Probability of spread control (ρXD )).
Futuristic estimation of spread control (δ).
Communicable disease control output (Dz)
Step 1: Calculate SpreadControl()
if XD >= 1 or π > σs/∆*

IncrementCount(XD)
ρXD = CalculateSpreadControlProbability(XD, α, δ, π)

if π < ρXD

Dz = R{ε[Ds, n(Ds)]} × ρXD − π

else:
Dz = R{ε[Ds, n(Ds)]} × ρXD + π/Count(XD)

Return Dz
Step 2 : Function CalculateSpreadControlProbability(XD, α, δ, π) :

numerator = (Count(XD )̂α)× (δ)̂(n + 1)× ((Ds) f + π f n̂)
denominator = Summation(α∀A)

[
Count(XD )̂α × (δ − π)̂(n + 1)

]
ρXD = numerator/denominator

Return ρXD

Step 3 : Function IncrementCount(XD)
Increment the count of XDby1

Step 4 : Function Summation(α∀A)
Perform summation over all instances α f orA

Step 5 : Function SpreadControlAnalysis(Ds, nDs, π, XD, σ_s, ∆*, α, A)
Computeδ based on Equation (13)
Compute Dz based on Equation (14)

Return Dz
Step 6 : Function Calculateδ(π, α, Count(XD))

if πj < ρXD , j ∈ n

δ = (∑n
j+1 πj)/(i +

n
∑

j+1

[
count(XD)

]
j)

else
δ = 2

i+∑n
j+1[count(XD)]j

Return δ

Data collection, pre-processing, analysis, and use are the four stages that make up the
process flow for disease detection, followed by gathering data, cleaning them up, extracting
features, training the model, evaluating it, discussing the results, and finally, training the
model. Details regarding the dataset’s origins, infectious diseases, and data fields are
provided. Addressing missing values, standardizing data, and eliminating duplicates
are all part of data pre-processing. In order to detect diseases, feature extraction must
be performed. During model training, algorithms, parameter adjustment, and validation
procedures are utilized to train machine learning models. The study employs performance
indicators such as sharing factor, replication ratio, error rate, and accuracy. The study of the
results shows the results on improvement in sharing factors, correctness, decrease in errors,
and replication. Disease detection and risk assessment are two areas where the suggested
method shines, as discussed. See how the data assessment framework affects the efficacy
of disease diagnosis and response with this step-by-step process flow.
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Utilizing edge computing principles and devices, which are integral parts of our
Combinational Data Assessment Scheme (CDAS), improves the efficacy of disease detection
and response through the use of real-time data collection, rapid analysis, enhanced risk
assessment, collaborative data sharing, and decentralized processing; it is clear that the
suggested method is connected to edge technology.

4. Performance Analysis

The proposed scheme’s performance analysis is performed using the dataset [30] that
contains information on different infectious diseases. The consistency in data availability
with the observed and predicted values is used for similarity verification. This data source
contains nine fields based on various categories. The experimental setup uses a standalone
system that operates over eight data sources containing multiple instructions and 6–11 fields
in common. The performance metrics used in this analysis are accuracy, error, replication
ratio, and sharing factor. In the comparative analysis, the existing EPMDA [16], PGPM [21],
FCGCNMDA [22], and miRNA [17] methods are used.

4.1. Accuracy

In Figure 8, the comparative analysis for accuracy under different data sources and
classification sequences is analyzed. The proposed scheme identifies ε for the input Ds
such that the process mitigates the replication through R{ε[Ds, n(Ds)]}. Therefore, the
classification identifies non-replicated input sequences for improving data analysis accuracy.
This process is aided until different conditional experiments are required. Contrarily, the
index-based data analysis is performed under controlled futuristic estimation that requires
less data for normalization. The further process is controlled by matching conditions
defined in Equation (7) for which multiple information types are analyzed. This ensures
error-less computations in proceedings with data analysis. The classification learning is
pursued in different iterations satisfying the conditions in Equation (7). In this classification,
α = A is verified throughout the n sequences in the 4Amaxn(Ds) + π matching process.
This reduces the errors in the intermediate classification sequences, for different input Ds.
Therefore, the process improves the accuracy of obtaining matching based on similar data
under defined parameters.
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4.2. Error

The proposed scheme reduces errors in data analysis by segregating replication and
non-replication instances over different classification sequences. The τ Ds

