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Abstract: Glaucoma is a chronic eye condition that seriously impairs vision and requires early diag-
nosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis.
In this paper, we propose a novel method for feature selection that integrates the cuckoo search
algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classifica-
tion. However, when using the infinite series, the Caputo definition has memory length truncation
issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization.
We conducted experiments integrating various feature extraction techniques, including histograms
of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and
VGG19, to create a unified vector. We evaluate the informative features selected from the proposed
method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the di-
versity and quantity of the training set. The proposed method enhances convergence speed and the
attainment of optimal solutions during training. The results demonstrate superior performance on
the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36%
sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the
proposed method, rendering it a generalizable and applicable technique in ophthalmology.

Keywords: glaucoma; cuckoo search; Caputo fractional order; feature selection

1. Introduction

Glaucoma is characterized by damage to the optic nerve, which leads to retinal gan-
glion cell degeneration. This degeneration affects neurons with cell bodies in the inner
retina. As a result, the optic nerve receives its axons, and the affected nerves may atrophy,
leading to cupping of the optic disc and a decrease in visual acuity. Regular eye exams
are crucial for the early detection and treatment of glaucoma [1]. The exact factors that
lead to the development of glaucoma and the biological mechanisms that cause it are still
unknown. Although there is currently no known cure for glaucoma, the primary goal
is to lower intraocular pressure to control the disease and prevent further optic nerve
damage [2]. Regular monitoring and adherence to treatment plans are critical for optimal
glaucoma management [3].

Fundoscopy stands out as a reliable diagnostic tool for the comprehensive evaluation
of the fundus image, as it is characterized by simplicity of use and low cost. Although key
tests such as pupillary reflex response and visual acuity help diagnose glaucoma, manual
fundus image analysis is still subjective and dependent on the examiner’s experience. This
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subjectivity introduces the inherent risk of human error and potential discrepancies in
diagnoses [4,5]. Moreover, using diverse instruments to take fundus images might result
in inconsistent acquisition, including unclear or oblique images. Therefore, developing
glaucoma diagnosis systems that include image recognition and adapt to different camera
qualities is crucial for patient treatment.

Machine learning methods have become increasingly used in the field of medical
diagnostics, particularly in the classification of glaucoma [6–12]. These methods leverage
features extracted from fundus images to aid in accurate diagnosis. Although these methods
have the potential for diagnosing glaucoma in clinical practice, there are limitations to
using machine learning methods for glaucoma classification. The performance of these
models depends on the quality and diversity of the dataset used for training. Further
studies are needed to validate the performance of these models on larger and more diverse
datasets. Additionally, the use of machine learning methods for glaucoma classification
requires careful consideration of ethical and legal issues related to data privacy and security.
To address these limitations, feature selection methods such as feature selection can be
used to identify the most relevant and informative features for glaucoma classification.
This method can help improve the accuracy and efficiency of machine-learning models for
glaucoma classification.

Feature selection (FS) techniques are pivotal in improving dataset quality, decreasing
dimensionality, reducing training time, and mitigating overfitting. Various FS techniques
have been proposed in the task of glaucoma classification [13–17]. Despite the availability
of various FS techniques, metaheuristic algorithms (MAs) have gained traction for their
adaptability and efficacy in optimizing FS processes. These algorithms, including the
genetic algorithm (GA) [18], the slap swarm algorithm (SSA) [19], particle swarm optimiza-
tion (PSO) and artificial bee colony (ABC) [20], the golden jackal optimization algorithm
(GJO) [21], and the bacterial foraging optimization algorithm (BFO) [22,23], exhibit remark-
able flexibility in addressing the complexities inherent in glaucoma classification tasks.
As FS can be viewed as an optimization challenge, there are no single metaheuristic algo-
rithms capable of addressing all the complexities involved. This statement is established
by the No-Free-Lunch (NFL) theorem [24]. Consequently, it becomes crucial to continue
exploring novel alternative metaheuristic algorithms.

Yang and Deb introduced the cuckoo search (CS) algorithm [25,26], drawing inspira-
tion from the breeding behavior of cuckoo birds (CB) for global optimization. In recent
years, the application of CS has grown, making it a compelling choice for tackling intricate
optimization challenges [27,28]. Moreover, the choice of CS is driven by its effectiveness in
handling intricate and high-dimensional datasets [29]. Despite its advantages, CS is prone
to suboptimal solutions due to an inadequate balance between exploration and exploitation
phases [30]. To get around this constraint, the fractional-order–cuckoo search (FO-CS) algo-
rithm has emerged as a powerful tool for enhancing the performance of traditional CS [31].
However, the intuitive interpretability of fractional-order models remains a challenge,
prompting exploration into alternative approaches such as Caputo fractional order.

