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Abstract: This paper introduces a novel one-dimensional convolutional neural network that utilizes
clinical data to accurately detect choledocholithiasis, where gallstones obstruct the common bile duct.
Swift and precise detection of this condition is critical to preventing severe complications, such as
biliary colic, jaundice, and pancreatitis. This cutting-edge model was rigorously compared with other
machine learning methods commonly used in similar problems, such as logistic regression, linear
discriminant analysis, and a state-of-the-art random forest, using a dataset derived from endoscopic
retrograde cholangiopancreatography scans performed at Olive View–University of California, Los
Angeles Medical Center. The one-dimensional convolutional neural network model demonstrated
exceptional performance, achieving 90.77% accuracy and 92.86% specificity, with an area under the
curve of 0.9270. While the paper acknowledges potential areas for improvement, it emphasizes the
effectiveness of the one-dimensional convolutional neural network architecture. The results suggest
that this one-dimensional convolutional neural network approach could serve as a plausible alterna-
tive to endoscopic retrograde cholangiopancreatography, considering its disadvantages, such as the
need for specialized equipment and skilled personnel and the risk of postoperative complications.
The potential of the one-dimensional convolutional neural network model to significantly advance
the clinical diagnosis of this gallstone-related condition is notable, offering a less invasive, potentially
safer, and more accessible alternative.

Keywords: choledocholithiasis; convolutional neural network; endoscopic retrograde cholangiopan-
creatography; risk prediction

1. Introduction

Choledocholithiasis is characterized by the obstruction of the common bile duct, which
can be either partial or complete, owing to the presence of gallstones. Often emerging as
a complication of cholelithiasis—gallstone formation in the gallbladder—this condition
represents a significant health challenge. It is estimated that between 10% and 20% of gall-
stone cases will present common bile duct stones (CBDSs) [1,2]. Various studies conducted
worldwide have determined that the prevalence of this condition ranges from 9% to 21%,
varying by region of study [3–5].

At present, endoscopic retrograde cholangiopancreatography (ERCP) stands as the
diagnostic method with the highest accuracy in identifying choledocholithiasis. Various
studies support that ERCP has a sensitivity that fluctuates between 80% and 93%, and it
boasts a specificity reaching 100% [2,6,7]. While the efficacy of ERCP is high, the procedure
is not without its challenges. These include the requirement for both specialized equipment
and highly trained personnel. Moreover, there are risks of postoperative complications
associated with ERCP. Such complications may range from pancreatitis and perforations of
the duodenum to internal bleeding. In the most severe cases, these complications can have
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fatal outcomes [6–10]. Despite these risks, ERCP remains a critical tool in the management
and diagnosis of biliary tract diseases, underscoring the importance of skilled operation
and patient selection.

Although choledocholithiasis typically arises as a complication of cholelithiasis, pre-
dictors of the former are often derived from those for the latter [11–14]. However, the
validity of these extrapolated predictors has not been adequately assessed in the context
of choledocholithiasis. Furthermore, considering that only a minority fraction of patients
with cholelithiasis will develop choledocholithiasis, it is crucial to have non-invasive and
specific prediction methods at our disposal [6,15].

Well-known institutions like the American Society for Gastrointestinal Endoscopy
(ASGE) have suggested criteria based on clinical indicators to categorize the suspicion
levels for choledocholithiasis. These criteria consider various factors, including the presence
of stones in the common bile duct (CBD), the occurrence of cholangitis, total bilirubin
levels, CBD dilation, pancreatitis, and the patient’s age. Using these factors, the risk of
choledocholithiasis is classified into low, medium, and high categories. Although these
criteria have been assessed in various studies with a sensitivity of up to 90.9% and a
specificity of up to 26.7% [16–18], they are regarded as an effective and non-invasive option
for diagnosing choledocholithiasis, albeit not at the level of the ERCP method. In this
context, machine learning emerges as a powerful ally, offering significant contributions to
the medical field by leveraging its pattern recognition strengths to analyze clinical data.

