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Abstract: The premise for this study emanated from the need to understand SARS-CoV-2 infections
at the molecular level and to develop predictive tools for managing COVID-19 severity. With the
varied clinical outcomes observed among infected individuals, creating a reliable machine learning
(ML) model for predicting the severity of COVID-19 became paramount. Despite the availability of
large-scale genomic and clinical data, previous studies have not effectively utilized multi-modality
data for disease severity prediction using data-driven approaches. Our primary goal is to predict
COVID-19 severity using a machine-learning model trained on a combination of patients’ gene
expression, clinical features, and co-morbidity data. Employing various ML algorithms, including
Logistic Regression (LR), XGBoost (XG), Naïve Bayes (NB), and Support Vector Machine (SVM),
alongside feature selection methods, we sought to identify the best-performing model for disease
severity prediction. The results highlighted XG as the superior classifier, with 95% accuracy and a 0.99
AUC (Area Under the Curve), for distinguishing severity groups. Additionally, the SHAP analysis
revealed vital features contributing to prediction, including several genes such as COX14, LAMB2,
DOLK, SDCBP2, RHBDL1, and IER3-AS1. Notably, two clinical features, the absolute neutrophil
count and Viremia Categories, emerged as top contributors. Integrating multiple data modalities
has significantly improved the accuracy of disease severity prediction compared to using any single
modality. The identified features could serve as biomarkers for COVID-19 prognosis and patient care,
allowing clinicians to optimize treatment strategies and refine clinical decision-making processes for
enhanced patient outcomes.

Keywords: COVID-19; severity prediction; machine learning; feature selection

1. Introduction

The global impact of the COVID-19 pandemic has warranted a robust and nuanced
understanding of the factors influencing disease severity to improve clinical decision
support and patient outcomes. With the emergence of advanced technologies, particularly
in artificial intelligence (AI) and ML, a growing opportunity exists to harness the available
data for predictive modeling and disease management. Previous studies have demonstrated
the efficacy of these technologies in diagnosing and managing viral diseases, including
COVID-19 [1,2].

The unique nature of COVID-19 infection and disease progression poses challenges
for treatment development. While SARS-CoV-2 RNA tests diagnose infections qualitatively,
the early determination of disease severity is crucial for devising an appropriate treatment
strategy. Although CT scans and conventional laboratory procedures are helpful, they may
not capture lung alterations in 20% of COVID-19 cases [3]. On the other hand, lab tests
like blood cell counts offer practical alternatives, revealing reduced white blood cell and
platelet counts alongside elevated serum ferritin and C-reactive protein levels in COVID-19
patients [4]. Clinical characteristics like the C-reactive protein amount, gender, age, lactic
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dehydrogenase, and lymphocyte count correlate significantly with COVID-19 severity [5].
RNA-based assessments, applicable across healthcare, are crucial in COVID-19 diagnosis
and prognosis [6]. Gene expression patterns across patient populations, identified through
RNA-seq data, can be explored to identify potential biomarkers for COVID-19 progression
and severity [6,7]. On this front, ML emerges as a promising tool for precise and rapid
disease severity assessment. ML algorithms, designed to uncover hidden patterns and
intricate correlations, have been employed in various studies predicting contributing factors
for COVID-19 severity [8–10].

Despite the efforts to leverage clinical and gene expression data for predicting COVID-19
severity, the current challenge lies in integrating genomic and clinical data to develop
accurate prognostic models for effective disease management.

In this study, we devolved machine-learning models to predict COVID-19 severity
by incorporating three data modalities: RNA-seq-based gene expression, diverse clinical
features, and co-morbidity information. Combining these three data types aims to capture
the correlations among the three modalities, enhancing disease severity prediction accuracy
and offering accurate clinical decision support. Further, our study employs SHAP analysis
and pathway enrichment techniques to unravel the contributing factors for prediction and
the biological pathways involved in disease severity.

2. Materials and Methods
2.1. Datasets and Preprocessing

We obtained a GSE212041 dataset from the GEO database [11]. The dataset comprised
392 patients: 306 hospitalized COVID-19 patients, 78 symptomatic controls, and 8 healthy
controls. From these patients, a total of 722 blood samples were collected at different
time points: 374 samples on day 0 (D0), 212 samples on day 3 (D3), and 136 on day 7
(D7) from the COVID-19-positive patients admitted to the Massachusetts General Hospital
Emergency Department (ED).

