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Abstract: In recent years, Convolutional Neural Network (CNN) models have demonstrated notable
advancements in various domains such as image classification and Natural Language Processing
(NLP). Despite their success in image classification tasks, their potential impact on medical image
retrieval, particularly in text-based medical image retrieval (TBMIR) tasks, has not yet been fully
realized. This could be attributed to the complexity of the ranking process, as there is ambiguity
in treating TBMIR as an image retrieval task rather than a traditional information retrieval or NLP
task. To address this gap, our paper proposes a novel approach to re-ranking medical images using a
Deep Matching Model (DMM) and Medical-Dependent Features (MDF). These features incorporate
categorical attributes such as medical terminologies and imaging modalities. Specifically, our DMM
aims to generate effective representations for query and image metadata using a personalized CNN,
facilitating matching between these representations. By using MDF, a semantic similarity matrix
based on Unified Medical Language System (UMLS) meta-thesaurus, and a set of personalized filters
taking into account some ranking features, our deep matching model can effectively consider the
TBMIR task as an image retrieval task, as previously mentioned. To evaluate our approach, we
performed experiments on the medical ImageCLEF datasets from 2009 to 2012. The experimental
results show that the proposed model significantly enhances image retrieval performance compared
to the baseline and state-of-the-art approaches.

Keywords: text-based medical image retrieval; Convolutional Neural Network; Medical-Dependent
Features; UMLS metathesaurus

1. Introduction

Medical information retrieval has a range of applications and solutions connected
with better health care. At a basic level, it encompasses image retrieval, retrieval of reports,
and natural language queries to databases containing both images and text. However,
image retrieval is a challenging task as it can be very subjective, requiring high-level
cognitive processing. There are two main types of image retrieval used clinically. One is
where the medical professional has a clear idea of what they are looking for and uses the
image to seek specific information. The second is a case in which the medical professional
has an image and desires to find all similar images to aid diagnosis or as a teaching aid.
Step one carries manual work, as tags need to be manually attached to the image usually as
metadata. When the images are stored in large databases such as Picture Archiving and
Communication Systems (PACS), this can be a highly disorganized and time-consuming
task. Step two involves searching using the image as the query and algorithmic methods
using visual features of the image attempt to retrieve similar images. As technology
advances, there has been increasing support to move to automatic image annotation and
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content-based retrieval. It is within content-based image retrieval (CBIR) that the model
CNNMIR seeks to improve the current state of the art.

Usually in medical domain, images constitute a reference set of previously evaluated
cases, that physicians may use to make the right decisions. With the massive growth
of medical images, it becomes hard for domain experts to find relevant images in large
medical datasets. Thus, the need for an efficient and effective medical image retrieval
system becomes urgent [1]. Two main approaches for medical image retrieval are widely
used: text- and content-based retrievals. These approaches search for relevant images by
using different principles: the text-based approach relies on the high-level semantic features
of the images, however, the content-based approach relies on the low-level visual features
(e.g., color, shape, and texture) of the image. Comparing both approaches, the Content-
Based Medical Image Retrieval (CBMIR) performance is less favorable due to the gap
between low-level visual features and high-level semantic features [2,3]. Therefore, several
medical image retrieval systems apply the Text-Based Medical Image Retrieval (TBMIR)
approach to search for images [4]. Most of these approaches are: either, traditional simple
keyword-based approaches; where the meanings of medical entities are ignored, or concept-
based approaches; that are time and disk-space consuming. According to our previous
works [5,6], the presence of specific medical information, namely Medical-Dependant
Features (MDF) in the textual descriptions of medical images has a positive impact on the
performance of TBMIR approaches.

In these last years, Convolutional Neural Network (CNN) [7,8] models have shown
significant performance improvement in several fields as Natural Language Processing
(NLP) [9] and computer vision [10]. Given their success in such fields, it seems to be efficient
for image retrieval. Unfortunately, until now, the CNN models have not a significant
positive impact on medical image retrieval, especially on text-based medical image retrieval
(TBMIR) [11]. It may be due to the complexity of the ranking process: it is not obvious how
to consider TBMIR tasks as an image retrieval task [12] and not as a traditional information
retrieval task, nor an NLP task. Indeed, the traditional information retrieval systems
identify the relevance of a document to a given query; however, the NLP systems deduce
the semantic relations between the query and the document. These two systems do not
take into account the specificity of images in their processes.

In our previous work [13], we proposed a personalized CNN model that considers
the specificity of images in its retrieval process. In that model, we consider the Word2Vec
model for word embedding. However, it is well known that the Word2Vec model considers
general terminologies, which are not specific for any domain. As our work fits in the
medical image retrieval field, we believe that using medical semantic resources, such as
UMLS, for converting textual words is more appropriate.

