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Abstract: Background: Accurate prognostic prediction is crucial for managing Idiopathic Sudden
Sensorineural Hearing Loss (ISSHL). Previous studies developing ISSHL prognosis models often
overlooked individual variability in hearing damage by relying on fixed frequency domains. This
study aims to develop models predicting ISSHL prognosis one month after treatment, focusing on
patient-specific hearing impairments. Methods: Patient-Personalized Seigel’s Criteria (PPSC) were
developed considering patient-specific hearing impairment related to ISSHL criteria. We performed
a statistical test to assess the shift in the recovery assessment when applying PPSC. The utilized
dataset of 581 patients comprised demographic information, health records, laboratory testing, onset
and treatment, and hearing levels. To reduce the model’s reliance on hearing level features, we
used only the averages of hearing levels of the impaired frequencies. Then, model development,
evaluation, and interpretation proceeded. Results: The chi-square test (p-value: 0.106) indicated that
the shift in recovery assessment is not statistically significant. The soft-voting ensemble model was
most effective, achieving an Area Under the Receiver Operating Characteristic Curve (AUROC) of
0.864 (95% CI: 0.801–0.927), with model interpretation based on the SHapley Additive exPlanations
value. Conclusions: With PPSC, providing a hearing assessment comparable to traditional Seigel’s
criteria, the developed models successfully predicted ISSHL recovery one month post-treatment by
considering patient-specific impairments.

Keywords: idiopathic sudden sensorineural hearing loss; patient-specific hearing impairment; hearing
recovery; prognosis; machine learning; SHapley Additive exPlanations value

1. Introduction

According to the World Health Organization (WHO), hearing loss is a global cause of
disability and ranks as the third major contributor to productivity reduction [1]. Hearing
loss can be categorized into two types as follows: conductive hearing loss and sensorineural
hearing loss. According to the differential diagnosis of hearing loss, sensorineural hearing
loss (SNHL) is the most prevalent type, comprising the majority of all hearing loss cases [2].
SNHL is associated with abnormalities in the cochlea, auditory nerve, and central nervous
system. The causes of SNHL include congenital issues, presbycusis, noise exposure, head
trauma, Meniere’s disease, ototoxicity, systemic conditions such as meningitis and diabetes,
vestibular schwannoma, autoimmune diseases, barotrauma, and perilymphatic fistula [3].
Sudden sensorineural hearing loss (SSNHL) is defined as sensorineural hearing loss of
30 dB or worse, occurring over at least three consecutive frequencies within 72 h [1]. Most
cases of SSNHL are idiopathic, meaning no specific cause can be identified [4]. Despite
the uncertainty in its pathogenesis, viral infections, cochlear membrane destruction, and
vascular occlusion have been suggested as causes of Idiopathic Sudden Sensorineural
Hearing Loss (ISSHL) [5,6]. To date, many studies have been conducted on the prognosis
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of hearing recovery in ISSHL, and the main poor prognostic factors identified are severe
hearing loss, high-frequency hearing loss, recovery starting duration greater than 2 weeks,
advanced age, history of vertigo, and late initiation of treatment [5–7]. Although there
are variations among studies, severe hearing loss in this context refers to a PTA hearing
threshold of 71 dB or higher, advanced age refers to an age over 60, and delayed initiation
of treatment depends on the extent of the delay. Regarding the history of vertigo, cases
involving Ménière’s disease or cerebrovascular diseases, which fall outside the definition
of ISSNHL, are excluded.

Previous studies have developed machine learning models to accurately predict the
prognosis of ISSHL [5,8–11]. The machine learning approach enables the analysis of exten-
sive and intricate medical data, allowing for the extraction of concealed information that
is often imperceptible to the human eye [9,12]. Through dataset analysis, these machine
learning models can effectively distinguish between relevant and irrelevant variables [13].
This characteristic of machine learning enables accurate prognostic prediction. Therefore,
machine learning methods are essential to prevent a decline in the quality of life and
productivity of patients with ISSHL. In previous studies, various machine learning mod-
els were developed using clinical variables and targets indicating recovery from ISSHL.
To determine this target, these studies consistently applied specific hearing frequency
ranges—“0.5, 1, 2, and 3 kHz” or “0.5, 1, 2, and 4 kHz”—across all patients, assessing
recovery according to Siegel’s criteria within these frequencies [9–11]. The level of hearing
impairment is represented as the average hearing threshold across the defined frequency
domains. Siegel’s criteria assess hearing recovery based on the recent average hearing
threshold and its improvement. Subsequently, model development and performance op-
timization are conducted through feature selection and parameter tuning, respectively.
The model with the best performance is selected, and variables with high importance for
prognosis prediction are identified.

