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Abstract: This study evaluates the efficacy of several Convolutional Neural Network (CNN) models
for the classification of hearing loss in patients using preprocessed auditory brainstem response
(ABR) image data. Specifically, we employed six CNN architectures—VGG16, VGG19, DenseNet121,
DenseNet-201, AlexNet, and InceptionV3—to differentiate between patients with hearing loss and
those with normal hearing. A dataset comprising 7990 preprocessed ABR images was utilized to
assess the performance and accuracy of these models. Each model was systematically tested to
determine its capability to accurately classify hearing loss. A comparative analysis of the models
focused on metrics of accuracy and computational efficiency. The results indicated that the AlexNet
model exhibited superior performance, achieving an accuracy of 95.93%. The findings from this
research suggest that deep learning models, particularly AlexNet in this instance, hold significant
potential for automating the diagnosis of hearing loss using ABR graph data. Future work will aim
to refine these models to enhance their diagnostic accuracy and efficiency, fostering their practical
application in clinical settings.

Keywords: auditory brainstem response; ABR; deep learning; VGG16; VGG19; DenseNet121;
Densenet201; Alexnet; image processing; hearing loss

1. Introduction

Convolutional Neural Networks (CNNs) are a specialized category of deep learning
algorithms predominantly utilized in the fields of image and video recognition. Character-
istically, CNNs automate the process of learning and classifying image features through a
structured network comprising convolutional layers, pooling layers, and fully connected
layers. The convolutional layer primarily serves to extract pertinent features from images,
while the pooling layer reduces computational load by diminishing the spatial dimensions
of the data. The fully connected layer then performs the final task of classification. These
networks are extensively applied across various tasks in computer vision, including image
classification, object detection, and face recognition, due to their robustness in handling
complex visual inputs [1,2]. In the realm of medical imaging, CNNs assume a critical role
given the intricate nature of most medical datasets. They provide effective mechanisms for
processing and interpreting such data swiftly, which is indispensable in clinical settings.
Consequently, CNNs are employed in diverse medical imaging applications encompassing
disease classification, tissue categorization, and image segmentation, among others [3].
This versatility underlines the significance of CNNs in advancing medical image analysis
and improving diagnostic methodologies.
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The Auditory Brainstem Response (ABR) is an electrophysiological measurement
reflecting the brainstem’s activity in response to auditory stimuli. This response involves
the transmission of a neuroelectric signal from the cochlea through the auditory pathways
to the auditory cortex of the brain. The ABR test, a diagnostic procedure used to assess hear-
ing functionality, measures the waveform of this electrical response. This test is particularly
valuable in clinical settings for evaluating hearing impairment. Its non-invasive nature and
independence from patient consciousness—being unaffected by sleep or anesthesia—make
it particularly suitable for use in populations unable to provide reliable auditory feedback.
These include newborns, infants, young children, the elderly, and individuals with con-
genital disabilities. Consequently, the ABR test provides a robust and objective method for
assessing auditory function across a diverse patient demographic [4].

ABR measurement is a neurophysiological method used to record changes in brain
waves triggered by auditory stimulation. This technique involves the application of click
sounds at intervals of approximately 0.8 ms combined with energy modulation during
auditory transmission to stimulate brain wave activity. When auditory stimuli ranging from
10 dB to 100 dB are administered, typically, five to seven waves are detectable. In normal
adults, a waveform responsive to the stimulus typically emerges within approximately
10 milliseconds following the onset of the click sound [5]. Among the identifiable waves,
wave number 5 (V wave) is particularly significant for clinical assessments. The threshold
of hearing is determined by analyzing the latency periods of the V wave across various dB
levels. Hearing loss is subsequently diagnosed based on these latency values within the
specified dB range [6].