In the present study, we used data from only 299 COVID-19 patients out of 306 because
the missing metadata for the remaining seven patients provided samples at D0. The original
research classified patients into five classes (A1–A5) based on the severity of the disease
(Table 1). Classes A1 and A2 included patients recognized as dead within 28 days and
those who survived but required mechanical ventilation and intubation, respectively. We
regrouped patients from these classes into a single group termed ‘severe’. Patients in the
A3 class were placed in the ‘moderate’ group, while patients originally in A4 and A5 were
placed in the ‘mild’ group (Table 1).

Table 1. Table with a number of samples in the original class and our class definitions.

Original Classification (GSE212041) Our Classification

Severity Class Label Sample Count Severity Class Description Class Sample Count

A1 40 Death
Severe 76

A2 36 Intubated/ventilated, survived

A3 149 Hospitalized, supplementary O2 required, survived Moderate 149

A4 45 Hospitalized, no supplementary O2 required, survived
Mild 74

A5 29 Discharged/Not hospitalized, survived

2.2. Data Description and Preprocessing

Gene expression data
All patients’ raw read count data underwent initial filtration, removing genes with

expression values as zeros or NaN in over 20% of the samples. The total number of gene
features after preprocessing was 5293 (Supplementary Table S1). Subsequently, the DEseq2
package was applied to normalize raw read counts, and FPKM values were computed using
the FPKM function [12,13]. We also used an independent dataset (GSE172114) comprised
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exclusively of blood gene expression profiles (FPKM values) of 69 COVID-19 patients
(46 critical and 23 non-critical) to test the performance of models.

Clinical data
The clinical data encompassed all 11 features, including age, body mass index (BMI),

lactate dehydrogenase (ldh), absolute neutrophil count (abs_neut), absolute lympho-
cyte count (abs_lymph), cardiac event (Trop), Viremia, creatinine, absolute monocyte
(abs_mono), D-dimer (ddimer), c-reactive protein (crp), and neutrophil enrichment (Neu).
More details of the clinical features are provided in Supplementary Table S2.

Co-morbidity data
In addition to clinical features, co-morbidity data included nine variables describ-

ing pre-existing conditions such as heart disease (HEART), lung disease (LUNG), kidney
disease (KIDNEY), diabetes (DIABETES), hypertension (HTN), immunocompromised con-
ditions (IMMUNO), respiratory symptoms (Resp_Symp), febrile symptoms (Fever_Sympt),
and GI-related symptoms (GI_Symp). More information about co-morbidity features is
mentioned in Supplementary Table S3.

2.3. Data Augmentation

Data augmentation artificially increases the size or diversity of a dataset used for bio-
logical analysis. This technique is commonly employed in biological research, particularly
in genomics, bioinformatics, and image analysis, where the control sample size is very
low compared to the treatment sample size [14,15]. In the present study, we needed to
balance the sample size for the ‘mild’ and ‘severe’ classes to be on par with that of the
‘moderate’ class (Table 1). We used Adaptive Synthetic Sampling (ADASYN) to oversample
the minority class and address the class imbalance problem [16]. ADASYN mitigates
this issue by adaptively generating synthetic samples for the minority class based on the
local density distribution of existing instances [17]. The algorithm works mainly in four
steps: (1) the data distribution analysis of all the classes, (2) the density estimation and
identification of k-nearest neighbors of all instances in the minority classes, (3) the difficulty
level measurement of minority and majority class instances, and (4) adaptive sampling
based on the difficulty ratio to determine the number of synthetic samples needed for each
minority class instance. In our experiments, we used default values of all parameters and
hyperparameters such as, sampling_strategy: ‘auto’, n_neighbors: 3, details: n_jobs: 1, and
random_state: None.

2.4. The Determination of Feature Weights and Integration

In disease severity prediction, implementing feature weights plays a crucial role in
enhancing the accuracy and interpretability of ML models. It assigns different levels of
importance to various features within each data type, allowing the model to focus on the
most influential factors in predicting disease severity. Below, we describe strategies for
assigning and utilizing feature weights for each data modality before model training and
severity prediction, as depicted in Figure 1.