However, relying solely on these fixed-frequency domains to assess hearing recovery
may overlook the nuances of patient-specific hearing impairment, potentially resulting in
imprecise evaluations. This oversight is particularly critical for cases involving atypical
hearing loss patterns, such as high-frequency (0.3, 0.4, and 0.8 kHz) or low-frequency
(0.125, 0.25, and 0.5 kHz) losses, which may not align with the fixed-frequency domains
used. Such discrepancies can lead to an under-representation of the patient’s hearing loss,
thereby skewing recovery assessments and possibly overestimating therapeutic success.
Therefore, for a more accurate evaluation of ISSHL recovery, it is imperative to consider
the hearing-impaired frequency domains specific to each patient’s condition. Additionally,
there was an excessive impact of hearing threshold on the ISSHL prognosis prediction
of the machine learning model in previous studies [5,9–11]. The hearing thresholds of
various hearing frequency domains, also known as pure tone audiometry (PTA) records,
contribute to the prediction of machine learning models with high importance. The hearing
threshold of each frequency domain and the average value of the hearing threshold have
been included as model variables. For example, in a recent study [9], hearing thresholds
of 0.125, 0.25, 0.5, 1, 2, 3, 4, and 8 kHz; average hearing thresholds at low, mid, and high
frequencies in the affected ear; and PTA records in the unaffected ear were engaged in
ISSHL prognosis prediction. This redundancy in PTA variables reduces the efficiency of
the model owing to the computational cost and high dimensionality of the dataset.

Although one study successfully predicted the prognosis of ISSHL based on hearing-
impaired frequencies using artificial intelligence methods, further clarification of how
the model functions is necessary [8]. The study reported the rank of influential variables
in the model, but it did not disclose whether the impact of the key variables on the
ISSHL prognosis prediction of the model was positive or negative [8]. Utilizing model-
explanation techniques is essential for clarifying both the significance of the variables
and the impact of the model’s influential variables on ISSHL prognosis prediction. This
strategy ensures that the predictions of ISSHL prognosis, which are tailored to individual
hearing impairments, are clinically understandable. Additionally, the difference in recovery
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assessment between traditional Siegel’s criteria and Seigel’s criteria focusing on hearing
impairment is not known.

The primary objective of this study is to develop machine learning models for pre-
dicting the prognosis of patients with ISSHL one month after treatment, focusing on
hearing-impaired frequency domains. A hearing-impaired frequency range is defined as
at least three consecutive frequency ranges, each with a hearing threshold of 30 dB or
more, aligned with the definition of ISSHL. Only the average PTA values of the affected
ear, unaffected ear, and its categorical variables are included as hearing threshold variables
so that the minimal set of hearing threshold variables are utilized. Subsequently, machine
learning models were constructed based on clinical variables and hearing assessments. We
elucidated the effects of clinical variables on the prediction of the model. We reviewed
previous studies on ISSHL prognostic factors to explain the effects of the variables clini-
cally. In addition, we statistically tested the distribution shift in the recovery assessment
when changing the application from traditional Seigel’s criteria to Patient-Personalized
Seigel’s criteria.