This paper presents an innovative design that combines Caputo fractional order with
the cuckoo search algorithm (CFO-CS), making use of its stability and convergence ad-
vantages. We solve the truncation problems related to the Caputo definition by using a
fractional-order gradient approach that incorporates a fixed memory step and an adjustable
term count. Our method uses non-structural feature selection methods like histogram of ori-
ented gradients (HOGs), local binary pattern (LBP), and deep features from MobileNet and
VGG19 to make it easier to show glaucoma fundus images completely. We use a k-nearest
neighbors (k-NN) classifier to evaluate the effectiveness of CFO-CS feature selection (FS) on
glaucoma fundus images, which is a commonly used technique in such tasks [32–34]. We
evaluate the proposed framework’s effectiveness using various metrics, including accuracy,
F1 score, precision, specificity, sensitivity, and the Matthew correlation coefficient. The sim-
ulation outcomes demonstrate the significant superiority of the proposed framework over
state-of-the-art models for glaucoma detection. Our contributions lay the groundwork for
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advancing glaucoma diagnostic techniques, promising improved accuracy and efficacy in
clinical settings. Here is a summary of the current study’s primary contributions:

1. We propose a novel feature selection based on the integration of the Caputo fractional
order with the CS algorithm to enhance the performance of the glaucoma fundus
image classification model.

2. We provide a new way to obtain features from images that combines several strong
methods, such as the histogram of oriented gradients (HOGs), the local binary pattern
(LBP), and deep features from MobileNet and VGG19. This comprehensive approach
ensures a robust and nuanced analysis of glaucoma fundus images, providing clini-
cians with valuable insights for accurate diagnosis and treatment planning.

3. To thoroughly evaluate our proposed method, we use a comprehensive dataset of
actual glaucoma fundus images. By testing our method with unseen data, we validate
its practical value and potential for widespread use, demonstrating its efficacy and
reliability in practical medical applications.

4. We conducted a thorough comparative analysis of our newly designed feature se-
lection method against existing techniques and other methods commonly used for
glaucoma detection. This comprehensive evaluation highlights the superiority and
distinctiveness of our approach, showcasing its competitive edge and significance in
advancing the field of glaucoma diagnosis.

We anticipate that the findings from this study will pave the way for a revolutionary
shift in enhancing feature selection methods and discovering new approaches to enhance
the diagnosis of eye conditions through fundus images. This advancement holds the
potential to significantly improve patient care within the field of ophthalmology. To the
best of our knowledge, this paper represents the first instance of integrating the Caputo
fractional order to the cuckoo search algorithm for feature selection in glaucoma fundus
image classification. Furthermore, these contributions signify the transformative impact
of our research, offering innovative solutions to address the challenges associated with
glaucoma diagnosis.

The following structure guides the subsequent sections of this paper: Section 2 explains
the study’s approach. Subsequently, Section 3 provides detailed outcomes and thorough
explanations. Section 4 offers a comprehensive analysis of the findings. Finally, the last
section summarizes our findings and indicates potential avenues for future studies.

2. Materials and Methods

As illustrated in Figure 1, we perform pre-processing, feature extraction, feature selec-
tion, and classification. During the pre-processing phase, images are resized to 224 × 224
and then converted to the RGB color space of 224 × 224 × 3. Thereafter, we extract shape-
based, texture-based, and deep features using the histogram of oriented gradients (HOGs),
local binary pattern (LBP), MobileNet, and VGG19 models. Afterward, we proceed to
organize these extracted features and pass them through the CFO-CS feature selection
method to determine the most relevant features. Subsequently, a k-NN classifier evaluates
these features.

Figure 1. The outline of the proposed model.