2.4.1. Weights to Gene Features

A LASSO (Least Absolute Shrinkage and Selection Operator) regularization approach
was implemented for gene expression data to ascertain the correlation coefficients for each
gene with the severity of COVID-19 [18]. All parameters were set as defaults with an alpha
value of 1.0. This technique aids in identifying and emphasizing the genes that exhibit a
significant impact on predicting disease severity. The model can prioritize their influence
by assigning weights to these genes based on these expression values, contributing to a
more refined and accurate prediction (Supplementary Table S4).
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2.4.2. Weights to Clinical Features

In this case, we calculated the Gini index, representing the importance of each clinical
feature. This index, integrated with the Random Forest Classifier module, assigned weights
to clinical features based on their predictive power [19]. Features deemed to be more
critical in determining disease severity were assigned higher weights, ensuring that the
model precedes these influential factors during prediction. Finally, a weighted clinical
feature matrix was generated, as illustrated in Figure 1. The clinical features and their
corresponding weights are provided in (Supplementary Table S5).

2.4.3. Weights to Co-Morbidity Features

The impact of pre-existing conditions on COVID-19 severity was assessed using
the Python library Lifelines, which calculated the concordance index (CI) [20]. The CI,
representing the weight of each pre-existing condition, was then integrated into the original
matrix to create a general final weighted co-morbidity matrix (Figure 1, Supplementary
Table S6). By assigning weights to different medical conditions, the model could discern
their relative contributions to the overall prediction of COVID-19 severity.

2.4.4. Integration of Weighted Feature Matrices

The weighted gene expression, clinical, and co-morbidity data were concatenated to
generate a final integrated matrix, which was used as the input for the ML model, as shown
in Figure 1. Including feature weights ensured that the model considered the varying
importance of genes, clinical indicators, and pre-existing conditions when predicting
disease severity. This approach allowed for more refined and accurate prediction, as the
model assigned higher importance to features with greater predictive power.

2.5. Machine Learning Model

Four distinct ML algorithms, including LR, XG, NB, and SVMs, were employed to
identify a robust prediction model for disease severity [21–24]. These are the most used
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algorithms for classification problems due to their strengths and adaptability to different
data types. LR is well-suited for binary or multiclass classification with interpretable results,
while XG excels in boosting decision trees for improved predictive performance. NB is
effective in probabilistic classification, particularly with relatively simple and independent
features. On the other hand, an SVM is powerful for finding optimal hyperplanes in
high-dimensional spaces and is useful in scenarios where complex decision boundaries
are needed. ANN, conversely, can capture intricate patterns and non-linear relationships
in data, making them suitable for tasks demanding high complexity and abstraction.
Exploring these diverse algorithms allows for a comprehensive exploration of the data’s
characteristics and the potential to achieve better overall model performance. Ten-fold
cross-validation was used for all models.

The Scikit-learn libraries were employed to import these classifiers (Scikit-learn Ma-
chine Learning in Python) [25]. At first, we applied LR, recognized as a heuristic method
for multi-class classification. The LR algorithm was implemented using the Scikit-learn
library’s Logistic Regression module, utilizing default parameters while specifying the
‘OvR’ mode (One-vs-Rest) for the multiclass parameter. The algorithm XG was executed
through the XG Python library. The algorithm was configured with a learning rate of 0.5,
a maximum tree depth of 3, and 800 runs (n-estimators) for learning. The NB was imple-
mented with its default parameters of class_count as three and class_prior as ‘none’. The
SVM classifier algorithm was also applied with all default settings (C = 1.0, kernel = ‘rbf’,
degree = 3). Finally, an ANN was implemented with three layers, 100 epochs, ReLU (Recti-
fied Linear Unit), and SoftMax as activation layers, Adam as the optimizer, and Categorical
Cross-Entropy set as the loss function.

2.6. Evaluation of Model Performance and Comparison

We evaluated the model’s performance by measuring the accuracy, F1 score, and the
AUC. We used the cross_value_score function from Scikit-learn Python to calculate the
evaluation metrics.

2.7. Feature Importance and Contribution Analyses

We adopted SHapley Additive exPlanations (SHAPs), commonly used to explain
the output of any ML model in the context of the feature’s contributions. Because of the
different combinations of input features, Shapley was utilized to find features with high
classification power between COVID-19 severity groups [26]. In the context of gene ex-
pression data, SHAP helps discern the impact of individual genes on predicting disease
severity. For clinical features, the impact of variables such as age, neutrophil count, and
other clinical indicators on prediction can be identified. Similarly, it elucidates the influ-
ence of pre-existing conditions on the overall severity prediction. We used a combined
(gene-expression, co-morbidity, and clinical feature matrix) input matrix in SHAP with
299 rows (patients) and 294 columns (features). By integrating SHAP values across these
three different data types, a comprehensive understanding of feature contributions is at-
tained, facilitating the interpretation of ML model predictions and enhancing the model’s
transparency and interpretability.