2. Materials
2.1. Data Collection and Study Population

We retrospectively reviewed the clinical records of 1185 patients with ISSHL who were
admitted to the Department of Otorhinolaryngology-Head and Neck Surgery of Korea
University Ansan Hospital between December 2009 and November 2022. All patients had
sudden-onset idiopathic sensorineural hearing loss, defined as a hearing loss of ≥30 dB
over 3 contiguous frequencies occurring within 3 days. Each participant underwent PTA
following a medical interview and an otologic physical examination conducted by a board-
certified otolaryngologist. The medical interview assessed the patient’s medical history,
including conditions such as diabetes, hypertension, and myocardial infarction, and eval-
uated the presence of dizziness and tinnitus. Dizziness was evaluated solely as vertigo,
characterized by a sensation of motion or spinning. Tinnitus was assessed as subjective
tinnitus, defined as the perception of sound in the absence of an external stimulus, heard
only by the patient. For PTA records, the hearing thresholds for all participants were
assessed using an AC-40 audiometer, either the GSI 61 model from Grason-Stadler (Eden
Prairie, MN, USA) or the Madsen Astera2 from Natus Medical (Taastrup, Denmark). The
assessments took place in a soundproof booth, adhering to the clinical standards set by the
International Organization for Standardization (ISO) [14]. Both air and bone conduction
thresholds were measured at the standard frequencies of 0.125, 0.25, 0.5, 1, 2, 3, 4, and 8 kHz
for both ears. To differentiate retrocochlear lesions, we performed auditory brainstem
response (ABR) tests and/or brain magnetic resonance imaging on all patients. Patients
with chronic otitis media, inner ear abnormalities on magnetic resonance imaging, or a
history of surgery in the affected ear were excluded. All patients received treatment with
either systemic steroids (e.g., methylprednisolone 64 mg orally for 4 days or dexamethasone
5 mg intravenously three times daily for 4 days. In both cases, methylprednisolone was
started from the 5th day at 48 mg and tapered gradually every other day over 8 days),
intratympanic dexamethasone injections (ITDIs) (1–4 times), or both. Since concurrent use
of systemic steroids and ITDI has been reported as the most effective treatment for patients
with ISSHL, concurrent therapy was recommended for all patients. However, in patients
with contraindications to systemic steroid therapy, ITDI alone was administered, and in pa-
tients who refused ITDI, only systemic steroid therapy was administered. We examined the
medical records of 581 patients to develop machine learning models. For data preparation,
some patients were excluded sequentially by the following criteria: (1) the patient’s data
were the same as another patient’s data (3 patients), (2) missing data existed in the patient’s
PTA record measured one month after treatment (514 patients), (3) missing data existed in
the patient’s PTA records of the affected ear and unaffected ear measured at the initial hos-
pital visit (33 patients), (4) the patient had bilateral ISSHL (31 patients), and (5) the patient’s
initial PTA record of the affected ear did not include at least three contiguous frequency
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domains, each with a hearing threshold of 30 dB or higher (23 patients). The procedure
for patient exclusion is illustrated in Figure 1. Regarding the included 581 patients, the
median age was 52 (Q1: 43, Q3: 60) and the gender distribution was 284 males (48.88%) and
297 females (51.12%). This study was approved by the Ethics Committee of our hospital
(IRB No. 2022AS0088), which waived the requirement for informed consent because of the
retrospective nature of this study. All methods were performed in accordance with the
relevant guidelines and regulations.
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2.2. Data Variables and Minimizing PTA Variables

In this study, 50 variables were selected to develop machine learning models. These
variables were categorized into democratic information, health records, laboratory testing,
onset and treatment, and PTA records. The original dataset contained 160 variables includ-
ing patient ID variables. Initially, we excluded 71 variables that had more than half of their
records missing, as well as two speech discrimination score variables with missing ratios of
approximately 45%. Inaccurately imputed values for speech discrimination scores could
potentially mislead the model in learning the patterns necessary for accurate prognosis
prediction. Second, only variables related to the average hearing threshold of the hearing-
impaired frequency range were included, and the detailed PTA variables of the affected and
unaffected ears were excluded to minimize the number of PTA variables. These excluded
PTA-related variables of the affected and unaffected ears included 0.125, 0.25, 0.5, 1, 2, 3, 4,
and 8 kHz; the average hearing threshold at the 0.5, 1, 2, and 3 kHz frequency domains; its
category features; and the average PTA values for low-frequency domains (0.125, 0.25, and
0.5 kHz), middle-frequency domains (1 and 2 kHz), and high-frequency domains (3, 4, and
8 kHz).