The convergence of clinical expertise and machine learning innovation has ushered in
a new era of groundbreaking advancements in medical diagnostics. This is exemplified
by G. Hernández-Nava et al. [19], who developed a novel and highly effective technique
for detecting epileptic seizures using EEG signals. S. Leyva-López et al. [20], on the other
hand, employed deep learning segmentation techniques to successfully predict the extent
of damage caused by idiopathic pulmonary fibrosis. Additionally, M. Fraiwan et al. [21]
leveraged clinical data to design a high-performance dual classifier capable of identifying
patients requiring abdominal surgery and the associated risk level.

In connection with the study topic of this paper, various studies of significance have
been identified. P. Jovanovic et al. [22] proposed a multilayer perceptron with nine inputs.
This model reached a sensitivity of 92.74% and a specificity of 68.42%. M. Vukicevic et
al. [23] developed an artificial neural network using various clinical parameters as inputs.
Their approach achieved a sensitivity of 88.20% and a specificity of 95.80%. V. S. Akshintala
et al. [24] implemented a random forest model based on a gradient boosting machine and
XGBoost, incorporating 12 clinical parameters as inputs. The model attained a sensitivity
of 82.40% and a specificity of 63.30%. Dalai et al. [16] performed a comparison of the
performance of several machine learning models. Their top model was a random forest that
used eight clinical parameters as inputs, achieving a sensitivity of 77.70% and a specificity
of 75.00%.

Designing classifiers based on clinical data is crucial. They provide an accessible, non-
invasive diagnostic method for all, which not only significantly enhances patient quality
of life but also diminishes the risks associated with complications from ERCP. Therefore,
the aim of this study is to introduce a machine learning algorithm designed to determine
a patient’s risk of developing choledocholithiasis based on clinical parameters. This goal
is achieved using one-dimensional convolutional neural networks (1D CNNs), with the
aim of outperforming existing machine learning methods such as logistic regression, linear
discriminant analysis, and random forest, as well as surpassing the current best human-
established criteria set by the ASGE.

This paper is organized as follows: Section 2 provides the background. The materials
and methods used are detailed in Section 3. The results are laid out in Section 4. A
discussion of these results is found in Section 5. Finally, the conclusions are drawn in
Section 6.
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2. Background
2.1. Logistic Regression

Logistic regression (LR) is a regression analysis method used to predict the outcome
of a categorical variable based on independent variables. It employs a logistic function
to convert the linear combination of the independent variables into a probability, which
consistently ranges between 0 and 1. This logistic function is defined in Equation (1) [25,26]:

y =
1

1 + e−(β0+β1x1+β2x2+...+βnxn)
(1)

where y is the probability of the event occurring; β0, . . . , βn are the model coefficients; and
x1, . . . , xn are the independent variables [25,26].

The model coefficients are estimated using methods such as the maximum likelihood
estimation. These coefficients indicate the strength and direction of the relationship between
the independent variables and the dependent variable.

The output of logistic regression is the probability of the response being 1. Conse-
quently, a decision threshold must be defined for classification. This threshold is commonly
set at 0.5 for binary classifications [25,26].

Among the advantages of LR, we find that it is a relatively simple model to understand
and apply; it is a versatile model usable in a broad range of applications; and it is a robust
model that is relatively insensitive to missing data or the data distribution.

LR has a wide range of applications, extending into the medical field, where it has
demonstrated excellent performance in classification procedures and feature extraction, as
evidenced in the works of [27,28].

2.2. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a machine learning method designed to classify
observations by assuming a similar distribution within each class [29,30].

In general terms, LDA operates in four steps:

1. Observations from each class are assumed to follow a normal distribution.
2. The mean and covariance matrix for each class are calculated.
3. Linear discriminant functions are computed to optimally separate the classes.
4. The classification of new observations is performed using these discriminant functions.

The linear discriminant functions conform to Equation (2):

fk(x) = wT
k x − bk (2)

where fk(x) is the discriminant function for class k; wk is the weight vector for class k,
calculated using the covariance matrix; and bk is the bias term for class k, computed using
the class mean [29,30].

Predictions are made by assigning an observation to class k for which the discriminant
function is highest [29,30].

LDA’s advantages include its simplicity, computational efficiency, and high accuracy
when class observations have distinct distributions. It has been effectively applied in
medical fields, such as in complex tasks like cancer classification [31,32], and for enhancing
other predictive algorithms [33].