2.1. Dataset and Preprosessing

This study uses four extensively documented public databases: ORIGA, REFUGE, RIM-
ONE DL, and ACRIMA, as explained in the existing literature [35]. The ORIGA dataset
consists of 650 fundus images encompassing disc and cup segments [36]. The REFUGE
dataset includes segmented fundus images and clinical glaucoma labels, totaling 1200 fundus



Diagnostics 2024, 14, 1191 4 of 15

images [37]. The recently introduced glaucoma dataset builds upon previous versions of RIM-
ONE (v1, v2, and v3), comprising 485 fundus images [38]. The ACRIMA dataset, primarily
captured from dilated eyes and centered on the optic disc, includes 705 fundus images [39].
As shown in Table 1, each dataset consists of two classes, with the quantity of each class
denoted in bold.

Table 1. Number of images for each class in the datasets.

Dataset Glaucoma Healthy

ORIGA 168 482
REFUGE 120 1080

RIM-ONE DL 172 313
ACRIMA 396 309

Total 856 2184

To provide a visual representation, the following images from the datasets are illus-
trated in Figure 2.

(a) (b) (c) (d)
Figure 2. Sample images from the datasets: (a,b) glaucoma, (c,d) healthy images.

2.2. Image Feature Extraction Techniques

The histogram of oriented gradients (HOGs), the local binary pattern (LBP), VGG19,
and MobileNet were used to extract features from images in this study. The HOG technique
involves computing gradients, determining orientations (nine orientations were used in this
study), and constructing histograms to reveal local gradient orientations within the image.
It divides the image into 74 × 74 pixel cells and 1 × 1 pixel blocks, resulting in 80 features
after aggregation. The LBP method is a robust local texture operator that conducts a binary
comparison between outputs and neighboring pixels. With the implementation of eight
sampling points and a radius of 1, the feature vector obtains a dimension of 66.

Furthermore, deep features are extracted using two pre-trained models, VGG19 and
MobileNet, to enhance the performance. In the case of VGG19, we derive our feature
vectors from the second fully connected layer (fc2), subsequently condensing them from an
initial size of N × 4096 to a more computationally efficient N × 1024. On the other hand,
the architecture of MobileNet, which uses separable convolutions, significantly reduces
computational costs by an approximate 8–9-fold decrease in comparison to conventional
methods. We extracted the features from the global average pooling layer, resulting in a
feature set of N × 1024. Moreover, we used a technique known as the ensemble approach
to combine features from different feature extractions, including those from carefully
constructed approaches and deep learning models. Consequently, we generated a unified
set of 2194 features. We then select prominent features using CFO-CS and feed them into
the k-NN classifier. We effectively leveraged each source’s distinct capabilities by using
ensemble methods and stacking as a top-level model, resulting in a feature set that was
more reliable and flexible.
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2.3. Feature Selection (FS)
2.3.1. Cuckoo Search Algorithm (CS)

The cuckoo search algorithm is a population-based meta-heuristic algorithm inspired
by cuckoo brood parasitism, employing Lévy flights to enhance its performance. The
fundamental ideas behind the CS approach are as follows:

1. Cuckoos lay eggs in randomly selected nests.
2. Nests of the highest quality are inherited across generations.
3. Hosts have a predetermined number of nests, and the probability of a host encounter-

ing a foreign egg is denoted by Pa in the range [0, 1]. In this scenario, the host bird can
either discard the egg or abandon the nest.

The CS method uses Lévy flight and random walks to generate two populations of
potential solutions. However, the random nature of the Lévy function leads to a significant
diversity of individuals during exploration in search space. A switching parameter Pa
combines local and global random walks in CS. The global random walk uses the Lévy
flight operation (λ) ∼ u = k−λ, 1 < λ < 3 to move through the search space, i.e.,

x(k+1)
j = x(k)j + β ⊗ Lévy(λ). (1)

Both xk
p and xk

q are solutions that are chosen at random by permutation in the local

random walk. By using the variables, the current position x(k)j , step size β, step scaling
factor s, Heaviside function H(u), probability of discovering a cuckoo egg Pa, the element-
wise product of vectors ⊗ and v, which are drawn at random from a uniform distribution,
the new position of the jth nest at the kth iteration is computed using (2).

x(k+1)
j = x(k)j + βs ⊗ H(Pa − v)⊗ H(xk

p − xk
q). (2)

Algorithm 1 provides a summary of the primary procedures of the CS algorithm.
The process consists of cuckoo identification, solution creation, assessment, nest replace-
ment, desertion, and update. Based on the present location and the probability of a change,
the stochastic (2) defines a random walk. To prevent becoming trapped in local optima and
make sure the search region is sufficiently explored, it is critical to create fresh solutions
using far-field randomization in CS.