During the ABR testing procedure, as illustrated in Figure 1, small electrodes marked
by red circles are affixed to the subject’s forehead and behind the ears. These electrodes
detect electrical activity within the auditory nerve and brainstem in response to auditory
stimuli. The test involves the administration of a series of click sounds delivered through
an eartip inserted into the ear, with the brain’s responses—essentially, brain waves—being
detected and automatically recorded by a computer system. This method offers an objective
assessment of hearing functionality, contrasting with other methods that rely on subjective
patient responses. In the process of measurement, the audiologist identifies and records
the V wave, which is critical for hearing and occurs between 6 ms and 8 ms, from among
wave information labeled from 1 to 5, corresponding to each decibel (dB) stimulus level.
The measurement concludes once the waveforms for all dB stimulus levels have been
successfully recorded [7].
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Figure 1. Auditory brainstem response test scene.

In our previous study [8], we conducted preprocessing to standardize the audi-
tory brainstem response (ABR) graph outputs across various manufacturers. ABR graph
data from five different manufacturers—Audera, Navigator, Eclipse, Viking Select, and
Interacoustics—were collected. Each ABR graph was normalized as depicted in Figure 2,
resulting in a dataset comprising 10,000 data entries. Furthermore, during the prepro-
cessing phase, a total of 2010 images were filtered out due to significant reductions in
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graph resolution or improper graph outputs. Consequently, the analysis was conducted on
7990 images using normalized ABR data from the remaining valid datasets.
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2. Materials and Methods
2.1. Auditory Brainstem Response Data

The ABR graph serves as a crucial diagnostic tool for evaluating the auditory system by
visualizing changes in electrical activity over time. An analysis of the ABR graph can reveal
significant insights into the auditory system’s condition through various characteristic
features described below.

Multi-wave form: the ABR graph typically displays a series of waves, each sequentially
representing electrical activity in different parts of the brain at specific times.

The size and spacing of waves: the initial wave usually appears as the largest and most
distinct wave, with subsequent waves diminishing progressively in size and becoming
closer together.

Latency and amplitude: these parameters are critical; latency refers to the timing of
the wave’s occurrence post stimulus, and amplitude denotes the wave’s magnitude.

Baseline: the baseline of the graph indicates normal brain activity levels; any deviation
from this baseline may suggest abnormalities in the auditory pathway.

Axes: the ABR graph is typically oriented with time (ms) on the horizontal axis and
amplitude (µV) on the vertical axis, where sound pressure levels (decibels, dB) may also
be considered.

By systematically assessing these features—particularly changes in latency and amplitude–-
anomalies such as hearing impairment or disorders within the central auditory pathway
can be detected. Thus, the ABR graph not only aids in assessing the patient’s hearing status
but also contributes to the formulation of an appropriate treatment plan [9–12]. The method-
ology for analyzing an ABR graph, as depicted in Figure 3, is essential for comprehensively
evaluating both hearing function and the broader state of the auditory system.
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Wave I: This initial wave is indicative of the acoustic signal’s arrival at the auditory
nerve. The latency for Wave I, representing the time taken for the stimulus to reach the
auditory nerve, typically ranges from 1 to 4 ms.

Wave II: occurring in the auditory brainstem, specifically in the region associated
with the auditory pathway’s initial processing stages, the latency from Wave I to Wave
II measures the transmission time to the auditory brainstem and is generally observed
between 2 and 4 ms.

Wave III: this wave is generated in the cochlear nuclei—the Dorsal Cochlear Nucleus
(DCN) and Ventral Cochlear Nucleus (VCN)—located in the lower auditory brainstem.
The latency from Wave II to Wave III, which measures the passage of stimulus through the
auditory brainstem, typically ranges between 3 and 5 ms.

Wave IV: Representing signals generated en route to the Medial Superior Olive (MSO)
at the upper part of the auditory brainstem; the latency between Wave III and Wave IV
usually spans 4 to 5.5 ms.

Wave V: The largest of the acoustic signals, Wave V emanates from the output region
of the auditory brainstem, reaching the Inferior Colliculus (IC). The latency from Wave IV
to Wave V is noted between 5.5 and 7 ms.

Wave latency: the latency of each wave quantifies the time required for its generation.
Within a normal auditory system, these latencies fall within specific ranges; however,
abnormalities may manifest as delayed latencies.

Wave amplitude: The amplitude of each wave reflects its magnitude. Typically, a
healthy auditory system produces waves of a large and consistent amplitude. Reduced
amplitude may indicate auditory abnormalities.