∆∗ = ∀[ϑ − π( f )]
analysis for the classifier process is utilized for deviating errors in the continuous data.
Contrarily, the changes in sequences require continuous classification to achieve high
accuracy. The proposed sigmoid-based information classification refines the false data
from the non-classified sequences, deviating errors. The intermediate f1 to fn sequences
verify the matching or un-matching sequences with distinct conditions in validating the
accumulated data. Hence, the further Ds is analyzed using εn(Ds) estimation, preventing
replicated occurrence, and improving the accuracy. The error in non-replicating sequences
is classified using occurring frequency, preventing n(Ds). In this process, the previous
occurrences and their classified sequence are identified for improving accuracy by reducing
errors. The deviation σs is mitigated by separating

(
j − Ds∗

Ds

)
∆∗ such that the sequences

are independently analyzed using machine learning. Therefore, as the input increases, the
classification sequences are varied in confining the errors (refer to Figure 9).
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4.3. Replication Ratio

The proposed scheme’s replication ratio is comparatively less as presented in Figure 10
for different data sources and classification sequences. The proposed scheme identifies σs

∆∗

such that the overlappings in different instances are classified in the first analysis. This
analysis is carried out for the partial edge device outputs, reducing errors. In this error
analysis, first, the replications are mitigated using ε[Ds, n(Ds)] predictions, ∀[Ds + π( f )]
and ∀[ϑ − π( f )]. Further in the sigmoid classification, early detection of (∆ ∗ = σs

)
= 1 is

performed for identifying the false data. This identification is carried out using the learning
process, in dividing multiple instances. Therefore, the validations in the replication are
preceded using Ds or σs matching. For the classified instances, the input from the data
sources is validated based on the above matching conditions, as defined in Equation (8).
After this process, π > σs

∆∗ and π ≤ σs
∆∗ assessments are performed for identifying replicated

sequences from multiple Ds. Therefore, the sequences are mitigated from different intervals
and sequences, preventing false data. As the learning relies on the non-recurrent continuous
instance, the replications are less in the proposed scheme as presented above.
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4.4. Sharing Factor

In Figure 11, the data-sharing factors from different Ds and classification instances are
presented. The data-sharing factor in the proposed scheme is high compared to the other
methods. The input data are analyzed for their falseness and replication before sharing;
the analyzed data are shared based on ρXD . This probability is used for identifying the
data requiring and non-requiring control measures for improving the distribution. In
this process, the Dz results in conditional validation for actual data shared and required
data for the control process. Therefore, the actual data requirements are upheld with
the presence of false data, provided the distributed data is error-free. In this process,
machine learning is completely utilized for futuristic data estimation, in determining
the actual data requirement. The proposed scheme provides R{ε[Ds, n(Ds)]}-based data
distribution, improving the sharing rate. For different Ds, the process is unanimous,
preventing deviation-included data. Therefore, as the classification process increases,
the sharing factor is leveraged compared to the other method, as represented above. In
Tables 1 and 2, the comparative analysis results are summarized.
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The study follows a strict procedure to verify the accuracy, replication ratio, and shar-
ing factor of the results. Determining the experimental setup, picking the right performance
measurements, comparing the results to previous approaches, doing the math, drawing
graphs, and talking about the results are all parts of this process. By checking that the
results are credible and reliable, the author proves that the data assessment methodology
proposed works to make illness diagnosis and response better. Graphs or tables are used
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to display the results visually so that they may be easily compared and understood. This
procedure guarantees that the suggested data evaluation framework improves the efficacy
of disease identification and response.

Table 1. Comparative Analysis Summary for Data Sources.

Metrics EPMDA PGPM FCGCNMDA CDAS

Accuracy 0.726 0.787 0.852 0.936
Error 0.084 0.072 0.054 0.0315

Replication
Ratio 28.22 23.69 12.76 9.726

Sharing Factor 0.621 0.778 0.887 0.933

Table 2. Comparative Analysis Summary for Classification Sequences.

Metrics EPMDA PGPM FCGCNMDA CDAS

Accuracy 0.718 0.796 0.886 0.936
Error 0.084 0.072 0.051 0.0375

Replication
Ratio 28.05 23.53 18.52 11.122

Sharing Factor 0.599 0.686 0.893 0.933

The Infectious Diseases dataset was used to evaluate the mathematical methods
presented in the manuscript, which aim to forecast and prevent infectious diseases. Several
diseases’ worth of data is included in the collection, which opens up possibilities for
analysis and prediction modeling. In order to better understand the way, the suggested
calculation methods detect disease patterns, reduce data replication, maximize data sharing,
and minimize errors, the tests evaluate their accuracy, error rate, replication ratio, and
sharing factor. It is essential to assess the strategies’ practicality in real-world situations.