Algorithm 1 Cuckoo search via Lévy flights

Generate initial population of n host nests xj (j = 0, 1, . . . , n)
while (k <MaxGeneration) or (stop criterion) do

Get a cuckoo randomly by Lévy flights using (1)
Evaluate its solution quality or objective value f (xj)
Choose a nest among n (say, l) randomly
if ( f (xj) < f (xl)) then

Replace l by the new solution j
end if
A fraction (Pa) of worse nests are abandoned
New nests/solutions are built using (2)
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best
Pass the current best to the next generation

end while

2.3.2. Caputo Fractional Order with Cuckoo Search Algorithm (CFO-CS)

In CS, the step size is very important and has to be considered carefully when deter-
mining the suitable search area. Our method maintains these specified step size values
from one generation to the next. However, this rigidity could potentially cause problems,
such as the algorithm becoming stuck in local optima, thereby complicating the search for
the optimal solution.
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CS uses the Lévy flying method to allow cuckoo nests to travel through a combination
of short and intermittent long-distance cooperative random searches. This setting is respon-
sible for the significant and unexpected jumps observed in CS during the search process.
However, this approach fails to thoroughly explore the surrounding region of each cuckoo
nest, resulting in insufficient convergence accuracy and poor search robustness. A vector
starting at the xworst point and ending at the xbest point indicates the gradient direction,
which corresponds to the direction of the maximum change. A function fi,x : R → R is
defined for i = 1, . . . , d as f (x + (y − xi)ei), where ei is a vector in Rd with a 1 in the i-th
coordinate and 0’s elsewhere. Assuming a Rd vector ck = c0, c1, . . . , cd, we may express the
Caputo fractional order of f as

C
ck
∇α

x f (x(k)) =C
ck

Dα
x f(1,x)(x1), C

ck
Dα

x f(2,x)(x2), . . . , C
ck

Dα
x f(d,x)(xd). (3)

Fractional calculus extends derivatives and integrals to non-integer orders, offering
a precise tool for complex physical systems. Caputo’s definition, where the fractional
derivative of a constant function is 0, is widely used in engineering problem-solving.
The Caputo differential is a common expression used for this purpose. For a function f
defined in [ck,x], the fractional derivative to a real order α can be expressed using Caputo’s
definition as:

C
ck
∇α

x f (x(k)) =
1

Γ(r − α)

∫ x

ck

(x − τ)t−α−1 f (t)(τ)dτ. (4)

where Γ(α) =
∫ ∞

0 x(k)(α−1)e−x(k)dx is the gamma function, α ∈ [t − 1, t], and t is a positive
integer near α. In the discrete form, inspired by [40], Equation (4) could be formulated as

C
ck
∇α

x f (x(k)) =
∞

∑
v=t

f (v)(x(k))
Γ(v + 1 − α)

(x − ck)
(v−α). (5)

For the updated rule to be replaced by (6), we need to truncate the higher terms v > M,
where M is the size of the memory slot and converges to an extreme point 0 < α < 1.

C
ck
∇α

x f (x(k)) =
M

∑
v=1

f (v)(x(k))
Γ(v + 1 − α)

(x − ck)
(v−α). (6)

In this research, we use M ≤ 4 terms to keep the execution time within an acceptable
range since we are convinced that adding more memory terms increases the execution
time. Furthermore, we incorporate the Caputo fractional given in (6) into (1) to enhance
exploration in feasible regions, which yields

x(k+1)
j = x(k)j + βk ⊗ Lévy(λ) C

ck
∇α

x f (x(k)best). (7)

The average of the three solutions is used to determine ck. The equation states that
x1,2,3 = xj − r1,2,3(xbest − x(k)j ), where r1,2,3 represents uniformly distributed random values
in the range [0, 1]. This random number facilitates the exploration of new regions and
prevents local minima stagnation. Given that ck is allocated to xworst, in the same way, we
enhance the exploitation around the best solution so far, which yields (8), by including the
Caputo fractional provided in (6) into (2).

x(k+1)
j = x(k)j + βs ⊗ H(Pa − v)⊗C

ck
∇α

x f (x(k)best). (8)

2.3.3. CFO-CS for Feature Selection

The CFO-CS feature selection begins by splitting the dataset into 70% training and
30% testing sets. It then uses a stochastic technique to generate n real-valued solutions.
Each solution is created by randomly selecting values within predetermined dimension
limits determined by the dataset features.

xj = lbj + r1 × (ubj − lbj), (9)

where the upper and lower bounds of the search domain j are denoted by ub and lb,
respectively, and a random integer chosen from a uniform distribution is denoted by
r1 ∈ [0, 1]. Before we start updating, we calculate each solution’s fitness value. We
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transform the real value of each solution to binary, as shown in (10), to address the discrete
nature of the FS issue.