Interpeak latency: This metric illustrates the latency differences between consecutive
waves, reflecting the conduction time along the central auditory pathway. Normal auditory
systems exhibit consistent interpeak latencies, whereas increased values may suggest
central auditory pathway dysfunction.

These metrics provide a comprehensive framework for assessing the integrity and
functionality of the auditory system through ABR testing, facilitating the identification and
characterization of potential auditory impairments.

Hearing loss: Hearing loss is characterized as a reduction in the ability to perceive or
interpret sounds; the loss is attributable to anomalies within the auditory system, which
may involve the external or internal ear structures or the auditory nerve. This condition
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can be either temporary or permanent and may affect one or both ears. Within the context
of this study, the severity of hearing loss is assessed based on the detection of the V wave
in the ABR graph data, as illustrated in Figure 4. Typically, V waves are elicited by sound
stimuli ranging from 10 to 100 dB, presented in 10 dB increments. An absence of V waves
in waveforms at or below 40 dB typically leads otolaryngologists to diagnose hearing loss.

Diagnostics 2024, 14, x FOR PEER REVIEW 5 of 14 
 

 

can be either temporary or permanent and may affect one or both ears. Within the context 
of this study, the severity of hearing loss is assessed based on the detection of the V wave 
in the ABR graph data, as illustrated in Figure 4. Typically, V waves are elicited by sound 
stimuli ranging from 10 to 100 dB, presented in 10 dB increments. An absence of V waves 
in waveforms at or below 40 dB typically leads otolaryngologists to diagnose hearing loss. 

 
Figure 4. An ABR graph of a patient with hearing loss (left) and an ABR graph of a normal person 
(right). 

The analysis of an ABR graph involves a detailed evaluation of various parameters 
to ascertain the auditory system’s status. Key indicators include the latency and amplitude 
of waves; a delay in wave latency or a reduction in amplitude may signal auditory 
impairments or issues within the central auditory pathway. By examining these attributes, 
clinicians can effectively gauge a patient’s hearing condition and devise appropriate 
treatment strategies. Such diagnostic practices are crucial for the early detection and 
management of hearing loss, thereby enhancing the quality of life and communication 
abilities of affected individuals [13–16]. 

2.2. CNN Classification Model 
In our previous study, we evaluated the classification of hearing loss using solely the 

VGG16 model [8]. Expanding upon this initial approach, the current study incorporates a 
broader array of convolutional neural network models, specifically VGG16, VGG19, 
DenseNet121, DenseNet201, AlexNet, and InceptionV3, to perform more comprehensive 
learning and classification tests. Each model, recognized for its unique strengths and 
limitations, has previously been utilized across a variety of medical image classification 
tasks. For the purposes of this study, we tailored the hyperparameters, specifically the 
batch size and layer configurations, to optimize the learning process for ABR image 
classification. This part details the architectural nuances and characteristics of each model 
and describes the specific modifications made to the hyperparameters to enhance model 
performance for this application. These adjustments are pivotal in refining our approach 
to accurately classifying hearing loss through deep learning techniques. 

2.2.1. VGG16 and VGG19 
The VGG model, developed by the Visual Geometry Group at Oxford, includes two 

primary configurations: VGG16 and VGG19. VGG19 extends the architecture of VGG16 
by adding three additional convolutional layers positioned before the 3rd, 4th, and 5th 
max pooling layers, enhancing its depth and complexity. In our experiments with the 

Figure 4. An ABR graph of a patient with hearing loss (left) and an ABR graph of a normal
person (right).

The analysis of an ABR graph involves a detailed evaluation of various parameters to
ascertain the auditory system’s status. Key indicators include the latency and amplitude of
waves; a delay in wave latency or a reduction in amplitude may signal auditory impair-
ments or issues within the central auditory pathway. By examining these attributes, clini-
cians can effectively gauge a patient’s hearing condition and devise appropriate treatment
strategies. Such diagnostic practices are crucial for the early detection and management of
hearing loss, thereby enhancing the quality of life and communication abilities of affected
individuals [13–16].