In this paper, we propose a deep matching process for TBMIR that is different from
traditional information retrieval and NLP described as follows: first, it takes into account the
specificity of images, by mapping the textual queries and the image metadata (document)
into MDF. Second, it extracts the semantic relations between MDF, using UMLS, to build a
good representation of query and document, and third, it computes the document relevance
to the query by using the extracted relations.

In the literature, a variety of deep matching models have been proposed; however,
most of them are designed for NLP, rather than information retrieval. Indeed, they consider
the semantic matching instead of relevance matching. These models can be categorized,
according to their architecture, into two types [14]: the first one is the interaction-focused
models [15,16]. These models extract the relationships between queries and documents and
then integrate them into a deep neural network to create new matching models. The second
one is the representation-focused models [15,17]. These models apply the deep neural
network to extract the best representations for both query and document, and then integrate
them into a matching process.

In this paper, we propose a new medical image re-ranking process based on a deep
matching model (DMM) for TBMIR. Overall, our model is a new representation-focused
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model that builds a good representation of queries and documents using MDF, UMLS
and a personalized CNN for relevance matching. Specifically, we first create the semantic
similarity matrix by extracting the UMLS relationships between each pair of MDF. Each
query/document MDF is mapped into a similarity vector representing the relationships
between the corresponding MDF and all MDF. As each query/document is composed
of MDF, the resulting representation of the query/document will be a similarity matrix.
Using these matrixes, our model tries to find the best representations for both query and
document. Indeed, It applies a personalized CNN which is composed of retrieval filters
taking into account some ranking features. Finally, an overall matching score is computed.

We evaluate the effectiveness of the proposed DMM using the ImageCLEF datasets
from 2009 to 2012. For comparison, we take into account three well-known traditional
retrieval models. The empirical results show that our model significantly outperforms the
baseline models in terms of all the evaluation metrics.

This paper is structured as follows: Section 2 summarizes related work. Section 3
describes the proposed DMM model. Section 4 describes, first, how to represent MDF as
a semantic similarity matrix using UMLS similarity, and second, our personalized CNN
model with specific filters and finally the matching function. Experiments and results are
presented and discussed in Section 7. Finally, Section 8 concludes the paper and gives some
future work.

2. Related Work

Text-based indexing opens the possibility of indexing medical images by utilizing the
associated reports, thereby providing a crucial way to access the exponentially growing
clinical image databases. Current methods to retrieve images from medical databases
are either based on attribute image content or non-image content. The content-based
image retrieval (CBIR) method relies on image features such as shape, texture, or (in
most successful cases) a previously assigned semantic feature to retrieve similar images.
Non-image content retrieval methods often deal with text-based searches of databases,
where a search query is submitted to an image database and text associated with images
is compared to the query. However, both methods do not consider the actual medical
knowledge relevant to an image and more traditional methods of organizing medical
records which are indexed by keywords. Text-based image retrieval by and large builds
upon retrieval technique that aims at finding all images relevant to a given query out of
large database of images. In most textbook studies in proposed system, a specific image
is given as an entry and the user wants to retrieve all images relevant to the given query.
Though it is actually a subtype of text-based image retrieval where actual text-based images
are not available and it is limited by the availability of some keyword-based annotation
of the image. But this method has been shown to be very effective in retrieving images
relevant to a given query and hence can be generalized to retrieval systems where text is the
main modality. The creation of ’indexes of associated features’ from images is effectively
the creation of a searchable database that links images to text.

In the literature, several works studied the use of CNN and semantics in medical
image retrieval. This section briefly summarizes some of these works.

2.1. CNN for Medical Image Retrieval

The use of CNN models in the medical image retrieval domain has received great
attention [18–20]. Authors in [21] used the CNN model based on the bag-of-word (BoW)
technique to index biomedical articles. In this particular model, the input is a matrix of
numbers that stand for the various medical terms that are contained in the input text.
After that, a system of hidden layers is utilized to assign categories to the document.
The authors of [22] developed yet another method for the classification of medical texts
that may be put to use for retrieval operations. It does this by employing CNN training to
extract the semantics of an input sentence; more specifically, it uses the Word2vec technique
to represent the input sentences. This method is based on the use of CNNs. During the
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training of the CNN model, which is comprised of numerous hidden layers, it additionally
maintains the list of stop-words. The CNN model was employed by the authors in the
cited article [23] to remove the background noise from clinical notes that were going to be
used for medical literature retrieval. They represented the input questions by using GloVe
vectors, which are cited in the following reference: [24]. The CNN model’s primary purpose
in this study is to make predictions about the relative relevance of search query phrases.

Despite the success of CNN for computer vision and NLP, employing CNN to search
for relevant documents in TBMIR is not effective; and this may be due to the complexity
of the ranking process. Moreover, most existing CNN models represent queries and
documents without taking into account the specificity of the medical domain. This latter
requires semantic extraction using external medical resources.