Fj =

{
1 if xj > 0.5
0 otherwise

, (10)

The fitness value f j for each solution j is computed using Equation (11)

f j = λ × ηj + (1 − λ)×
( |Fj|

dim

)
, (11)

where Fj is a binary vector indicating selected features for the jth solution, |Fj| denotes
the number of selected features in the jth solution, dim is the total number of features,
λ is a parameter balancing between performance and feature sparsity, and ηj represents
the performance measure of the jth solution using the selected features. The first term
λ × ηj emphasizes the importance of performance, where λ controls the weight given to

ηi, while the second term (1 − λ)×
( |Fj |

dim

)
penalizes sparsity, encouraging the selection of

more relevant features. By adjusting the parameter λ, the trade-off between performance
and sparsity can be tuned to suit the specific requirements of the problem. This fitness
evaluation strategy guides our feature selection algorithm toward identifying feature
subsets that optimize both performance and sparsity. Subsequently, the solutions x are
updated using the operations defined in Equations (7) and (8), as indicated in Algorithm 2.

Algorithm 2 Pseudo code of CFO-CS

Objective Function f (x), x = (x1, ..., xd)
T

Generate initial population of n host nests xj (j = 0, 1, · · · , n)
Calculate the fitness value y − j
while (k <MaxGeneration) or (stop criterion) do

Get a cuckoo randomly by Lévy flights using (7)
Evaluate its solution quality or objective value f (xj)
Choose a nest among n (say, l) randomly
if ( f (xj) < f (xl)) then

Replace l by the new solution j
end if
A fraction (Pa) of worse nests are abandoned
New nests/solutions are built using (8)
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best
Pass the current best to the next generation

end while

2.4. Evaluating Metrics

In this section, we analyze the performance of classifiers in classifying glaucoma fun-
dus images using various evaluation metrics, primarily derived from the confusion matrix.
The confusion matrix serves as a fundamental reference for assessing the performance of
classifiers by categorizing predictions into four potential outcomes: false negative (FN),
false positive (FP), true negative (TN), and true positive (TP). Both false negatives and false
positives can have serious consequences in medical decision-making. False negatives can
lead to missed diagnoses and a failure to treat patients who need care. False positives,
on the other hand, can lead to unnecessary treatments, additional testing, and patient anxi-
ety. Therefore, medical diagnostic models must have high true positive and true negative
rates and low false positive and false negative rates.

To quantitatively evaluate classifier performance on the test set, we employ several
key metrics: accuracy (Acc), F1 score, precision (Pre), specificity (Spc), sensitivity (Sen),
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and the Matthew correlation coefficient (Mcc). These metrics provide a comprehensive
assessment of classifier performance and are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(12)

Pre =
TP

TP + FP
(13)

Spc =
TN

TN + FP
(14)

Sen =
TP

FN + TP
(15)

F1 score =
2 × Pre × Sen

Pre + Sen
(16)

Mcc =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(17)

2.5. Experimental Setup

We use the ORIGA, REFUGE, and RIM-ONE DL datasets at a ratio of 70:30 during
the training phase. For the testing phase, we specifically reserve the ACRIMA dataset as
unseen data. We conducted this study using the Python programming language on a Tesla
K80 GPU within the Google Colaboratory. The hardware setup includes an Intel© i7-core
processor @3.6GHz, 16GB RAM, and operates on a 64-bit Windows 10 system. Additionally,
this research integrates image augmentation algorithms with precise parameter values to
effectively address the imbalanced issue, specifically targeting the minority class. These
algorithms include geometric transformations such as flipping, rotation (±20 degrees),
mirroring, zooming, shearing, and cropping (10% margin). We use the Keras Image-
DataGenerator class for real-time image augmentation. This method guarantees that the
transformed images preserve the diversity present in the original dataset, consequently
minimizing the likelihood of overfitting by the selected classifiers.