2.2. CNN Classification Model

In our previous study, we evaluated the classification of hearing loss using solely the
VGG16 model [8]. Expanding upon this initial approach, the current study incorporates
a broader array of convolutional neural network models, specifically VGG16, VGG19,
DenseNet121, DenseNet201, AlexNet, and InceptionV3, to perform more comprehensive
learning and classification tests. Each model, recognized for its unique strengths and
limitations, has previously been utilized across a variety of medical image classification
tasks. For the purposes of this study, we tailored the hyperparameters, specifically the batch
size and layer configurations, to optimize the learning process for ABR image classification.
This part details the architectural nuances and characteristics of each model and describes
the specific modifications made to the hyperparameters to enhance model performance
for this application. These adjustments are pivotal in refining our approach to accurately
classifying hearing loss through deep learning techniques.

2.2.1. VGG16 and VGG19

The VGG model, developed by the Visual Geometry Group at Oxford, includes two
primary configurations: VGG16 and VGG19. VGG19 extends the architecture of VGG16 by
adding three additional convolutional layers positioned before the 3rd, 4th, and 5th max
pooling layers, enhancing its depth and complexity. In our experiments with the VGG16
model, the original images, sized 573 × 505 pixels, were initially resized to 224 × 224 pixels.
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Subsequently, the images were further scaled down to dimensions of 286 × 252, 143 × 126,
71 × 63, 35 × 31, and 17 × 15 to facilitate object recognition. The learning process involved
adjustments in the dense layer configurations, with neuron counts set to 1024, 512, and 2,
optimizing the network’s ability to discern features at various scales. The VGG19 model,
with its additional convolutional layers, retains the number of layers for sizes 286 × 252 and
143 × 126 but adds a layer each at smaller scales (71 × 63 and smaller), comprising a total of
19 layers to enhance detail recognition [17–21]. In a related study conducted by Dey et al., a
pneumonia detection model utilizing VGG19 applied to chest X-ray images demonstrated
a high classification accuracy of up to 97.94% [22]. Similarly, Mateen et al. reported
that the VGG19 model was effectively utilized in medical image analysis, achieving an
impressive classification accuracy of 98.13% in a retinopathy classification system using
fundus images [23]. For the purpose of this study, which was tailored to ABR image
classification, the VGG19 model and the VGG16 model were enhanced by incorporating two
additional dense layers and a dropout layer in each configuration to prevent overfitting. The
learning framework was structured with dense layers of 1024, 512, 256, 128, and 2 neurons,
with a batch size of 8, serving as a robust hyperparameter setup. This architecture was
designed to maximize the model’s ability to accurately classify ABR images, leveraging
deeper layers for more nuanced feature extraction.

2.2.2. DenseNet121 and DenseNet201

DenseNet is a CNN model engineered to enhance training efficiency by integrating
the concept of shorter connections. This design enables direct links between the input and
output layers, fostering a deeper and structurally more efficient network capable of deliver-
ing precise performance outcomes. Unlike traditional CNNs, which feature connections
primarily to the immediately subsequent layer, DenseNet boasts a comprehensive connec-
tion structure with L(L + 1)/2 direct connections, greatly enriching the flow of information
across the network. To efficiently manage down-sampling, the architecture is segmented
into three distinct dense blocks. Each block is separated by a transition layer which per-
forms both convolution and pooling operations, thus maintaining the network’s depth
while progressively reducing its dimensionality [24–28]. In a related study by Chauhan
et al., a DenseNet model was employed to differentiate COVID-19 patients from healthy
individuals using chest X-ray images, achieving an impressive accuracy rate of 98.45% [29].
Within the context of this paper, the DenseNet121 and DenseNet201 models, comprising 121
and 201 layers, respectively, were utilized. Tailored specifically for ABR image classification,
the learning process was conducted using dense layers configured with 256 and 2 neurons
and a hyperparameter setting of a batch size of 8. This configuration was designed to
optimize the network’s capability for high-accuracy classification in ABR imaging.