2.8. Downstream Analysis of Significant Gene Features

We performed pathway enrichment analysis using 2753 significant gene features
obtained after applying feature selection using LASSO regression. All the significant genes
were used as input for Ingenuity Pathway Analysis (IPA) with default parameters [27].
Enriched biological pathways were observed to understand their associations with the
severity of COVID-19.

3. Results

This study seeks to employ ML models to predict disease severity and identify the
associated clinicogenomic features in COVID-19 patients. We analyzed the gene expression
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data and the clinical and co-morbidity information of 299 hospitalized COVID-19 patients.
After preprocessing the data, we had 253 gene features, 11 clinical features, and 9 co-
morbidity features for all the patients, as mentioned in Supplementary Tables S3 and S4. In
the gene expression dataset, our feature selection strategy identified 2753 genes that were
most relevant and highly associated with disease severity. These genes and the clinical
and co-morbidity features were further used as input in model training. Multiple machine
learning algorithms, including LR, NB, XG, and SVM models, were trained to classify
the severity classes of ‘severe’, ‘moderate’, and ‘mild’. We used F1 and accuracy metrics
to evaluate each model’s performance. The schematic workflow of the data integration
approach, feature selection, and model development is provided in Figure 1.

3.1. Effects of Data Augmentation on Model Performance

As the method mentions, ADASYN oversamples the ‘severe’ and ‘mild’ groups to
address the class imbalance. This experiment used only gene expression data due to its rich
feature size. As a result, the number of samples was increased from 76 to 120 in the ‘severe’
class and 74 to 134 in the ‘mild’ class after augmentation (Table 2). ADASYN automatically
determines the augmentation size of the minority classes to bring them up to par with the
majority class.

Table 2. The number of samples in each class, ‘severe’, ‘moderate’, and ‘mild’, before and after data
augmentation (using ADASYN).

Class
Number of Samples

Pre-Augmentation Post-Augmentation

Severe 76 120

Moderate 149 149

Mild 74 134

We evaluated LR, XG, NB, and SVM performances before and after augmentation.
As shown in Table 3, the augmented model demonstrates a noticeable improvement in
accuracy and the AUC compared to the original models. XG achieved a remarkable
enhancement from a 40% accuracy and an AUC of 0.47 to a 95% accuracy and a 0.99 AUC
after data augmentation. In comparison, LR demonstrated a slight increase in accuracy
from 43% to 81% and an AUC from 0.56 to 0.93. Similarly, NB and the SVM showed slight
improvement after data augmentation (Table 3). In this, we observed that increasing the
size and diversity in the training dataset allowed the model to encounter more features and
generalize better to test data. More specifically, the strategy introduced noise and variation
in the classes of “Severe” and “Mild”, which, in a true sense, helped prevent the model
from fitting to the noise in the training data and improved its ability to generalize to new
and unseen examples.

Table 3. The evaluation of ML models with 10-fold cross-validation before and after data augmenta-
tion for predicting COVID-19 severity. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM:
a Support Vector Machine.

Classifier
Before Augmentation After Augmentation

Accuracy (%) AUC Accuracy (%) AUC

LR 43 0.56 81 0.93

XG 40 0.47 95 0.99

NB 31.6 0.45 42 0.70

SVM 50 0.42 55 0.47
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3.2. The Evaluation of ML Models with Single- and Multi-Modality Data

In earlier stages, data augmentation only contributed to marginal improvements in
class predictions for a limited number of models. This raised concerns about the potential
misallocation of feature weights during model training, leading to suboptimal performance
even after oversampling. Therefore, we calculated weights for each feature and generated
individually weighted matrices for each data type (i.e., gene expression, clinical, and co-
morbidity) and subsequently used them as input for the model. As mentioned in the
methodology, the Gini index score, the concordance index, and the R-squared score from
LASSO regression were used to calculate weights to corresponding features in each data
matrix, i.e., the clinical, co-morbidity, and gene expression data matrices. The assignment
of weights to feature matrices is a critical aspect influencing the performance of predictive
models. By assigning different weights to individual feature matrices, the model learns to
prioritize and emphasize specific types of information. The complete set of utilized clinical
and co-morbidity data can be found in Supplementary Table S7.