2.3. Convolutional Neural Network

A convolutional neural network (CNN) is an artificial neural network specialized in
processing structured data like grids, applicable to time series, images, or videos. It is
named “convolutional” due to its use of convolution operations, which involves sliding a
filter across the grid dimensions to extract local features [34–36].
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In particular, 1D CNNs are designed to process one-dimensional data, such as se-
quences, signals, and text. In these networks, the convolution operation is applied along
the temporal dimension of the data [34–36].

While 1D CNNs have shown significant utility in temporal series applications, their
effectiveness extends to structured tabular data, including medical data for feature extrac-
tion using various 1D CNN filters [37–40]. The effectiveness of the analysis of structured
tabular data is based on the convolution operation. This operation seeks to identify patterns
not only in the target variables but also in the characteristics being analyzed. This allows
the patterns present in the variables used to be exploited as useful information in the
classification process.

CNNs are notable for their data generalization capabilities, suitability for supervised
learning, and robustness against noise and interference, making them highly effective in
real-world scenarios.

3. Materials and Methods

In this section, we outline our methodology, centering on the analysis of a detailed
dataset from Olive View–University of California, Los Angeles (UCLA) Medical Center,
and the rigorous development and validation of various 1D CNN architectures. This
approach ensures a comprehensive and precise evaluation of our machine learning models
in classifying choledocholithiasis.

3.1. Study Population

The dataset used for this study was voluntarily provided by the Olive View–UCLA
Medical Center research group. This dataset gathers information from all ERCPs performed
from 1 November 2015 to 31 December 2019 on adult patients [16]. It comprises 550 in-
stances, 26 attributes, and a decision variable. The decision variable is a value indicating
whether a patient has choledocholithiasis confirmed by ERCP (confirmation is defined as
the presence of stones, debris, or sludge in the common bile duct). The attributes include
the following:

• Demographic data: age, gender, and race.
• Clinical variables: body mass index, diabetes mellitus, cirrhosis, peak bilirubin, the

presence of gallstones in non-invasive imaging tests, the diameter of the common bile
duct, and the existence of the gallbladder.

• Annotations/comments: mixed texts made by specialists in the field.

3.2. Data Preprocessing

An initial exploratory analysis of the dataset was conducted. It was determined that
attributes related to annotations and comments were irrelevant to the study. Therefore, the
following attributes were removed: id, the date of the surgical procedure, reasons for the
surgical intervention, and the specialist’s comments. Null information in the target variable
was also identified and removed.

During the exploration, the presence of non-standard notations was identified. For
example, values such as "x", "0x", and similar variants were treated as null data. Addi-
tionally, categorical data in text format were converted into integer values.

Subsequently, it was found that six attributes had more than 25% missing data, leading
to the decision to eliminate them. For the remaining attributes, traditional imputation meth-
ods were employed: categorical attributes were imputed using the mode, and continuous
attributes were imputed using the mean.

With a complete dataset in hand, normalization techniques were applied to the con-
tinuous attributes. The z-score method was chosen for this purpose, as it standardizes the
continuous data to have a final mean of 0 and a standard deviation of 1.

The resulting dataset from preprocessing consists of 292 instances, with 12 attributes
and a decision variable. The distribution of this decision variable indicates 251 positive
cases (86%) and 41 negative cases (14%), evidencing a remarkable class imbalance. This
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imbalance poses a significant challenge, whose possible solutions will be addressed in
later sections.

Finally, two copies of the preprocessed dataset were created. The first copy was
intended for cross-validation processes, while the second was reserved for final validation
processes and model export.

For cross-validation, we divided the first copy into 10 folds using the stratified k-fold
technique. This methodology implies that 9 folds are used to train the model, while the
remaining fold is reserved as a test set. Once training with the training set was completed,
we evaluated the model with the test set and temporarily stored the results. Then, we
swapped the test model with one of the training folds that was not previously used as a
test set, reset the model weights, and retrained. At the end of training, we evaluated the
model with the test set and stored these results. This procedure was repeated until all folds
had been used as test sets. Then, we averaged the results of each experiment to obtain the
average performance of our model. In addition, we repeated this cross-validation process
100 times to allow the k-fold mechanism to select different elements in each run, which
gives us a more accurate estimate of the model performance.