2.2.3. AlexNet

AlexNet, a CNN model, significantly impacted the field of deep learning after securing
victory in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Named
after Alex Krizhevsky, the lead author of the seminal paper “ImageNet Classification with
Deep Convolutional Neural Networks”, AlexNet’s architecture has been instrumental in
advancing CNN development. Its structure features a sequential layout comprising an
input layer and five convolutional layers—each accompanied by a max pooling layer and a
normalization layer—culminating in a dense layer dedicated to classification tasks [30–33].
In research conducted by Chen et al., the efficacy of various models including 3DAlexNet,
ResNet50, and InceptionV4 was evaluated for the classification of magnetic resonance
images to diagnose prostate cancer, yielding classification accuracies of 92.1%, 87.6%, and
85.7%, respectively [34]. Another study by Titoriya and Sachdeva utilized the AlexNet
model to classify breast cancer tissue images, demonstrating a high classification accuracy
of 95.7%, thereby underscoring its potential for medical imaging applications [35]. In
this study, modifications were made to the original AlexNet architecture to enhance its
suitability for Auditory Brainstem Response (ABR) image classification. Adjustments
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included the integration of max pooling layers at the first and fifth convolutional layers and
the insertion of dropout layers within each dense layer to mitigate overfitting. The learning
process was optimized by setting the hyperparameters of the dense layers to 4096, 4096,
and 2, with a batch size of 8, facilitating an improved learning rates and robust classification
performance in ABR image analysis.

2.2.4. InceptionV3

Generally, there is a correlation between increased model size and both accuracy
and computational effort. For instance, the DenseNet architecture enhances performance
by deepening the model with skip connections, yet this also escalates computational
demands, resulting in longer training durations due to the increased depth. Similarly,
enlarging model size augments computational requirements, which presents a limitation
when operating within memory constraints. The Inception model, devised by Google,
addresses this challenge by employing convolutional decomposition to expand the model
size while minimizing computational costs. The InceptionV3 model, which was utilized in
this research, stands out among the Inception series with its 42-layer deep network, which
is optimized to maintain a balance between a low parameter count and computational
efficiency, akin to that of the VGG models [36,37]. In research conducted by Wang, Cheng,
et al., the InceptionV3 model was applied to develop a classification system for lung
nodules using chest X-ray images, achieving a classification accuracy of up to 86.4% [38]. In
the context of this study, the InceptionV3 model was adapted for ABR image classification.
Modifications were made to the model’s configuration, setting the hyperparameters of the
dense layers to 256 and 2, and the batch size to 8, to tailor the learning process specifically
for ABR image analysis. This strategic adjustment aims to leverage the model’s efficiency
and deep learning capabilities for precise ABR image classification.

3. Results
Model Training and ABR Data Classification Results

Using 7990 ABR data excluding impure data, learning and classification tests were
conducted with 4794, 1598, and 1598 train, validation, and test data at a ratio of 6:2:2,
respectively. The accuracy, loss results, and test classification confusion matrix results of
each model’s learning are as follows.

The results in Figure 5 highlight the performance metrics for the VGG16 model during
training, showing an accuracy of 91.58% and a loss of 6.52%. The confusion matrix for the
test dataset for this model indicated 769 true negatives (tn), 52 false negatives (fn), 707 true
positives (tp), and 70 false positives (fp). The VGG19 model demonstrated improved
training performance, achieving an accuracy of 94.84% and a loss of 4.64%. The test data for
this model produced a confusion matrix with 770 tn, 12 fn, 735 tp, and 81 fp. Additionally,
the DenseNet121 model recorded a training accuracy of 92.52% and a loss of 5.77%, with its
confusion matrix displaying 727 tn, 49 fn, 753 tp, and 69 fp.
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And the results in Figure 6, the DenseNet201 model’s training performance exhibited
an accuracy of 93.09% and a loss of 5.19%, with the confusion matrix for the test dataset
indicating 752 tn, 34 fn, 739 tp, and 73 fp. The AlexNet model, on the other hand, achieved
a training accuracy of 96.54% and a remarkably lower loss of 2.99%. The corresponding
confusion matrix demonstrated its high precision with 748 tn, 51 fn, 785 tp, and only
14 fp, underscoring its efficacy in accurately classifying the conditions with minimal
misclassifications. Lastly, the InceptionV3 model registered a training accuracy of 91.64%
and a loss of 6.59%, with its test data confusion matrix revealing 760 tn, 56 fn, 685 tp, and
97 fp.
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Based on the confusion matrix results from the test data for each model, various
performance metrics were calculated and systematically tabulated. These metrics include
accuracy, the true negative rate (TNR), the true positive rate (TPR), the false positive
rate (FPR), the false negative rate (FNR), precision, and the F1 score. The formulas for
each of these metrics are outlined below, with their respective results being derived from
Equations (1)–(7):

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

Accuracy: this is calculated as the ratio of correctly predicted observations (both true
positives and true negatives) to the total observations in the dataset.