2.2. Semantics in Medical Image Retrieval

The integration of semantic knowledge in the medical image retrieval domain has
received great attention, such as [25–27]. Authors in [28] used UMLS meta-thesaurus in
the medical domain to improve queries and converting words to medical terms. They
integrated the semantics in the retrieval process to map the text into concepts using UMLS
meta-thesaurus [29]. The authors of the cited paper [30] developed a retrieval method
to discover discriminative qualities between various medical photos using a Pruned Dic-
tionary that was based on a description of a Latent Semantic Topic. They did this by
calculating the topic-word relevance, which allowed them to make a prediction about the
word’s relationship to the underlying topic. The latent themes are learned based on the
association between the images and the words, and they are used to bridge the gap between
low-level visual features and high-level semantic characteristics. This is accomplished
by bridging the gap between low-level visual features and high-level semantic features.
Moreover, in [31], an image retrieval framework that is based on semantic features has
been proposed by the authors. This framework relies on (1) the automatic prediction of
ontological terms that define the image content and (2) the retrieval of similar images by
analyzing the similarity between annotations. The study of this system demonstrated that
it is beneficial to make use of ontology while retrieving medical images.

Despite the large number of works using CNN and semantic resources in medical
image retrieval, there is a lack of studies that investigate the integration of semantic knowl-
edge on the CNN model to enhance the medical image retrieval performance. Therefore, we
propose a new deep matching model based on personalized CNN and semantic resources
(MDF, UMLS) to improve retrieval accuracy.

3. Overview of Our Approach

It is well known that medical images and their associated reports are not usually in
agreement. For example, a patient who has a slipped disc, but displays no symptoms,
will not have many abnormalities in his MR scan but will have many associated words
or phrases about his condition. This inconsistency is a major problem for medical image
retrieval systems, which rely on the images and associated text being “about the same
thing”. With this in mind, and the fact that we have indexed the images and text separately,
we need to devise a way where a text query can be used to aid the image query and
vice-versa, without the user having to switch between the two.

Our proposed solution leverages relevance feedback to integrate information from
both image and text queries using the other modality. For instance, if a user seeks to
locate an image corresponding to a report about ‘left lung cancer’, the current system
requires them to separately index the text using a natural language processing (NLP) tool
and formulate a query, then repeat the process for the image. This method is inefficient
and requires users to switch between modalities. In contrast, our system enables users
to use an NLP tool to index the text or query, subsequently identifying relevant images
that correspond to the text. Modality-specific technology subsequently ranks the images
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based on their similarity to the text. This approach automates the task of ’finding images
matching this report,’ enhancing efficiency and accuracy.

Due to the positive impact of MDF on both retrieval performance [6,13] and query
classification [32,33], we choose to integrate them into a deep matching model. In this
study, we utilized the Unified Medical Language System (UMLS) as our semantic resource
to construct a semantic similarity matrix, which represents the relationships between pairs
of Medical Dependent Features (MDF). The literature [34–36] widely recognizes UMLS as
a comprehensive thesaurus and ontology of biomedical concepts, designed to link various
biomedical terminologies. By leveraging UMLS, we ensure a robust semantic framework
for our analysis. Additionally, our system allows users to index text or queries using
natural language processing (NLP) tools, facilitating more accurate and efficient retrieval
of relevant medical information.

A new personalized CNN model using MDFs is proposed to build the best representa-
tion for both queries and documents, that are used to compute their matching score. In this
paper, Figure 1 presents an overview of our approach:

• The preliminary step:

We represent each query/document as a set of features, then, for each MDF (Fi),
we assign the corresponding vector extracted from the similarity matrix. Hence, each
query/document is represented as a Matrix.

• The Deep Matching Model Process:

First, we build a good representation of the query/document with a personalized
CNN model that takes into account the interaction between query and document. Indeed,
several personalized filters have been proposed and integrated into this model. Then,
a matching function is applied to measure the matching degree between the query and
the document representations. More precisely, we use the cosine similarity function as a
matching function.

Second, we combine the obtained score with the corresponding baseline score to form
a new re-ranking score. The re-ranking process is achieved by sorting the images according
to their new scores.

Figure 1. Overview of the Deep Matching Model.
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4. Deep Matching Model: Preliminary Step
4.1. Medical Dependent Features

As our work falls into the medical image retrieval field, we propose to integrate the
MDFs [6,32], that are a set of categorical medical features, into a new deep matching model
to enhance the retrieval performance. A medical dependent features presented in the
Figure 2.

Figure 2. Medical -Dependent Features.