As shown in Figure 2, the 10-fold accuracies for ML models generated from single-
modality-weighted matrices are low for all algorithms, indicating that the features were
insufficient for the ML Model to predict the difference between the three COVID-19 groups.
Additionally, we evaluated our model using an independent dataset (GSE172114), con-
sisting solely of blood gene expression profiles from 69 COVID-19 patients (46 critical
and 23 non-critical). The preprocessing procedure mirrored that of GSE212041. In this
experiment, XG demonstrated superior performance, achieving a peak accuracy/AUC
of 75%/0.87. In comparison, the original XG model trained on dataset GSE212041 (gene
expression only) achieved lower accuracy and AUC of 41 and 0.54 (Figure 2), respectively.
Other classifiers, such as Naive Bayes, exhibited the lowest accuracy and AUC of 46% and
0.51, respectively, to identify “critical” and “non-critical” cases. The LR and SVM models
yielded accuracy/AUC values of 50%/0.64 and 57%/0.71, respectively. We further utilized
different combinations of the multi-modality weighted matrices as input for ML models,
which showed increased prediction accuracies across the board (Figure 3). Combining two
data modalities has significantly improved the accuracy of all ML models except for the
SVM, and combining all three data modalities has substantially increased the accuracy in
all cases except for the SVM. Specifically, the XG algorithm attained an accuracy of 95%
and an AUC of 0.99, making it the top-performing algorithm for distinguishing between
the three severity groups (‘severe’, ‘moderate’, and ‘mild’) of COVID-19 patients (Figure 3).

Diagnostics 2024, 14, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 2. The evaluation of ML models with 10-fold cross-validation when individual data types are 
used as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a Support Vector Ma-
chine. 

 
Figure 3. The evaluation of ML models with 10-fold cross-validation when different combinations 
of data types are used as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a 
Support Vector Machine. 

3.3. The Evaluation of Model Performance Using Different Weight Combinations for Data Mo-
dalities 

To investigate the optimal combination of weights for each data modality, we as-
signed different weights to each data matrix, followed by concatenation to generate an 
integrated matrix used as input for the model. Gene expression, clinical features, and co-
morbidity matrices were weighted at 1:1:1, 2:1:1, 1:2:1, and 1:1:2 proportions to build the 
corresponding models. Interestingly, the model with an equal weightage (1:1:1) for all 
data modalities produced the highest accuracy of 95% and an AUC of 0.99 using XG (Fig-
ure 4). A similar trend was observed with LR and NB models with corresponding weight 
combinations; however, the SVM models showed a different trend, with the highest AUC 
observed in the 1:1:2 model. The comparison of predictive performance among these 

Figure 2. The evaluation of ML models with 10-fold cross-validation when individual data types are used
as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a Support Vector Machine.



Diagnostics 2024, 14, 1284 8 of 16

Diagnostics 2024, 14, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 2. The evaluation of ML models with 10-fold cross-validation when individual data types are 
used as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a Support Vector Ma-
chine. 

 
Figure 3. The evaluation of ML models with 10-fold cross-validation when different combinations 
of data types are used as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a 
Support Vector Machine. 

3.3. The Evaluation of Model Performance Using Different Weight Combinations for Data Mo-
dalities 

To investigate the optimal combination of weights for each data modality, we as-
signed different weights to each data matrix, followed by concatenation to generate an 
integrated matrix used as input for the model. Gene expression, clinical features, and co-
morbidity matrices were weighted at 1:1:1, 2:1:1, 1:2:1, and 1:1:2 proportions to build the 
corresponding models. Interestingly, the model with an equal weightage (1:1:1) for all 
data modalities produced the highest accuracy of 95% and an AUC of 0.99 using XG (Fig-
ure 4). A similar trend was observed with LR and NB models with corresponding weight 
combinations; however, the SVM models showed a different trend, with the highest AUC 
observed in the 1:1:2 model. The comparison of predictive performance among these 

Figure 3. The evaluation of ML models with 10-fold cross-validation when different combinations
of data types are used as input. LR: Logistic Regression, XG: XGBoost, NB: Naïve Bayes, SVM: a
Support Vector Machine.