TNR =
tn

tn + fp
(2)

True negative rate (TNR), also known as specificity: this measures the proportion of
actual negatives that are correctly identified.

TPR =
tp

tp + fn
(3)

True positive rate (TPR), also known as sensitivity or recall: this metric indicates the
proportion of actual positives that are correctly identified.

FPR =
fp

fp + tn
(4)

False positive rate (FPR): this is calculated as the ratio of the number of false positives
to the sum of the false positives and true negatives.

FNR =
fn

fn + tp
(5)
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False negative rate (FNR): this measures the proportion of positives which yield
negative test outcomes with the model.

Precision =
tp

tp + fp
(6)

Precision is also known as the positive predictive value: this is the ratio of true
positives to the combined total of true positives and false positives.

F1 score = 2 × precision × TPR
precision + TPR

(7)

F1 score: this is the harmonic mean of Precision and Recall, providing a balance
between the two when their rates may vary.

The calculated values for these metrics are compiled in a Table 1 within this paper, pro-
viding a comprehensive assessment of each model’s performance on the test dataset. This
structured approach allows for a detailed comparison and evaluation of the effectiveness
of each classification model in the context of hearing loss detection.

Table 1. Total data validity calculation results.

Accuracy TNR TPR FPR FNR Precision F1 Score

VGG16 92.37% 93.67% 90.99% 6.33% 9.01% 93.15% 0.9206
VGG19 94.18% 98.47% 90.07% 1.53% 9.93% 98.39% 0.9405

DenseNet121 92.62% 93.69% 91.61% 6.31% 8.39% 93.89% 0.9273
DenseNet201 93.30% 95.67% 91.01% 4.33% 8.99% 95.60% 0.9325

AlexNet 95.93% 93.62% 98.25% 6.38% 1.75% 93.90% 0.9602
InceptionV3 90.43% 93.14% 87.60% 6.86% 12.40% 92.44% 0.8995

The result of the classification models utilized in this research were evaluated based
on outputs of classification scores. Figure 7 presents the classification score results for
the AlexNet model, which demonstrated the highest accuracy among the models tested.
This figure displays image data that was randomly selected from the test dataset. It
includes the filename of the data—where “napa” denotes an image associated with hearing
loss and “tupa” indicates a normal hearing image. Additionally, the outcomes of the
classification process are indicated, with the number 0 representing hearing loss and the
number 1 representing normal hearing. The scores leading up to these classifications
are also documented to provide a comprehensive view of the model’s performance in
distinguishing between the two categories. This detailed display of results facilitates an
understanding of the model’s efficacy in accurately classifying auditory conditions based
on ABR image data.

These findings illustrate the varying levels of performance and accuracy across the
models tested, offering insights into their respective strengths and areas for improvement
in the classification of conditions based on the training and validation datasets.
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4. Discussion
4.1. Classification Data Analysis

In the current study, the classification learning revealed that AlexNet achieved the
highest overall accuracy, recording 95.93%. However, when focusing specifically on the
accuracy of hearing loss classification, as measured by the TNR, VGG19 excelled with a
TNR of 98.47%, making it the most effective model for this particular objective. Given that
the primary aim of this research is to accurately classify hearing loss, the VGG19 model
emerges as the superior performer in this context. Nevertheless, it is important to consider
the structural differences between the models. AlexNet, with its comparatively shallower
layer depth, consumes fewer temporal resources during the learning classification process.
Thus, for applications involving the classification of ABR data on a scale larger than the
current dataset of 7990 cases, AlexNet presents a viable option due to its efficiency in
handling larger datasets without a significant increase in computational demand. This
balance between accuracy and efficiency is crucial for scaling the application of these
models to larger datasets in future studies.