On the other hand, we divided the second copy of our data into two segments: 80%
for training and 20% for testing. This set was used to train an untrained copy of the final
model. During this training process, we obtained graphs showing the evolution of the cost
in the training and validation sets. Once training was completed, we evaluated the model
using the test data (data not observed by the model), which involved generating the ROC
curve of the final model.

3.3. Design of Network Architectures

Different CNN architectures were experimented with, using 1D kernels in the con-
volutional layers. The variations focused on architectures with between 2 and 3 internal
layers and models with 32, 64, 128, and 256 filters. Despite these variations, the kernel
size was kept constant, being (1, 12) for the input and (1,1) for the output. The general
training parameters were fixed in all variations: 10 epochs, a batch size of 16, the Adam
optimizer, a learning rate of 0.001, and the binary cross-entropy loss function. These pa-
rameters were determined through prior experimentation, employing an early stopping
criterion that halted training if the validation loss did not improve by at least 0.025 within
3 consecutive epochs.

As a result of the design process described in the previous paragraph, the 1D CNN
that performed best is detailed in Table 1, demonstrating a configuration of 2 internal layers.
It is important to mention that the selection of this architecture was based on a meticulous
process of 10-fold k-fold cross-validation that will be described in later sections.

Table 1. The design of the best-performing convolutional neural network architecture.

Parameter Value

Input (shape) (1, 12, 1)
Internal Layer 1 (filters, kernel size) (128, (1, 12))
Internal Layer 2 (filters, kernel size) (512, (1, 1))
Output (shape) (1, 1)

3.4. Training and Validation of Architectures

To select the best CNN architecture, a 10-fold cross-validation was implemented on
the complete dataset. This cross-validation process was performed following a stratified
strategy, which ensures that the percentage of each class is preserved in each fold, allowing
us to deal with the class mismatch present in the data.

In each fold, each model was compiled, trained, and evaluated using various metrics:
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), F1 score, and area under the curve (AUC). This process was replicated for all combi-
nations of hyperparameters previously described. Upon completing the cross-validation,
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the mean performance of the metrics for each architecture was determined, and the one
that showed the greatest consistency in results across folds was selected.

In parallel, two conventional machine learning models were trained: LR and LDA.
Both models underwent the same cross-validation protocol used for the CNN architectures.

Once the optimal architecture was defined, it was re-evaluated using the test set,
which represented 20% of the original data segregated during preprocessing. This final
evaluation aimed to determine the area under the ROC curve for the 1D CNN, LR, and
LDA architectures.

Additionally, a graph was generated to contrast the performance of these models with
the results of relevant studies in the field.

4. Results
4.1. Analysis of Study Population

Regarding the data preprocessing performed, it is noted that the characteristics, once
normalized, operate within comparable ranges, and thanks to imputation, data gaps have
been mitigated. These interventions have paved the way for the effective training of
machine learning algorithms, optimizing their performance.

In total, the dataset consists of 292 unique records, with a distribution of 251 cases
(86%) confirmed with choledocholithiasis and 41 cases (14%) without evidence of it. The
detailed breakdown of the attributes, segmented by study category, is presented in Table 2.
This table specifies the units for each attribute, as well as the median and interquartile
range for those attributes of a continuous nature. For categorical attributes, the table shows
the frequency and the corresponding percentage for each category.

Table 2. The characteristics of all patients included in the dataset used, grouped according to
ERCP findings.