3.3. The Evaluation of Model Performance Using Different Weight Combinations for
Data Modalities

To investigate the optimal combination of weights for each data modality, we assigned
different weights to each data matrix, followed by concatenation to generate an integrated
matrix used as input for the model. Gene expression, clinical features, and co-morbidity
matrices were weighted at 1:1:1, 2:1:1, 1:2:1, and 1:1:2 proportions to build the corresponding
models. Interestingly, the model with an equal weightage (1:1:1) for all data modalities
produced the highest accuracy of 95% and an AUC of 0.99 using XG (Figure 4). A similar
trend was observed with LR and NB models with corresponding weight combinations;
however, the SVM models showed a different trend, with the highest AUC observed in
the 1:1:2 model. The comparison of predictive performance among these models reveals
the impact of different combinations of feature matrices on the overall model effectiveness.
Models with various combinations of weights for each data modality unveil the relative
importance of molecular, clinical, and co-morbidity data in the overall performance of the
models and help optimize the ML models for the best performance.

3.4. Feature Importance Analyses

After determining XG to be the best-performing model and optimizing the weight
combination for different data modalities (1:1:1), we sought to identify the contributions
of individual features to predicting disease severity. We used the SHAP method, which
provided the SHAP score for each feature used in the model training [26]. This score ranges
from −1 to +1 and represents the significance of each feature and its effect on the model’s
performance for predicting COVID-19 severity. The beeswarm plot shows how each SHAP
feature positively or negatively contributes to the model prediction (Figure 5). The points
are distributed horizontally along the x-axis according to their SHAP value, reflecting
the strength of a feature’s impact on the model’s output. The color of the dot represents
the original value of the feature, in an instance, with red representing a high value and
blue representing a low value. The points are stacked vertically in places with a high
density of SHAP values. Examining the color distribution horizontally along the x-axis for
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each variable provides insights into the general relationship between a variable’s original
value and its SHAP value. The topmost gene expression features significantly affecting
the model’s accuracy are COX14, LAMB2, DOLK, SDCBP2, RHBDL1, and IER3-AS1 genes
from the RNA-seq data. The absolute neutrophil count and Viremia were identified among
the clinical features, but no co-morbidity features stood out in the SHAP analysis (Figure 5).
We see a dense cluster with low correlation with small-but-positive SHAP values for DOLK.
LAMB2 extends further towards the left, suggesting LAMB2 has a stronger negative impact
on COVID-19. The top gene features from SHAP can be further analyzed to understand the
enriched pathways associated with the top contributing genes.
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3.5. The Pathway Enrichment Analysis of Top Contributing Genes

Based on SHAP scores, we selected the top 25% (1324) of contributing genes (Supple-
mentary Table S8) and subjected them to pathway enrichment analysis using IPA. This
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analysis revealed several significantly enriched pathways, shedding light on the severity
of key molecular processes associated with COVID-19. The top five canonical pathways
are shown in Table 4. The generic transcription pathway is the topmost pathway. Several
biochemical pathways, such as the generic transcription pathway, are key to understanding
the host–pathogen interactions during a SARS-CoV-2 infection in the nucleoplasm, im-
pacting etiology, pathogenesis, or prognosis (Figure 6). The assembly involving nuclear
receptor (NR) protein(s), CDK8, and MED proteins, forming the TRAP coactivator com-
plex [TRAP coactivator], may modulate transcription factors and other proteins that are
vital in the host’s immune response, potentially affecting the prognosis of COVID-19 [28]
(Table 4). The second pathway is ‘immunoregulatory interactions between a lymphoid and
a non-lymphoid cell’ that may involve interactions between SARS-CoV-2 and immune cells
during COVID-19 pathogenesis. This pathway triggers HLA interactions with the KLRC1
complex and KLRF interactions with the CLEC2B dimer [29]. The virus then infects various
immune cells, including lymphoid cells such as T lymphocytes, leading to the dysregu-
lation of immune responses [30] (Supplementary Figure S1). The next one is the ‘mitotic
prometaphase pathway’, where the dysregulation of mitosis can lead to cellular stress and
affect tissue homeostasis. In this pathway, phosphorylated p-T2055-NUMA1 homodimer
binds to nucleated microtubules in the cytoplasm. Mitotic kinase, CCNB1 phosphorylates
Condensin I complex, forming phosphorylated CDK1 Phosphorylated Condensin I. PLK1
catalyzes the phosphorylation of STAG2, the RAD21-Ac-Cohesin: PDS5:CDCA5: WAPAL
complex at centromeres, affecting sister centromeres and microtubule interactions, which
in turn contributes to the pathophysiology of COVID-19 in various organs [31] (Supple-
mentary Figure S2). The fourth pathway is FCGR-dependent phagocytosis, reflecting the
role of Fcgamma receptors (FCGR) in mediating phagocytosis by binding to antibodies
and opsonizing viral particles. The phosphorylated clustered PLCG complex in the plasma
membrane yields the PI (3,4,5) P3 and p-PLCG complex. Moreover, the branching complex
in the cytoplasm forms the ARP2/3: actin: ADP complex and activates WAVE2, WASP, and
N-WASP proteins [32] (Supplementary Figure S3). The last one is the ‘cilium assembly path-
way’ that COVID-19 may impact in respiratory epithelial cells. Multiple proteins in cilia
form the IFT-B complex for intraflagellar transport, and the BBS/CCT complex catalyzes
the assembly of the BBSome complex in the cytoplasm for ciliary function, affecting the
clearance of mucus and pathogens from the airways [33] (Supplementary Figure S4). Over-
all, COVID-19’s impact on these pathways and processes reflects its complex interactions
with host cells and the immune system, contributing to the diverse clinical manifestations
and outcomes observed in infected individuals. Understanding these connections is critical
for developing targeted therapies and interventions against the virus.