Each MDF fi has m associated values v defined by fi = {v1, v2, . . . vm}. The set of
MDF used in our work is detailed as follows:

• Radiology = “Ultrasound Imaging”, “Magnetic Resonance Imaging”, “Computer-
ized Tomography”, “X-Ray”, “2D Radiography”, “Angiography”, “PET”, “Com-
bined modalities in one image”, “Coronarography”, “Cystography”, “Scintigraphy”,
“Mammography”, “Bone Densitometry”, “Radiotherapy”, “Urography”, “Pelvic Ultra-
sound”, “Myelography”, “FibroScan”

• Microscopy = “Light Microscopy”, “Electron Microscopy”, “Transmission Microscopy”,
“Fluorescence Microscopy”, “Biopsy”, “Stool Microscopy”, “Capillaroscopy”, “Tro-
phoblast Biopsy”, “Cytology”

• Visible light photography = “Dermatology”, “Skin”, “Endoscopy”, “Other organs”,
“Colposcopy”, “Cystoscopy”, “Hysteroscopy”

• Printed signals and waves = “Electroencephalography”, “Electrocardiography”, “Elec-
tromyography”, “Holter”, “Audiometry”, “Urodynamic Assessment”

• Generic Biomedical Illustrations = “modality tables and forms”, “program list-
ing”, “statistical figures”, “graphs”, “charts”, “screen shots”, “flowcharts”, “system
overviews”, “gene sequence”, “chromatography”, “gel”, “chemical structure”, “math-
ematics formula”, “non-clinical photos”, “hand-drawn sketches”

• Dimensionality = “macro”, “micro”, “small”, “gross”, “combined dimensionality”
• V-Spec = “brown”, “black”, “white”, “red”, “gray”, “green”, “yellow”, “blue”, “colored”
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• T-spec = “finding”, “pathology”, “differential diagnosis”, “Amniocentesis”, “Hemogram”,
“Non-Invasive Prenatal Screening”, “Urinalysis”, “Lumbar Puncture”, “Seminogram”,
“Triple Test”

• C-spec = “Histology”, “Fracture”, “Cancer”, “Benign”, “Malignant”, “Tumor”, “Preg-
nancy”, “Antibiogramme”

4.2. Semantic Matrix Construction

In this section, we present a new semantic mapping method using two semantic
resources: MDF and UMLS. Frequently in NLP, the text data is converted into a vector of
numbers, which deep models can process as input. Several approaches, such as Word2Vec,
Glove, and one-hot-encoding, have been proposed for word embedding. Usually, these
models consider general terminologies, which are not specific for any domain, to derive
similarities and relations between words. As our work fits in the medical image retrieval
field, we believe that retrieval performance could be improved if we use medical semantic
resources such as UMLS for converting textual words. We represent the queries and
documents as a set of MDF to keep only semantic information related to the medical
domain. Then, each MDF is transformed into a concept using the MetaMap tool, then the
UMLS Similarity tool [37] is used to calculate the similarities between each pair of concepts
and then construct the similarity matrix as shown in Figure 1.

As shown in the preliminary step of Figure 1, all features are transformed into a
similarity matrix and thus by following the next steps:

• Step 1: the MetaMap tool [38] is used to transform each MDF into a concept.
• Step 2: the similarities between each pair of medical concepts are calculated using

the UMLS Similarity tool [37,39]. These semantic similarity scores are arranged in a
semantic matrix. More precisely, we use the Resnik measure to determine the semantic
relations between extracted concepts, as according to [40], it performs better than
Path-based measures.

5. Deep Matching Model Construction

The new DMM model is a representation focused model that should build a good
representation for a query and document with a deep neural network and conduct matching
between the corresponding representations. Moreover, this model should take into account
the specificity of information retrieval, NLP and medical image retrieval.

The inputs to our DMM model are a set of queries and documents presented with
MDFs; each MDF is transformed into concepts then to a vector of numbers to be processed
by the subsequent layers of the network. In the following, we detail the main components
of our DMM model: the query/document matrix extraction, the personalized CNN and
the matching function.

5.1. Query and Document Matrix Extraction

As our work fits in the medical image retrieval field, we represent the queries and
the documents as a set of MDF in order to keep only semantic information related to the
medical domain. In this paper, we propose to convert each query and document into an
MDF vector. Then, each vector is converted to a semantic similarity matrix as presented in
Figure 3:

• Step 1: For each query/document vector, we assign a binary value for each MDF de-
pending on whether the query/document contains the feature value or not. The length
of the resulting vector V equals n where n is the number of MDFs. This vector is
transformed into a n ∗ n matrix M /∀i ∈ n, ∀j ∈ n, M[i][j] = V[i] where i represents
the row index and j represents the column index.

• Step 2: we multiply the resulting matrix M with the semantic similarity matrix SSM to
obtain a new query matrix NQM as follows:
NQM[i][j] = M[i][j] ∗ SSM[i][j]
The illustration of the calculation is done in Figure 3.



Diagnostics 2024, 14, 1204 8 of 18

Figure 3. Query matrix extraction process.