Characteristic
Positive Chole-
docholithiasis
(n = 251)

Negative Chole-
docholithiasis
(n = 41)

Age (years), median (IQR) 46 (33–56) 47 (32–62)
Gender, n (%)

Female 166 (66.1) 20 (48.8)
Male 85 (33.9) 21 (51.2)

Race, n (%)
White 14 (5.6) 4 (9.8)
Hispanic/Latino 188 (74.9) 28 (68.3)
African American 4 (1.6) 0 (0)
Asian 10 (4.0) 2 (4.9)
Other 35 (13.9) 7 (17.1)

BMI, median (IQR) 29.0 (25.6–33.6) 30 (26.0–36.7)
Diabetes, n (%)

Yes 35 (13.9) 11 (26.8)
No 216 (86.1) 30 (73.2)

Cirrhosis, n (%)
Yes 8 (3.2) 2 (4.9)
No 243 (96.8) 39 (95.1)

Maximum bilirubin (mg/dL), median (IQR) 3.6 (1.8–5.5) 3.5 (1.9–5.8)
Biliary tract obstruction, n (%)

Yes 135 (53.8) 19 (46.3)
No 116 (46.2) 22 (53.7)

Common bile duct diameter (mm), median (IQR)
Ultrasound 8.2 (6–10) 6.3 (4.2–9)
ERCP 10 (9–12) 10 (8–11)
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Table 2. Cont.

Characteristic
Positive Chole-
docholithiasis
(n = 251)

Negative Chole-
docholithiasis
(n = 41)

Intraductal filling, n (%)
No 4 (1.6) 26 (63.4)
Sludge 25 (10.0) 9 (22.0)
Stone 147 (58.6) 4 (9.8)
Sludge and stone 75 (29.9) 2 (4.9)

Gallbladder, n (%)
Yes 175 (69.7) 36 (87.8)
No 76 (30.3) 5 (12.2)

Categorical data are shown as count (n) and percentage (%) in each category, while continuous data are displayed
as median and interquartile range (IQR). Abbreviations: BMI, body mass index; ERCP, endoscopic retrograde
cholangiopancreatography.

In addition, during the analysis of the study data, the importance of each of the
attributes in the classification process was determined. For this purpose, Pearson’s and
Kendall’s correlations were used as importance metrics. Table 3 shows the importance of
each characteristic, showing the characteristic with the highest contribution in first place
and the characteristic with the lowest contribution in last place.

Table 3. Importance of each characteristic in choledocholithiasis classification.

Correlation Method CharacteristicPearson Kendall

0.6300 0.4907 Intraductal filling
0.1400 0.1403 Gallbladder
0.1300 0.1136 Common bile duct diameter (Ultrasound)
0.1100 0.1075 Common bile duct diameter (ERCP)
0.0520 0.0517 Biliary tract obstruction
0.0350 0.0002 Maximum bilirubin
−0.0012 −0.0151 Age
−0.0160 0.0054 Race
−0.0320 −0.0323 Cirrhosis
−0.0590 −0.0502 BMI
−0.1200 −0.1228 Diabetes
−0.1300 −0.1253 Gender

Examining the data presented in Table 3, it is evident that the intraductal filling variable
exhibits the most prominent correlation with our variable of interest in terms of both
Pearson’s correlation coefficient (assessing linear relationship) and Kendall’s correlation
coefficient (assessing rank correlation). Furthermore, it is observed that both gallbladder
and common bile duct diameters (assessed by ultrasound and ERCP) show significant
correlations according to both calculated indices. These findings provide us with insight
into the patterns considered by the architectures proposed in this study when generating
their predictive results.

4.2. LR and LDA Models

The LR and LDA models were trained in parallel with the CNN architectures. For LR,
the resulting equation after training is established in Equations (3) and (4):

y =
1

1 + e−t (3)

t =− 1.7832 + 0.0160x1 − 0.2718x2 + 0.2439x3 + 0.1170x4

− 0.6438x5 − 0.1492x6 + 0.6289x7 − 0.0755x8 + 0.0217x9

+ 0.2316x10 + 2.5761x11 + 0.1447x12

(4)



Diagnostics 2024, 14, 1278 8 of 14

Meanwhile, LDA resulted in a single linear combination of various features, which is
defined by Equation (5):

f (x) =− 3.5391 + 0.1828x1 − 0.8358x2 + 0.3553x3 + 0.1245x4 − 1.3415x5 − 1.2359x6

+ 0.7679x7 + 0.2481x8 + 0.1693x9 + 0.0525x10 + 4.0062x11 + 0.6648x12
(5)

4.3. One-Dimensional CNN Model

Figure 1 shows the process of convergence of the loss during each of the trained
epochs: in blue, the value of the loss in the training set is shown, while orange represents
the value of the loss in the validation set. The data shown in the graph demonstrate that the
early stopping criterion experimented with prior to the final training prevents the proposed
1D CNN from showing signs of overfitting, with 10 epochs being an adequate number to
maintain a balance between achieving the best performance and avoiding overfitting. It
should be noted that the claim of avoiding over-adjustment arises from the fact that within
the 10 training epochs, there is no point at which the validation cost increases while the
training cost decreases.