To calculate the average hearing threshold of the hearing-impaired frequency range,
we initially defined the hearing-impaired frequency range. This frequency range consisted
of at least three contiguous frequency domains, each with a hearing threshold of 30 dB or
greater. In other words, we focused on the frequency domains that are directly related to the
definition of ISSHL onset instead of considering all hearing-impaired frequency domains.
This frequency range represents patient-specific hearing loss and serves as the basis for
determining ISSHL onset. A description of the frequency range of patient-specific hearing
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loss is shown in Figure 2 along with an example. Hearing-impaired frequency domains are
identified in the PTA record of the affected ear at the initial hospital visit. These frequency
domains were applied to the PTA records of affected and unaffected ears to calculate the
average hearing threshold at the initial hospital visit. Further, their categorized features
were made via the following criteria: the range lower than 40 dB was defined as hearing
level 1 (mild), the range from 40 dB to 60 dB as hearing level 2 (moderate), the range from
60 dB to 80 dB as hearing level 3 (severe), the range from 80 dB to 100 dB as hearing level 4
(profound), and the range more than 100 dB as hearing level 5 (deaf).
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Figure 2. Example of the frequency domains of patient-specific hearing impairment. The fixed-
frequency domains (0.5 to 3 kHz) are indicated in the black bold box, while those related to the
definition of ISSHL (0.125 to 1 kHz) are indicated in the red bold box. In this study, the hearing-
impaired frequency domains related to the definition of ISSHL are considered for hearing recovery
assessment. Although the hearing threshold is over 30 dB, we did not include 8 kHz in the considered
frequency domains for recovery assessment because it is a single frequency rather than at least three
consecutive frequency domains and it is separate from the consecutive frequency range (0.125 to
1 kHz). ISSHL: Idiopathic Sudden Sensorineural Hearing Loss.

Three categorical variables were encoded into binary variables as follows: (1) smoking
status feature (non-smoker, smoker, smoking post-cessation) was encoded into two binary
variables (smoking status and smoking post-cessation); (2) audiogram type of initial PTA
record, which included five types (ascending, U-shaped, descending, flat, and deaf), was
encoded into five binary variables; and (3) treatment-type features (systemic steroids, in-
tratympanic dexamethasone injection, and the combination of both) was encoded into three
binary variables. In addition, a feature related to the length of the hearing-impaired fre-
quency domains in the affected ear’s initial PTA record was added, whereas the prothrom-
bin time percentage feature was excluded. The affected consecutive frequency domains
can cover part or all the measured frequency domains, resulting in variations in the lengths
of the affected consecutive frequency domains among patients. The prothrombin time
percentage feature shares the same attributes as prothrombin time (in seconds). Thus, the
dataset retained 50 features. A detailed list of the features used in this study is presented in
Table 1.

Table 1. Variables in the utilized dataset.

Continuous Variables Binary/Categorical Variables

Democratic information Age, height, weight Gender (female)

Health records
Body mass index, extent of

smoking(packs/year), systolic blood pressure,
diastolic blood pressure

Smoking, smoking post-cessation status, 8 variables
regarding presence of disease including

(1) hypertension, (2) diabetes, (3) stroke, (4) dizziness,
(5) tinnitus, (6) hyperlipidemia, (7) chronic kidney
disease, and (8) myocardial infarction or angina.
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Table 1. Cont.

Continuous Variables Binary/Categorical Variables

Laboratory testing

Total cholesterol, low-density lipoprotein (LDL),
triacylglycerol, hemoglobin, blood urea nitrogen

(BUN), creatine (Cr), white blood cell count,
neutrophil count, lymphocyte count,

neutrophil–lymphocyte ratio, platelet count,
prothrombin time, and activated partial

thromboplastin time

None

Onset and Treatment
Duration between the onset of ISSHL and initial
treatment, euration between the onset of ISSHL

and ITDI treatment

Hospitalization, affected side (left), categorized
variables of duration between the onset of ISSHL and
initial ITDI treatment, onset month of ISSHL, length

of the hearing-impaired frequency domain, three
variables of steroid treatment type including

systemic steroid, ITDI, and combined method of
systemic steroid and ITDI

PTA records The PTA average of the affected frequency
domains in the affected and unaffected ears

Categorized variables of the PTA average of the
affected frequency domains in the affected and

unaffected ears, five variables of audiogram type
regarding the initial PTA record including ascending,

U-shaped, descending, flat, and deaf

PTA: pure tone audiometry, ISSHL: Idiopathic Sudden Sensorineural Hearing Loss, ITDI: initial intratympanic
dexamethasone injection.