5.2. Personalized CNN

We present, in this section, the personalized CNN that explicitly addresses the
three specificities mentioned above. Indeed, the filters are designed to extract the best
representation of queries and documents. In each representation, the network considers
several retrieval features such as the MDF co-occurrence, the document ranking, and the
IPM score. Moreover, it considers the NLP features for each query/document representa-
tion as it extracts the interaction between document and query. Indeed, according to [14],
most of NLP models extract the interaction between two texts.

In the following, we present the layers of our network: convolutional, activations,
pooling and fully connected layers.

Figure 4 Presents the architecture of the personalized CNN model.

Figure 4. The architecture of the personalized CNN model.
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5.2.1. Convolutional Layer

In this layer, a set of filters F ∈ Rd are applied to the query and document vectors
to produce different feature maps. In our model, the query filters are distinct from the
document filters. Below, we provide detailed information on the filters used for each
component (document and query).

Query Filters:

The query filters aim to extract the best representation of the queries by considering
the relationship between the document and the query. The more relevant the document is
to the query, the higher the resulting vector values will be.

• Confidence Query Filter (CoQF): The idea consists of calculating the co-occurrences of
query MDFs with all MDFs.

CoQF =
∑j∈Q ∑i∈D f r( fi, f j)

∑i∈D f r( fi)
(1)

where Q is the query MDF, D is the document MDFs, f r( f j) is the cooccurrence of
query MDFs in the collection, f r( fi) is the cooccurrence of document MDFs in the
collection and f r( fi, f j) is the cooccurrence of query MDF and document MDF in
the collection.
In order to take into consideration, the length of the document, we use this filter.
A document having only the query MDF should be more relevant than a document
having other MDF in addition to the query ones. In fact, both documents are specific
but the first document is more exhaustive. For that, we propose to divide the number
of MDF in both document and query, with the number of document MDF. If the
document did not include any query MDF, then the value will 0.

• Length Query Filter (LQF): For each query, if the document contains all query MDF,
then we divide the number of MDF in both document and query, with the number of
document MDF. Else, the value will be equal 0.

LQF =
|MDF ∈ (Q, D)|

|MDF ∈ D| (2)

where |MDF ∈ (Q, D)| is the number of MDFs in both query MDF Q and docu-
ment MDF D and |MDF ∈ D| is the number of MDF in the document containing all
query MDF.

• Rank Query Filter (RQF): We calculate the inverse document rank. If the document
did not appear in the first search, the RQF will be equal.

RQF =
1

docrank
(3)

• Proximity Query Filter (PQF): IIn the event that a document has query MDFs, we will
compute the inverse of the distances that separate these MDFs in the document. In
this instance, the distance between two features is represented by the total number of
features that are located between them.

PQF =
1

1 + ∑ distMDF ∈ D
(4)

where distMDF ∈ D is the distances between document MDFs.
• PMI Query Filter (PMIQF): The PMI (Pointwise Mutual Information) [41] is a proposed

metric to find features with a close meaning. Indeed, the PMI of the MDFs fi and f j is
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defined using the occurrences of fi ( f r( fi)) and f j ( f r( f j)), the co-occurrences f r( fi, f j)
within a vector of features, and N is the collection size.

PMIF(QF) = log
N × f r( fi, f j)

f r( fi)× f r( f j)
(5)

This equation calculates the semantically closest MDFs of the collection to fi and f j.
• Feature Difference Query Filter (FDQF): The more the query MDFs not found is small,

the more the document is relevant. For each query, we compute the inverse of number
of query MDFs not in document MDFs.

FDQF =
1√

1 + |MDF ∈ {Q ∩ D}|
(6)

Document Filters:

Similar to the query filters, document filters try to extract the best representation of
documents. They are based on the relationship between document and query. The more
the document is relevant to the query, the highest is the resulting vector values.

• Confidence Document Filter (CoDF): This document filter determines the total amount
of MDF documents that are included in the query. The relevance of the document will
increase in proportion to the number of query MDFs it contains.

CoDF = ∑
(

fiq ∩ f jd
)

(7)

where
(

fiq ∩ f jd
)

is the number of common MDF in query.

• Length Document Filter (LDF): When it comes to documents, first we determine
the number of document MDFs that are included in the related query, and after
we have that amount, we divide it by the document length (LD). In point of fact,
the relevance of the document will increase if it is of a modest size and if it shares
several characteristics with the query being conducted.

LDF =
|MDFdocinquery|

LD
(8)

where |MDFdocinquery| is the number of MDF in both document and query and LD
is the document length using the MDF features.

• Rank Document Filter (RDF):

RDF = ∑
i∈q

f r( fiindoc)× γ (9)

The variable f r( fi) represents the frequency of query MDFs in the document, while γ
represents the organization factor of the query in the document. The value of γ is 1 if
the query preserves its organization in the document, and 0.5 if it does not.

• Proximity Document Filter (PDF): The more the document’s features existing in the
query are closer, the more it is relevant.