Table 4. The top canonical pathways from the Ingenuity Pathways Analysis of the top 25% of genes
(1324) with the highest SHAP scores.

Top Canonical Pathways p-Value Overlap

Generic Transcription Pathway 9.68 × 10−36 46.5% (199/428)

Immunoregulatory interactions between a Lymphoid
and a non-Lymphoid cell 1.75 × 10−9 38.1% (77/202)

Mitotic Prometaphase 7.66 × 10−8 36.0% (73/203)

Fcgamma receptor (FCGR)-dependent phagocytosis 9.32 × 10−8 38.2% (60/157)

Cilium Assembly 2.18 × 10−7 35.3% (72/204)
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4. Discussion

ML models have been widely used on COVID-19 data to improve risk predictions for
hospitalization and critical disease outbreaks [34–36]. Despite the numerous ML models
that have been built, there are very few studies in which the models tried to use both
clinical and genomic data to predict the severity of COVID-19 [37,38]. Hence, the project
aims to develop a prognostic ML model to predict the severity of COVID-19 based on gene
expression and clinical and co-morbidity data. We used data augmentation to balance
the class sample size, explored various ML models to identify the best-performing model,
and optimized the ML model’s performance using different weights. In addition, we used
the SHAP score to find the features that contribute the most to the model’s performance
(Figure 5).

Four machine learning algorithms, LR, XG, NB, and SVMs, were used to initially build
a classification model only based on the normalized gene expression data from COVID-
19 patients that belong to three severity groups, ‘mild, moderate, and severe’ (Table 1).
To avoid overfitting the ‘moderate’ group with the same sample size as the other two
groups combined, we augmented and balanced the sample size of the minority classes
using ADASYN (Table 2). Models built from balanced datasets have shown significantly
improved performance (accuracy and AUC) for all ML methods compared to those using
unbalanced datasets (Table 3). Only gene expression features were used for the initial
testing of ML models as this data modality has thousands of data points compared to
merely twelve and nine features in the clinical and co-morbidity modalities, respectively.

We have built separate models for each data modality, their pair-wise combinations,
and all three combined. The integration of the three data modalities showed a significant
improvement in the predictive power of the ML models compared to those using a single
modality or pair-wise data modalities (Figures 2 and 3), with the accuracy reaching 95% and
an AUC of 99% for the XG model that was trained with all three modalities. Our results align
with the other studies highlighting the importance of using integrated multi-omics data in
predictive models to leverage the synergistic effect of combining different data modalities.
For example, ML models integrating transcriptomic and clinical data for predicting the
clinical outcomes of COVID-19 patients showed enhanced accuracy [39]. In addition,
the XG algorithm outperformed the other classifiers because it implemented a gradient-
boosting framework, allowing it to build decision trees sequentially and optimize for bias
and variance. Incorporating regularization techniques, such as L1 and L2 regularization,
effectively prevents overfitting [40].