The globally optimized solutions are derived through the parameters Pa, λ, and β as
initially presented in the CS method. These parameters are instrumental in identifying
locally superior solutions. The values of Pa, λ, and β are set as 0.25, 1.5, and 0.3, respectively.
We set up the CS with a population size of 10 cuckoos (solutions) and 15 nests. Each trial
involves running the CS for 100 generations (iterations). The values of the parameters used
in this method are detailed in Table 2.

Table 2. The parameters used in this study for feature selection.

Parameters Value

Population Size (n) 10
Cuckoo Eggs (nests) 15

Pa (probability) 0.25
β 0.3

Iteration 100
λ 1.5

We implement the k-nearest neighbors (k-NN) model for image classification. The k-
NN algorithm requires various input data, including the number of neighbors (k), a distance
matrix, and a training dataset. We conducted a careful train–validation split to assess the
model’s performance on a validation set and identify the optimal k value. The model
completed multiple training grounds, with k values ranging from 1 to 10. We determined
the optimal value for k = 7, as shown in Table 3, where each evaluation metric’s highest
value is bolded. The distance matrix was calculated using the Euclidean distance.
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Table 3. The comparison of performance metrics (%).

k Acc Pre F1 Score Spe Sen Mcc

1 87.5 85.4 89.0 86.7 86.0 75.0
2 87.2 85.0 88.5 86.2 85.5 76.0
3 89.0 87.1 90.2 88.0 87.5 77.0
4 89.5 87.6 90.7 88.5 88.0 77.5
5 90.0 88.0 91.0 89.0 88.5 78.0
6 90.5 88.5 91.5 89.5 89.0 78.5
7 91.0 89.0 92.0 90.0 89.5 79.0
8 90.8 88.8 91.8 89.8 89.2 78.8
9 90.6 88.6 91.6 89.6 89.0 78.6

10 90.4 88.4 91.4 89.4 88.8 78.4

3. Results

We conducted a series of experiments to validate the effectiveness of the proposed
feature selection. Motivated by the long memory property of fractional-order derivatives,
we enhance the fractional-order gradient method by introducing an adjustable number
of terms (M = 1, 2, 3, 4). The main measures we employ to evaluate performance are the
average training accuracy and loss. Each M is considered with varying fractional orders
(α = 0.1, 0.3, 0.5, 0.7, 0.9, 1), where α = 1 denotes training using CS (cuckoo search), while
other values represent training with CFO-CS. We keep the number of iterations constant at
100 for each of the ten trials. Figure 3 illustrates the average training accuracy and loss for
each M with varying α values, offering insights into performance variations under different
fractional-order conditions.

(a) (b)
Figure 3. The average training (a) accuracy and (b) loss of different α for each M.

The effectiveness of k-NN is evident for α ≥ 0.7, as seen in the average training
accuracy and loss. For α < 0.5, the extremely large gamma function associated with
fractional calculus results in low values. However, some undesirable outcomes occurred,
notably at α = 0.7 and 0.9, particularly with M = 1 and 2. Generally, The average accuracy
and loss improve as the fractional order and number of terms M increase, as shown in
Figure 3. However, it appears that fractional order gradients influence the loss, resulting
in repeated jumps. A higher variance typically indicates a more adaptable distribution,
indicating that the fractional order gradient approach helps to optimize frequent and
wide process jumps. This, in turn, increases the chances of avoiding local optimal points.
Moreover, Figure 3 demonstrates that the optimal values for fractional-order gradient
methods are achieved when M = 4 and α = 0.7. These values surpass those obtained
using the integer-order gradient method. Therefore, we consistently maintained M = 4
and α = 0.7 throughout our experiments in this paper.

Visual representations of convergence speed help to understand the dynamic training
process. It is important to recognize that presenting the convergence of classifiers without
feature selection may not offer substantial insights into their training dynamics. This is
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because feature selection algorithms such as CS fundamentally change the optimization
landscape by choosing a subset of informative features, thereby impacting the convergence
behavior of classifiers. We chose to focus on visualizing convergence with CFO-CS because
we want to draw attention to the dynamics of optimization in feature-selected scenarios.
These are important in real-world situations where reducing the number of dimensions has
a big effect on model performance. Figure 4 depicts the convergence behavior of the k-NN
classifier using CFO-CS and CS for feature selection.

Figure 4. The convergence profile of using CFO-CS and CS for feature selection.