PDF =
1

| fi ∈ Q| (10)

where FD ∈ Q is the documents MDFs in the query.
• PMI Document Filter (PMIDF): Similar to PMI in query filter, PMI in document filter

try to find MDFs with a close meaning. It has the same equation except the N in this
filter is the document size.
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PMIF(DF) = log
N × f r( fi, f j)

f r( fi)× f r( f j)
(11)

This equation calculates the semantically closest MDFs in the document.
• Feature Difference Document Filter (FDDF): The more the number of document MDFs

not in the query is small, the more the document is relevant.

FDDF =
1√

1 + |MDF ∈ D − Q|
(12)

where D is the document MDFs and Q is the query MDFs.

The input of the DMM model is a matrix S ∈ Rn×n, and the convolutional filters are
also matrices F ∈ Rn. It is important to note that these filters have the same dimensionality,
denoted as n, as the input matrix. In addition, these filters scan the vector representations
and produce an output vector C ∈ Rm. Each component ci of the vector C is obtained by
multiplying a vector V with a filter F, and then summing the resulting values to obtain a
single value.

ci =
n

∑
k=1

VkFk (13)

5.2.2. Activation Function

Immediately after the convolutional layer comes a non-linear activation function called
alpha that is applied to the output of the layer that came before it. Through the use of this
function, it is possible for a neuron’s input signal to be transformed into an output signal.
In the research that has been done, a number of different activation functions have been
proposed [42]. One of these functions is called the Rectified Linear Unit (ReLU) function,
and it assures that positive values are passed on to the subsequent layer. The authors
in [43] demonstrated that this function is effective, uncomplicated, and has the capacity to
lower the amount of complexity as well as the amount of time required for calculations.
As a result, we have decided to include this function in our model in the capacity of an
activation function.

5.2.3. Pooling Layer

The pooling layer’s goal is to do three things: aggregate information, minimize the
amount of representation used, and derive global features from the convolutional layer’s
local ones. There are two functions that can be found in the body of literary work: (1) the
average consists of computing the average of each feature map of the convolutional layer
to consider all the elements of the input are even if many of them have low weights [44],
and (2) the Max consists of selecting the maximum value of each feature map of the convo-
lutional layer. Both of these operations are performed in order to take into consideration all
of the elements of the input are. We have decided to adopt max-pooling for our research
because it takes into account only neurons with high activation values, which ultimately
results in a high level of semantic abstraction of the input data.

5.2.4. Fully Connected Layer

In order to produce a final vector representation of the query or document, a Fully
Connected Layer (FCL) is applied to the vector that was generated as a result of the
previous step.

5.3. Matching Function

According to [14], the most significant challenge associated with the retrieval of infor-
mation is the matching problem, which refers to the process of determining a document’s
relevancy in light of a query. If we have a document denoted by d and a query denoted by
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q, then the matching function is a mechanism for assigning a score to the representation of
d and q:

RSV(d, q) = F(Φ(d), Φ(q)) (14)

where F stands for the scoring function and Phi is the mapping function that converts
each d|q pair into a vector representation. In the research that has been done on the
subject, a number of different deep matching models have been suggested for the overall
matching process. These silhouettes fall primarily into one of two categories when grouped
together. The representation-focused model is the first one, and in this model, Phi is a
complicated mapping function while F is a straightforward scoring function. A deep neural
network is utilized by this model in order to construct an accurate representation for the
document as well as the query. After that, it does some sort of matching between these
different representations. The second one is the interaction-focused model where Φ is
simple mapping function and F is complex scoring function.

We use a representation-focused model in which Phi is a sophisticated mapping
function between representations and F is a straightforward matching function. Since the
sophisticated Phi-based mapping function of the individualized CNN is what drives our
selection, we resort to the more elementary F-based cosine similarity. The formal definition
of a document’s relevance to a query is as follows:

RSV(Q, D) = cosine(
−→
Q ,

−→
D ) =

−→
Q .

−→
D∥∥∥−→Q ∥∥∥.
∥∥∥−→D ∥∥∥ (15)

where
−→
Q and

−→
D are the query and the document vectors respectively. In the IR, for a given

query, the documents are ranked by their relevance scores.

6. SemRank: Semantic Re-Ranking Model Based on DMM

In the last part of this article, we discussed our MDF-based deep matching model,
which calculates the DMM score of the document d with respect to the query q. However,
doing a search of relevant documents by utilizing MDF alone is insufficient; certain phrases
could not be mapped to MDF, and as a result, such keywords should be eliminated from
the search. As a result, we recommend combining the findings of the DMM with those
of the baseline, taking into consideration all of the query terms. To be more specific, we
suggest modeling the SemRank score using the most common type of late fusion approach,
which is known as a straightforward linear combination. Before adding the two scores
together, we first standardize the initial score and the DMM score in the following manner:

SemRankscore = α ∗ InitialScore
max InitialScores

+ (1 − α) ∗ DMMScore
max DMMScore

(16)

where α is a balancing parameter α ∈ [0 . . . 1], InitialScore represents the initial ranking
score of the document and DMM score of the same document. The normalized score is
obtained by dividing the relevance score for a given document d by the highest relevance
score in the whole collection. As a baseline, we propose to use the BM25 model which is
well known for its efficiency and its performance in many retrieval tasks

7. Experiments and Results

In this section, we describe the experimental datasets, then we present our several
experiments released to evaluate the accuracy of our model and we compare it to some
existing approaches.