The study developed a new Combinational Data Assessment Scheme (CDAS) using
edge computing and AI to diagnose and prevent infectious diseases. Data collection,
distribution, and analysis should be more precise and effective than traditional methods.
Tree classifiers can improve indexed data-based early detection and discriminate data types.
Considering data similarity and index measurements during analysis reduces assessment
errors. Sharing frequency and information type can determine danger levels as compared
to shared edge data. Minimal data replication, high precision, and low error rates improve
efficacy. The authors submitted experimental results comparing CDAS to EPMDA, PGPM,
and FCGCNMDA to support their claims. They found that CDAS increases data-sharing
factors by 8.55%, reduces replication ratios by 11.83%, and increases accuracy by 14.77%.
The study compares and quantifies the performance improvements of their new CDAS
algorithm for infectious disease surveillance using edge computing resources. Future
research could use this method with real-world edge deployments.

A real-world infectious disease dataset was used to test the CDAS approach. To
understand the approach’s uniqueness and efficacy, more dataset information is needed.
This includes data size, diversity and complexity, unique qualities or noise, and ground
truth label and evaluation benchmark creation. This would show the complexity of real-
world settings and the benefits of their edge computing and AI-based approach above
previous methods. This would also inform CDAS expansion to other domains with similar
data complexity.

4.5. Performance Metrics

Figure 12 shows a bar chart that compares various evaluation metrics across various
algorithms and methodologies for a prediction or analysis job. Precision, recall, F1-Score,
and mAP (mean Average Precision) are the evaluation measures displayed on the x-axis.
Methods such as miRNAH7, CDAS, FCGCNMDA, PGPM, EPMDA, and PGPM are being
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compared. Generally speaking, CDAS performs the best across most metrics, as seen by
having the highest bars, which represent the values for each statistic.

Diagnostics 2024, 14, 1148 17 of 20 
 

 

of their new CDAS algorithm for infectious disease surveillance using edge computing 
resources. Future research could use this method with real-world edge deployments. 

A real-world infectious disease dataset was used to test the CDAS approach. To un-
derstand the approach’s uniqueness and efficacy, more dataset information is needed. 
This includes data size, diversity and complexity, unique qualities or noise, and ground 
truth label and evaluation benchmark creation. This would show the complexity of real-
world settings and the benefits of their edge computing and AI-based approach above 
previous methods. This would also inform CDAS expansion to other domains with simi-
lar data complexity. 

4.5. Performance Metrics 
Figure 12 shows a bar chart that compares various evaluation metrics across various 

algorithms and methodologies for a prediction or analysis job. Precision, recall, F1-Score, 
and mAP (mean Average Precision) are the evaluation measures displayed on the x-axis. 
Methods such as miRNAH7, CDAS, FCGCNMDA, PGPM, EPMDA, and PGPM are being 
compared. Generally speaking, CDAS performs the best across most metrics, as seen by 
having the highest bars, which represent the values for each statistic. 

 
Figure 12. Comparison of Performance Metrics Across Various Prediction Algorithms. 

Findings: The proposed scheme achieves 14.77% high accuracy, 11.55% less error, 
11.83% less replication ratio, and 8.55% less sharing factor. 

Findings: The proposed CDAS improves accuracy and sharing factor by 13.6% and 
10.35%, respectively. Moreover, it reduces the error and replication by 9.45% and 12.24% 
respectively. 

In Table 3, the proposed method, CDAS is compared to edge devices in terms of re-
source constraints, computational intensity, data transmission requirements, latency con-
siderations, and scalability and flexibility. CDAS must be optimized to efficiently utilize 
limited processing power, memory, and storage on edge devices, while edge devices typ-
ically have low-to-moderate computational intensity. CDAS data transmission require-
ments should consider bandwidth limitations and communication protocols of edge de-
vices for seamless data exchange. Latency constraints should match the real-time 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Precision
Recall

F1-Score
mAP

Pe
rf

or
m

an
ce

 S
co

re
(%

)

Evaluation metrics

CDAS

miRNA[17]

 FCGCNMDA [22]

PGPM [21]

EPMDA [16]

Figure 12. Comparison of Performance Metrics Across Various Prediction Algorithms.

Findings: The proposed scheme achieves 14.77% high accuracy, 11.55% less error,
11.83% less replication ratio, and 8.55% less sharing factor.