Figure 1. The loss during the training process of the 1D CNN model. In blue, loss on the training set.
In orange, loss in the validation set.

4.4. Performance of Models

In order to show the feasibility of the results obtained, 100 trials were carried out
where the 10-fold cross-validation process was replicated for each of the architectures
proposed in this study (1D CNN, LDA, and LR). For each of the trial processes, the mean
values of each of the metrics were obtained, obtaining the mean performance of each
architecture in each of the trials. Finally, the mean performance of each trial was averaged
with the rest, providing the mean performance of each architecture after the 100 trials. It is
worth mentioning that the metrics used to obtain the mean values were derived from the
validation sets of each of the k-fold experiments.

Table 4 compares the performance of the proposed architecture with traditional ma-
chine learning models and results reported in studies using the same database. It integrates
the findings of [16] for their standout machine learning model, along with evaluations
based on ASGE criteria. These results show the mean value obtained at the end of the 100
experiments, as well as their standard deviation (std).

Considering the proposed 1D CNN architecture in particular, Figure 2a–g show the
distribution of each metric during the evaluation process with the 100 experiments. These
histograms allow us to observe how the performance of the architecture varies, demonstrat-
ing that the results obtained are not random.
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(a) Accuracy of 1D CNN over 100 trials. (b) Sensitivity of 1D CNN over 100 trials.

(c) Specificity of 1D CNN over 100 trials. (d) PPV of 1D CNN over 100 trials.

(e) NPV of 1D CNN over 100 trials. (f) F1 score of 1D CNN over 100 trials.

(g) AUC of 1D CNN over 100 trials.
Figure 2. Performance of 1D CNN over 100 trials. (a) Sensitivity. (b) Accuracy. (c) Specificity. (d) PPV.
(e) NPV. (f) F1 score. (g) AUC.
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Table 4. Performance of different machine learning models evaluated and the ASGE criteria.

Model
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Score (%) AUC
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

1D CNN 90.77 0.0071 96.77 0.0005 92.86 0.0062 92.86 0.0062 72.35 0.0366 94.77 0.0040 0.9270 0.0112
LDA 92.22 0.0124 95.45 0.0084 77.74 0.0563 95.45 0.0084 77.74 0.0563 95.49 0.0074 0.8432 0.0226
LR 92.53 0.0110 94.29 0.0087 83.97 0.0534 94.29 0.0087 83.97 0.0534 95.73 0.0062 0.8404 0.0237
UCLA RF [16] 76.90 - 77.30 - 75.00 - 94.40 - 37.50 - - - 0.8010 -
ASGE [16] 80.80 - 90.90 - 25.00 - 87.00 - 33.30 - - - - -

Abbreviations: 1D CNN, one-dimensional convolutional neural network; LDA, linear discriminant analysis; LR,
logistic regression; Std, standard deviation; UCLA RF, random forest designed by Olive View–UCLA Medical
Center [16]; ASGE, performance of criteria from the American Society for Gastrointestinal Endoscopy, as reported
by [16]. The maximum value of each of the metrics is highlighted in bold.

Additionally, Figure 3 illustrates the ROC curves of the models mentioned in Table 4.
These ROC curves are the result of having evaluated each of the models in the test set and
include the value of the area under the curve (AUC) of each model.

Figure 3. ROC curves of the models trained for predicting choledocholithiasis. The ASGE criteria are
represented as a single point because this information comes from relevant studies.

5. Discussion

Reviewing the performance comparison in Table 4, the effectiveness of the proposed
architecture in classifying choledocholithiasis is apparent.