4.2. Analysis of ABR Data That Are Not Classified Correctly

In this part, we will discuss the results that were not classified correctly among the
classification results from various models.
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4.2.1. False Negative: In Case the Data Are actually Normal but Are Classified as a Patient
with Hearing Loss

Figure 8 presents a selection of misclassified cases identified through the application
of the AlexNet, VGG19, and VGG16 models within the classification analyses of this study.
These instances involve subjects who, despite having normal hearing, were erroneously
classified as suffering from hearing loss. The graph on the left represents ABR data from a
1-year-old infant, with V waves detected at 60 dB, 40 dB, and 30 dB. The analysis suggests
that the model’s misclassification may stem from the limited number of data points in this
sample, contrasting with the more comprehensive ABR data typically gathered from the
general population, which is measured in 10 dB increments from 30 dB to 90 dB. The middle
graph displays ABR results for a 52-year-old individual; no V wave was detected at 30 dB.
This subject, diagnosed with normal hearing by a medical professional, was analyzed in
comparison to typical public ABR data, which usually exhibits V waves across all tested
decibels. The absence of a V wave at 30 dB in this case led to a model misrecognition,
highlighting a deviation from expected patterns observed in broader datasets. The graph
on the right documents ABR measurements for an 18-year-old individual. The analysis
determined that the model misclassification occurred because the final 30 dB graph plotted
very close to the x-axis. This proximity likely influenced the model’s perception, causing it
to misidentify the presence of a V wave, which deviates from the normative data where V
waves are consistently present across all measurements. These illustrations underscore chal-
lenges with model accuracy when faced with atypical data representations, emphasizing
the need for the continuous refinement of classification algorithms to enhance diagnostic
precision in clinical settings.
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4.2.2. False Positive: In Case the Data Represent Patients with Actual Hearing Loss but
Classified as Normal

Figure 9 presents images indicative of hearing loss that were inaccurately classified as
normal by the model. For the images on the left and right, prior to the existing preprocess-
ing steps, the resolution was significantly compromised, necessitating further preprocessing
to enhance resolution quality. Despite these efforts, the resolution remained comparatively
lower than that of typical ABR graphs, which likely impeded the model’s ability to accu-
rately classify these cases. Concerning the image in the middle, the analysis suggests that
the misclassification occurred due to the proximity of the wave in the bottom graph to the
x-axis and its closeness to the graph directly above it. This spatial arrangement may have
confused the model, leading to an incorrect interpretation of the data. This observation
underscores the sensitivity of classification models to variations in graphical representation
and highlights the need for robust preprocessing techniques to ensure consistent image
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quality across all data inputs. Such improvements are critical for enhancing the accuracy of
diagnostic models in clinical applications.
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5. Conclusions

In this study, we developed multiple models to classify hearing loss using prepro-
cessed ABR graph data and evaluated their comparative performances. The AlexNet
model exhibited the highest accuracy with a value of 95.93%, while the VGG19 model
demonstrated the best TNR at 98.47%. Among the six evaluated models, AlexNet showed
the quickest learning speed, followed by InceptionV3, VGG16, VGG19, DenseNet121, and
DenseNet201 in terms of processing time. For instances in which images are incorrectly
classified, future work will involve exploring further supplementation and preprocessing
strategies. These will aim to enhance image quality without compromising the integrity of
the original data including measures such as increasing resolution, augmenting the X and
Y axes, and adjusting the wave positioning for each decibel level.

Previously, the process of diagnosing hearing loss using ABR involved audiologists
and otolaryngologists manually reviewing each ABR graph, which was time-consuming.
This study was conducted to address this issue and improve the efficiency of the diagnostic
process. The findings of this research pave the way for the development of a robust model
that can support the preliminary automatic classification of ABR data, assisting in the pre-
diagnostic stages before clinical evaluation by a physician. Additionally, the study plans
to extend into the creation of an automatic V-latency detection algorithm which will be
designed for universal application across various devices rather than being confined to spe-
cific equipment. This advancement is anticipated to simplify the diagnosis of hearing loss
and related auditory conditions, thereby enhancing patient care and diagnostic efficiency.
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