Findings: The proposed CDAS improves accuracy and sharing factor by 13.6% and
10.35%, respectively. Moreover, it reduces the error and replication by 9.45% and 12.24%
respectively.

In Table 3, the proposed method, CDAS is compared to edge devices in terms of
resource constraints, computational intensity, data transmission requirements, latency
considerations, and scalability and flexibility. CDAS must be optimized to efficiently utilize
limited processing power, memory, and storage on edge devices, while edge devices typi-
cally have low-to-moderate computational intensity. CDAS data transmission requirements
should consider bandwidth limitations and communication protocols of edge devices for
seamless data exchange. Latency constraints should match the real-time processing capa-
bilities of edge devices. CDAS should demonstrate adaptability to diverse edge computing
environments and device configurations for optimal performance.

Several factors about computing resources and execution are compared in Table 3
between edge devices. The suggested Combinational Data Assessment Scheme (CDAS) ap-
proach is analyzed with features like resource constraints [25], computational intensity [22],
data transmission [20], latency [28], along with scalability and flexibility [26].

(1) Resources Constraints:

In contrast with CDAS’s high resource requirements, edge devices often have minimal
processing capability, memory, and storage. Following the basic principles of edge comput-
ing, the comparison implies that CDAS needs to be adjusted to make the most efficient use
of the limited resources [25] on edge devices.

(2) Computational Intensity:

Compared to edge devices, having low-to-moderate computing capability [22], CDAS
is defined as possessing moderate-to-high processing intensity. This comparison shows the
significance of CDAS algorithms in being compatible with edge devices’ processing abilities
in terms of complexity and real-time analytical capabilities for successful execution.
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(3) Data Transmission:

The data transmission requirements of CDAS are minimal, in contrast to the limited
bandwidth and protocol specificity of many edge devices discussed in [20]. The comparison
shows that for CDAS and edge devices to share data seamlessly, CDAS data transmission
needs should consider bandwidth constraints and communication protocols.

(4) Issues with Latency:

Contrasted with edge devices, CDAS is said to have latency [28] limitations ranging
from low to moderate. According to the comparison, for decision making to be performed
promptly, the latency restrictions of CDAS for detecting diseases should correspond to the
real-time response rates that edge devices are capable of.

(5) Scalability and Flexibility:

Edge computing settings and configurations of devices can vary, but CDAS presents
them as highly scalable and flexible [26]. Based on the comparison, it seems that CDAS
needs to show that it can adapt to varied edge computing contexts and perform well with
different configurations of devices to be deployed effectively in various situations. For
edge devices, optimizing CDAS to meet their processing capabilities, data transmission
needs, latency limits, and scalability considerations is crucial. To make the most of edge
computing and get around any challenges edge devices may have, CDAS has to pay
attention to these features.

Table 3. Comparison of computing resources and implementation.

Consideration Proposed Method (CDAS) Edge Devices Comparison

Resource
Constraints High Limited

CDAS should be optimized to efficiently utilize
limited processing power, memory, and storage on
edge devices.

Computational
Intensity Moderate-to-High Low-to-Moderate

CDAS algorithm complexity and real-time analysis
capabilities should align with the processing
capabilities of edge devices.

Data
Transmission Moderate Limited

CDAS data transmission requirements should
consider bandwidth limitations and communication
protocols of edge devices for seamless data exchange.

Latency
Considerations Low-to-Moderate Low

CDAS latency constraints for disease detection should
be compatible with the response times achievable by
edge devices for real-time decision making.

Scalability
and Flexibility High Variable

CDAS should demonstrate adaptability to different
edge computing environments and device
configurations for robust performance across settings.

5. Conclusions

To improve the efficiency of data distribution in the control of infectious illnesses, the
paper presents a combinational data evaluation method. Using edge computing and AI
methods, the suggested plan makes data collection, sharing, and analysis more efficient. To
facilitate easy collection and analysis and avoid duplication and falsification, data sources
are first identified. To verify the similarity measure among inputs and the available data
and prevent data manipulation, a recurrent tree classifier learning technique is utilized.
Indexing of non-replicated sequences comes next, after classification based on occurrence
frequency. The likelihood that the indexed data will make it easier to share knowledge
about controlling diseases is confirmed, and the process is then repeated for aggregated data
sources until replication-free indexed data that are appropriate for sharing are generated.
Based on experimental study, the suggested technique reduces error and replication by
9.45% and 12.24%, respectively, while improving accuracy and sharing factor by 13.6% and
10.35%, respectively, for various classification sequences.
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