Figure 4 illustrates that CFO-CS exhibits faster convergence than CS in feature selection,
highlighting its efficiency in swiftly adapting to selected relative features and enhancing
performance. Conversely, CS may require more iterations for convergence, indicating
relatively slower optimization progress. This indicates that in the optimization process,
CFO-CS achieves stability and an optimal solution more quickly.

The confusion matrices for k-NN using CFO-CS and CS feature selection are shown in
Figure 5, providing a detailed breakdown of the test-set classification results. In Figure 5a,
where CS is used for feature selection, the classifier accurately identified 360 glaucoma cases
and 262 healthy cases. However, it exhibited confusion, with 39 healthy cases misclassified
as glaucoma and 47 cases with glaucoma incorrectly labeled as healthy. Conversely, using
CFO-CS for feature selection resulted in improved model performance on the test set,
as shown in Figure 5b; 375 glaucoma cases were correctly classified. Nonetheless, there
was confusion in 21 healthy cases misclassified as glaucoma and 31 cases with glaucoma
mistakenly labeled as healthy.

(a) (b)
Figure 5. The confusion matrix of k-NN performance using CS for FS. (a) CS and (b) CFO-CS for FS.

Table 4 summarizes the performance metrics for CS and CFO-CS feature selection on
the test set, highlighting the CFO-CS results in bold. The results show notable improve-
ments with CFO-CS across all evaluated metrics. Specifically, CFO-CS demonstrates a
significant increase in accuracy (92.62% vs. 89.36% with CS), precision (94.70% vs. 91.17%
with CS), F1 Score (93.52% vs. 90.59% with CS), and Matthews correlation coefficient (85.00%
vs. 78.36% with CS). These results highlight the effectiveness of CFO-CS in enhancing
overall classification performance compared to the CS method.
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Table 4. The comparison of performance metrics (%).

Feature Selection Acc Pre F1 Score Spe Sen Mcc

CS 89.36 91.17 90.59 88.49 90.02 78.36
CFO-CS 92.62 94.70 93.52 92.98 92.36 85.00

Furthermore, we compared our approach to [41], which uses identical benchmark
datasets without feature selection techniques. We also performed a comprehensive assess-
ment in comparison to [42], where similar techniques were applied. For this comparison,
we used the whale optimization algorithm (WOA) as a method to select features. We
made sure to use the same settings and parameters as described in [42] to ensure a fair
comparison. Table 5 demonstrates the numerical results of our comparison analysis. The
obtained results confirm the efficacy of CFO-CS compared to methods used in both [41,42].

Table 5. The comparison of performance metrics (%).

Feature Selection Acc Pre F1 Score Spe Sen Mcc

Method used in [41] 90.51 92.98 91.72 90.54 90.59 80.66
Method used in [42] 90.53 93.23 91.73 90.88 90.29 80.27

CFO-CS 92.62 94.70 93.52 92.98 92.36 85.00

Furthermore, CFO-CS outperforms the approach given in [42] in convergence be-
havior, indicating its effectiveness in identifying optimum solutions. Figure 6 shows the
convergence diagram, which reveals that using CFO-CS as a feature selection technique
leads to improved convergence dynamics.

Figure 6. The convergence profile of using CFO-CS and WOA for feature selection.

4. Discussion

This work explores the effectiveness of Caputo’s definition of fractional-order methods
in improving feature selection methods and enhancing the performance of k-NN classifiers
for glaucoma diagnosis. By adjusting the number of terms (M = 1, 2, 3, 4) and exploring
different fractional orders (α ≤ 1), we evaluated the training average accuracy and loss
using CFO-CS. Figure 3 revealed that k-NN performs well at α ≥ 0.7 with higher values
of M. Furthermore, it highlights the superiority of fractional-order gradient methods,
particularly when M = 4 and α = 0.7, outperforming integer-order gradient methods in
terms of average training accuracy and loss. These results indicate promising opportunities
for leveraging fractional-order gradient methods to enhance machine learning algorithms
for disease diagnosis applications.

Convergence speed is an essential component in gaining an understanding of the
training dynamics of the classifier. As depicted in Figure 4, k-NN exhibits significantly
faster convergence when using CFO-CS compared to CS for feature selection. The fast
convergence observed in the convergence diagram indicates that an optimal solution is
efficiently reached during the optimization process, which indicates a more stable and
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robust performance. On the contrary, using CS to select features requires more iterations to
reach the optimal solution.