In terms of accuracy, the 1D CNN shows an average value of 90.77%, indicating that,
overall, it correctly classifies 90.77% of the test samples. This figure is competitive with LR
and LDA, although the latter two show a slightly higher accuracy, with values of 92.22%
and 92.53%, respectively.

In terms of sensitivity, which measures the ability of the model to correctly identify
positive samples, the 1D CNN exhibits outstanding performance, with an average value
of 96.77%. This result indicates that the CNN has a high ability to detect positive samples
within the dataset, slightly outperforming LR and LDA in this metric.
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In terms of specificity, which evaluates the ability of the model to correctly identify
negative samples, the 1D CNN shows a similarly strong performance, with an average
value of 92.86%.

Regarding PPV and NPV, which measure the proportion of positive and negative
predictions that are correct, respectively, the 1D CNN shows average values of 92.86%
and 72.35%, respectively. These figures, in conjunction with the sensitivity and specificity
values, indicate that the model has high accuracy in predicting positive cases but may have
more difficulty in correctly ruling out negative cases compared to LR and LDA.

In terms of the F1 score, which combines precision and sensitivity into a single metric,
the 1D CNN shows an average value of 94.77%, indicating a balance between precision and
the ability to correctly identify positive samples. This result highlights the effectiveness of
the model in accurately classifying both classes, although it is important to note that LR
and LDA also show competitive F1 scores.

As for the AUC, which evaluates the discrimination ability of the model at different
classification thresholds, the 1D CNN shows an average value of 0.9270. This result
indicates that the model has a high ability to distinguish between positive and negative
classes, suggesting its effectiveness in binary classification.

It is important to note that the ASGE criteria set, despite not having an AUC value and,
therefore, lacking a continuous ROC curve, shows a point on the graph that evidences its
inferiority in specificity compared to other models, although it maintains high sensitivity.

The findings reveal that the suggested 1D CNN approach outperforms conventional
machine learning methodologies such as LDA and LR, primarily due to its ability to
achieve significantly higher AUC values. While it is acknowledged that, in certain metrics,
alternative methods may occasionally yield superior results, a thorough examination of
the outcomes derived from cross-validation underscores the notable consistency achieved
by the proposed approach across diverse segments. This consistency is highlighted by the
consistently lower standard deviation values exhibited by the 1D CNN across all metrics,
thus affirming its heightened reliability as a predictive model.

6. Conclusions

In this study, we introduce a pioneering 1D convolutional neural network (CNN)
tailored to leverage clinical data for the precise detection of choledocholithiasis. This patho-
logical state, characterized by the obstruction of the common bile duct due to gallstones,
presents substantial health hazards, underscoring the critical importance of swift and
accurate identification to mitigate severe complications.

Our novel model distinguishes itself with exceptional proficiency in choledocholithia-
sis detection, as evidenced by its notable accuracy rate of 90.77% and specificity of 92.86%,
accompanied by an impressive AUC value of 0.9270. These outcomes were derived from a
comprehensive evaluation against alternative machine learning methodologies, utilizing a
meticulously curated dataset sourced from ERCP scans conducted at Olive View–UCLA
Medical Center.

The outcomes gleaned from our investigation unveil the significant potential of the
1D CNN approach in diagnosing choledocholithiasis. This triumph can be attributed
to the remarkable capacity of 1D CNNs to discern inherent patterns within the input
variables and effectively propagate this information through the respective internal layers.
This inherent capability substantially bolsters the algorithm’s efficiency in global pattern
recognition, which is further augmentable through tailored kernel configurations exhibiting
high correlation values. Moreover, the innate dimensionality reduction prowess of 1D
CNNs facilitates the abstraction of pivotal information, concurrently trimming down
computational overheads, thus expediting the diagnostic workflow.

The ramifications of our study extend far beyond the realm of choledocholithiasis
diagnosis. The non-invasive nature of the 1D CNN model heralds a safer, more accessible
avenue for identifying this gallstone-related pathology, thereby poised to revolutionize
prevailing clinical paradigms. This investigation not only underscores the efficacy of the
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1D CNN architecture but also heralds a new era of its utilization in medical diagnos-
tics, laying the groundwork for advancements in patient welfare and the overarching
healthcare landscape.
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