7.1. Experimental Datasets

In order to assess the effectiveness of our suggested method, it is imperative to utilize
medical image datasets that include both images and textual descriptions, together with
queries and ground truth. The majority of medical data sets currently available do not
fulfill these criteria. Some sources lack assessment protocols, such as OHSUMED [45],
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while others focus on textual analysis and evaluation, like TREC. On the other hand,
the ImageCLEFmed evaluation campaign offers specific medical picture collections for
the purpose of assessing medical image retrieval. From 2011 onwards, the quantity and
extent of the collections were comparable to those seen in real-world applications [46]. Due
to copyright restrictions, the redistribution of the ImageCLEFmed collections to research
groups is only allowed through a special agreement with the original copyright holders [47].
Therefore, we are restricted to conducting experiments using only the five collections for
which we have obtained copyrights. The collections are shown in Table 1 and consist of
two relatively small data sets: 74,902 and 77,495 images for the 2009 [48] and 2010 [49] data
sets, respectively. After the evolution of ImageCLEF, three additional data sets were added:
230,088 images for the 2011 [50] data set, and 306,539 images for both the 2012 [51] and
2013 [52] data sets.

Each image in these data sets is accompanied by a textual description. An image
can have the text from its caption or a hyperlink to the HTML page that has the complete
text of the article [53], together with the title of the article [48]. Furthermore, the queries
were chosen from a collection of themes suggested by physicians and clinicians in order to
precisely mimic the information requirements of a clinician involved in diagnostic tasks.
The images in the 2009 and 2010 data sets were sourced from the RSNA journals Radiology
and Radiographics [48] and consist of a portion of the Goldminer data set. Nevertheless,
the photos in the data sets from 2011, 2012, and 2013 are derived from studies that were
published in open-access journals and may be accessed through PubMed Central. The later
data sets have a wider range of images, including charts, graphs, and other nonclinical
images, resulting in more visual variety.

To evaluate the proposed SemRank model, we conducted experiments using the
ImageCLEF collections in Medical Retrieval Task from 2009 to 2012. These collections are
composed of images and queries. Each image has a textual description. Each query is
composed of text representation and a few sample images. In our work, we use only text
representation of the queries and textual description of the images. The 2009 and the 2010
datasets are relatively small (74,902 and 77,495 images respectively). The 2011 and the
2012 datasets are significantly bigger (230,088 and 306,539 images respectively). Indeed,
these datasets contain a greater image diversity and also include charts, graphs and other
non-clinical images [32]. Also, we are limited to these datasets as we do not have the
2013 dataset, the last dataset in the medical image retrieval task of imageCLEF. Figure 5
illustrates 3 images of the used datasets, respectively with their associated MDF, extracted
using the Medical-Dependent Features. We observe here that MDF features represent
specific characteristics of medical images but not a body part (brain) or a pathology (cancer)
and this due to the nature of medical textual queries aiming to find medical images.

Figure 5. Some examples of ImageCLEF medical images and their extracted MDF.
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7.2. Effectiveness of the SemRank Model in Image Reranking

In this section, we present a set of experiments carried out to the SemRank model.
To achieve the best linear combination, we use several values of α. α = 0 means that only
the DMM score is used and α = 1 means that only the BM25 score is used. Figure 6 presents
the MAP, the P@5 and the P@10 values when: α ∈ [0 : 1] in datasets from 2009 to 2012.

Figure 6. Results according to α using 4 ImageCLEF datasets 2009, 2010, 2011 and 2012.

According to Figure 6, we notice that using only DMM model to retrieve relevant
documents gives the worst ranking results. However, the combination of the baseline
and the DMM models gives better results. This proves our assumption that using only
MDF to search for relevant documents is not sufficient; the combining models is a solution.
According to MAP, P@5 and P@10 values, the best results are obtained when α ∈ [0.1 : 0.5].
In the remaining experiments, we chose to set α = 0.3.

7.3. Comparison of the SemRank Model with Literature Models

In this section, we propose to compare our model with BM25, DLM (Dirichlet Lan-
guage Model) [54] and Bo1PRF (Bo1 Pseudo Relevance Feedback) [55] models. Table 1
summarizes this comparison according to the P@5, P@10 and MAP measures. The best
result of all models and for each metric is presented in bold.