Figure 5 shows the confusion matrices, which give us a closer look at how well k-NN
performs with different feature selection methods. In the context of disease diagnosis,
the true positive (TP) and true negative (TN) rates are of paramount importance. These
parameters directly reflect the model’s ability to correctly identify positive and negative
cases, respectively. In Figure 5a, the use of CS for feature selection results in 360 true
positives (TPs) and 262 true negatives (TNs). However, the application of CFO-CS for
feature selection further enhances these metrics, yielding 375 TPs and 278 TNs, as shown
in Figure 5b. This improvement highlights the effectiveness of CFO-CS in improving
the accuracy of the k-NN classifier, particularly in distinguishing between glaucoma and
healthy classes.

Furthermore, Table 4 compares the performance of the k-NN classifier in classifying
the test dataset when using CFO-CS and CS for feature selection. The results obtained
demonstrate significant enhancements across all evaluation metrics with the implementa-
tion of CFO-CS feature selection. These improvements confirm the effectiveness of CFO-CS
in enhancing the predictive accuracy and overall robustness of classifiers employed in
glaucoma diagnosis.

To further validate the effectiveness of our proposed method, we conducted a compar-
ison with existing methods outlined in the literature, as shown in Table 5. Interestingly, our
method works better than similar ones that use the whale optimization algorithm (WOA)
for feature selection [42], which uses the same dataset but does not use any feature selection
techniques [41]. This comparison serves to further validate the superiority of our method
for enhancing performance.

To further validate the efficacy of CFO-CS, we conducted a comparative analysis with
existing approaches documented in the literature, as summarized in Table 5. Notably,
our method exhibits superior performance compared to similar techniques that utilize
the whale optimization algorithm (WOA) for feature selection [42], which employs the
same dataset without any feature selection methods [41]. This comparative evaluation
further validates the superiority of our approach in enhancing overall performance, thereby
underscoring its potential as a robust and effective strategy for optimizing classification
accuracy and reliability.

The adaptability of our method to various feature extraction scenarios, coupled with
the robust feature selection capabilities of CFO-CS, positions our approach as a promis-
ing tool for glaucoma diagnosis. The consistent superiority of the k-NN classifier and
the efficiency of CFO-CS as a feature selection method underscore the strengths of our
methodology. However, while our approach has demonstrated significant improvements
in glaucoma classification, there is still room for further enhancement. Techniques such
as image enhancement and noise reduction can potentially improve the quality of input
data, thereby contributing to more accurate diagnoses. Additionally, it is important to
note that CFO-CS can be sensitive to parameter settings, which must be carefully tuned
to achieve optimal performance. The computational overhead associated with feature
selection, especially in scenarios involving the integration of concatenated features, may
pose challenges for real-time applications. Despite these considerations, our method has
shown promising results, indicating its potential as a valuable tool in the field of glaucoma
diagnosis. Moving forward, it will be essential to address these challenges through further
refinement and adaptation to specific clinical contexts, ensuring the method’s effectiveness
and reliability in real-world applications.

5. Conclusions and Future Work

The accurate detection of glaucoma using fundus images poses challenges due to
image acquisition heterogeneity, including the capture of blurred images or images from
different angles. To tackle these challenges, we introduced a novel method named CFO-CS,
which combines the Caputo definition of fractional-order methods with the cuckoo search
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algorithm to enhance feature selection. We applied the data augmentation method to
increase the number of training datasets. Subsequently, we extracted shape-based and
texture features using the histogram of oriented gradients (HOGs) and local binary pattern
(LBP) and obtained deep features using MobileNet and VGG19 from fundus images. These
features were concatenated, resulting in a dimension of N × 2194 before being supplied to
the k-NN classifier. The performance of our proposed classification model was evaluated
on challenging glaucoma datasets, achieving an accuracy of 92.62%, precision of 94.70%,
F1-Score of 93.52%, specificity of 92.98%, sensitivity of 92.36%, and Matthew’s correlation
coefficient of 85.00%. A comparison with the most recently published work confirmed that
our method yielded superior results. Overall, our study sheds light on the crucial role of
feature selection in enhancing the performance of machine learning classifiers, particularly
in the field of medical image analysis focused on glaucoma classification. Future research
could explore our method’s performance with larger datasets and address challenges
such as improving image quality and reducing noise. Additionally, improvements could
involve using advanced deep-learning models or combining different methods for better
glaucoma classification.
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