Furthermore, the most important features with the highest predictive power in the
integrated model were shapely identified. The COX14 gene was identified as the top feature,
significantly contributing to the model’s predictive power. The COX14 gene (cytochrome
c oxidase; COX) encodes a core protein of the mitochondrial electron transport chain’s
complex IV assembly, a vital component of the COX protein’s catalytic core, essential
in electron transport [41]. A recent proteomic study of COVID-19 patients suggested
elevated levels of the components of cytochrome c electron transport complexes in the
plasma of COVID-19 patients compared to that of the normal controls [42]. The second
most important feature from the SHAP analysis, an absolute number of neutrophil counts,
emerged from the clinical feature set. Several studies reported high levels of neutrophils
in severe COVID-19 patients and neutrophil-related cytokines like IL-8 and IL-6 [43–45].
Neutrophils detect single-stranded RNA viruses like SARS-CoV-2 because they express
multiple Toll-like receptors: TLR7, TLR8, and TLR9. Once the TLR receptors are activated,
other physiological processes, such as NF-κB and interferon regulatory factors, are activated
(IRF7) [46]. The latter activation process produces chemokines and pro-inflammatory
cytokines in neutrophils that induce pulmonary infiltration and hyperinflammation in
COVID-19 patients [47].

Furthermore, the LAMB2 gene was also identified among the top three features in our
SHAP analysis. This gene encodes the basement membrane protein laminin β2, part of the
heterotrimeric laminin isoforms [48]. LAMB2 was identified as a diagnostic biomarker for
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COVID-19 based on a bioinformatics analysis of the gene expression dataset of COVID-
19 patients [49]. Moreover, our findings underscore the significance of specific pathways
enriched in the top 25% of genes identified through SHAP values. Pathways include generic
transcription, immunoregulatory interactions between a lymphoid and non-lymphoid cell,
mitotic prometaphase, FCGR-dependent phagocytosis, and cilium assembly. In a SARS-
CoV-2 infection, fundamental host cellular processes such as generic transcription and
immune responses are expected to be perturbed. Some of the genes involved in these
processes could indicate disease progression and severity.

The super pathway of Inositol Phosphate Compounds involves genes responsible for
inositol production, which is essential to generate the phosphatidylinositol (PtdIns) needed
to preserve the signaling pathways. A prior study has found that SARS-CoV-2 also affects
metabolic pathways like the inositol phosphate metabolism, glycolysis, and oxidative
phosphorylation [50]. The dysregulation of those pathways blocks surfactant secretion
and alveolar epithelial differentiation. In addition, disrupting the inositol phosphate
metabolism may induce neutrophil infiltration and disrupt the lung barrier [50].

In this study, we demonstrated that integrating genomic and clinical features has
helped improve the performance of ML models, and implementing the data augmentation
approach has addressed the data imbalance issues to enhance the model’s performance fur-
ther. Similarly, SHAP analysis has helped identify the topmost contributing factors (genes
and clinical features) to the model performance that could be biomarkers for predicting
disease severity.

5. Conclusions

Our study significantly enhances the predictive capabilities for COVID-19 severity
by integrating genomic and clinical data. We identified the key contributors to severity
prediction by leveraging a sophisticated workflow involving ML techniques, feature se-
lection, data augmentation, and SHAP analysis. We also demonstrated the importance of
integrating multi-modality data to improve the performance of prediction models rather
than singular modalities. The observed correlations between pre-existing conditions, such
as heart disease, lung disease, and hypertension, and the severity of COVID-19 underscore
the clinical relevance of our integrative approach. The superior performance of XG in
classifying severity groups further validates the efficacy of our predictive models.

The application of SHAP analysis pinpointed specific genes, including COX14, LAMB2,
DOLK, SDCBP2, RHBDL1, and IER3-AS1, along with critical clinical features like the
absolute neutrophil count and Viremia categories as influential factors in severity prediction.
These identified biomarkers offer valuable insights for clinicians for early disease prognosis.

Our study contributes to the evolving understanding of COVID-19 prognosis and
provides a foundation for refining clinical decision-making processes. Integrating clin-
ical and genomic data in predictive models holds promise for personalized and timely
interventions, ultimately leading to improved patient outcomes. As we continue to navi-
gate the complexities of the pandemic, our findings pave the way for future research and
clinical applications aimed at advancing precision medicine in the context of COVID-19
severity prediction.
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