Table 1. Comparative results with the previous state-of-the-art approaches using ImageCLEF datasets.

BM25 DLM Bo1PRF SemRank (α = 0.3)

ImageClef-2009
P@5 0.608 0.592 0.608 0.696

P@10 0.584 0.524 0.568 0.664
MAP 0.379 0.327 0.371 0.425

ImageClef-2010
P@5 0.400 0.436 0.361 0.453

P@10 0.420 0.375 0.330 0.453
MAP 0.312 0.313 0.305 0.389

ImageClef-2011
P@5 0.393 0.240 0.386 0.406

P@10 0.313 0.223 0.326 0.340
MAP 0.193 0.138 0.211 0.195

ImageClef-2012
P@5 0.418 0.281 0.554 0.427

P@10 0.313 0.241 0.409 0.322
MAP 0.193 0.146 0.361 0.201

For the 2009 and the 2010 ImageClef datasets, the results show that our SemRank
model performs better than the existing models in terms of MAP, P@5 and P@10. For the
2011 dataset, the SemRank model gives better results than the BM25 and the DLM models
in terms of P@5 and P@10, but do not outperform the Bo1PRF model in term of MAP.
Moreover, For the 2012 dataset, the Bo1PRF model outperforms our model in terms of
MAP, P@5 and P@10. This can be explained by the high number of non-clinical images
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in these datasets which contain a diversity of images (tables, shapes, graphs); and our
retrieval model is specific for medical images. Moreover, the Bo1PRF model is based on the
pseudo-relevance feedback technique that improves retrieval results.

The accuracy gain is presented in Table 2. Indeed, we determine the improvement
rate and we conduct a statistical t-test (Wilcoxon) [56] to evaluate the results. The gain is
considered statistically significant when p < 0.05. In this work, the results are followed by
the ** when p < 0.05.

Table 2. Accuracy gain of the SemRank compared to other models.

2009 2010 2011 2012

SemRank/BM25 +12% ** +24% +1% +4%
SemRank/DLM +29% ** +24% +40% ** +38%

SemRank/Bo1PRF +14% ** +27% ** - -

Results show that the improvements have been achieved on the majority of datasets.Our
model achieves between 12% and 29% on the 2009 dataset, which is a substantial improve-
ment over the performance of existing models. When compared to the DLM and Bo1PRF
models, the retrieval performance of the 2010 dataset is significantly enhanced by the
SemRank model. This might be explained by the fact that the datasets from 2009 and
2010 contain photos suggested by clinicians and physicians that beat the information that
is required.

Although our model is performing worse than the Bo1PR model on the 2011 and the
2012 datasets, it improves the retrieval performance (+4 percentage points) compared to the
BM25 model for the 2012 dataset and (+40 percentage points) compared to the DLM model
for the 2011 dataset. This variation may be due to the pseudo relevance feedback technique,
which adds the first m keywords that appear in the top k retrieved documents. However,
our model uses only query features without additional terms and enhances significantly
the retrieval performance on the 2009 and the 2010 datasets.

We conclude that using our DMM improves significantly the results compared to the
literature models. This validates our assumption that our DMM is a promising technique
for improving medical image retrieval performance. In addition, this improvement could
be related to the importance of using medical external resources: MDF and UMLS.

8. Conclusions and Future Work

This paper introduces an innovative SemRank model designed to enhance the ranking
of medical images. The model leverages two external semantic resources: the Medical-
Dependent Features (MDF) terminology and the Unified Medical Language System (UMLS)
Metathesaurus. Within this framework, queries and documents are represented as sets of
MDF, with the UMLS ontology employed to compute semantic similarity matrices between
these sets. These matrices serve as the foundation for constructing matrix representations
for each query and document, which are subsequently integrated into a Convolutional
Neural Network (CNN) process. The resulting outputs yield vectors used to compute
new relevance scores for documents when presented with a query. This innovative ap-
proach not only harnesses semantic knowledge from external resources but also employs
advanced neural network techniques to improve the accuracy and effectiveness of medical
image retrieval.

Our experiments were conducted on the Medical ImageCLEF collections from 2009 to
2012. The findings demonstrate a significant improvement in the re-ranking process when
integrating Medical-Dependent Features (MDF) and the Unified Medical Language System
(UMLS) into the Deep Matching Model (DMM). Furthermore, a comparative analysis was
conducted between our model and various state-of-the-art approaches. The results revealed
a noteworthy increase in the accuracy of the re-ranking process, underscoring the efficacy
of our proposed methodology.
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In our forthcoming research endeavors, we aim to augment the capabilities of the
CNN model by integrating supplementary filters that encompass a broader spectrum of
retrieval attributes. Furthermore, we plan to enhance the SemRank model by incorporating
visual features, thereby elevating the precision of image retrieval.
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