The remaining features comprising the utilized dataset included the following. The
democratic information category consisted of age, height, weight, and gender. The health
records category consisted of the body mass index, extent of smoking (packs/year), systolic
blood pressure, diastolic blood pressure, smoking, smoking post-cessation status, and eight
variables regarding presence of disease including (1) hypertension, (2) diabetes, (3) stroke,
(4) dizziness, (5) tinnitus, (6) hyperlipidemia, (7) chronic kidney disease, (8) myocardial
infarction or angina. The laboratory testing category consisted of total cholesterol, low-
density lipoprotein (LDL), triacylglycerol, hemoglobin, blood urea nitrogen (BUN), creatine
(Cr), white blood cell count, neutrophil count, lymphocyte count, neutrophil-lymphocyte
ratio, platelet count, prothrombin time, and activated partial thromboplastin time. Onset
and treatment consisted of the duration between the onset of ISSHL and initial treatment,
the duration between the onset of ISSHL and initial intratympanic dexamethasone injec-
tion (ITDI) treatment, hospitalization, affected side, categorized variables of the duration
between the onset of ISSHL and initial ITDI treatment, onset month of ISSHL, length of the
hearing-impaired frequency domain, three variables of steroid treatment type including
systemic steroid, ITDI, and the combined method of systemic steroid and ITDI. PTA records
consisted of the PTA average of the affected frequency domains in the affected and unaf-
fected ears, categorized variables of the PTA average of the affected frequency domains in
the affected and unaffected ears, and five variables of audiogram type regarding the initial
PTA record including ascending, U-shaped, descending, flat, and deaf.

3. Methods
3.1. Recovery Assessment by the Newly Developed Patient-Personalized Seigel’s Criteria

The recovery status of ISSHL, which is the target of the machine learning model,
was determined using Patient-Personalized Siegel’s criteria. The recent hearing level and
hearing improvement in the average hearing threshold in the hearing-impaired frequency
domains were calculated. Siegel’s criteria [15] were then applied to assess recovery from
ISSHL after one month of treatment, referred to as Patient-Personalized Siegel’s criteria.
If the average PTA value of the affected frequency domains was 25 dB or lower after one
month of treatment, the assessment indicated complete recovery. If the hearing gain was
>15 dB and the average PTA value was >25 dB but within 45 dB, the assessment indicated a
partial recovery. If the hearing gain was >15 dB and the average PTA value was >45 dB, but
within 75 dB, the assessment indicated a slight recovery. Finally, no recovery was observed



Diagnostics 2024, 14, 1296 7 of 23

if the difference was <15 dB or the average PTA value was >75 dB. Complete and partial
recovery were considered recovered statuses, whereas slight recovery and no recovery were
considered unrecovered statuses. An example of the ISSHL recovery assessment is shown
in Figure 3. Additionally, we compared the distribution of recovered and unrecovered
patients when Seigel’s criteria were applied to the 0.5, 1, 2, and 3 kHz frequency domains
and hearing-impaired frequency domains.
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Figure 3. Example evaluation of the recovery of ISSHL by Patient-Personalized Seigel’s criteria.
In this case, the affected frequency domains encompass 0.125, 0.25, 0.5, and 1 kHz, represented as
light brown regions. The average PTA value of this specific frequency region is calculated, along
with the PTA value recorded after one month of treatment. Consequently, the improvement in the
PTA average amounts to 25 dB, with the PTA average after one month of treatment reaching 30 dB.
According to Patient-Personalized Seigel’s criteria, this case is assessed as partial recovery. PTA: pure
tone audiometry.

3.2. Statistical Analysis to Investigate Clinical Characteristics of ISSHL Patients

After evaluating the recovery results, a two-sided statistical analysis was conducted at
a significance level of 0.05 to determine differences between patients who recovered from
ISSHL and those who did not. We conducted a Shapiro–Wilk test to assess the normality of
the distribution of continuous variables. For continuous variables that followed a normal
distribution, data were summarized as means and standard deviations, and an independent
sample t-test was used to compare the recovery and non-recovery groups. Continuous
variables that did not follow a normal distribution were summarized using medians and
interquartile ranges. The Mann–Whitney U test was used to compare two groups for
not normally distributed features. Categorical variables were presented as patient counts
and percentages, and the two groups were compared using chi-square or Fisher’s exact
tests. Statistical analyses comparing two groups were conducted using IBM SPSS Statistics
version 26.

3.3. Machine Learning Models
3.3.1. Logistic Regression

A logistic regression model is a binary classifier that can determine the recovery or
non-recovery of a disease and learn the relationship between variables and the recovery
status of the disease [16]. This model assumes that the log of the odds is linearly related to
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the variables. Logistic regression is a linear regression model in which the output is log
odds. Probability is computed based on the trained logistic regression model.

3.3.2. Decision Tree

A decision tree model is hierarchically organized into nodes [17]. Classification
commences with data at the root node, where data undergo successive partitioning into
two subgroups guided by decision functions housed within internal nodes. This process
is repeated at each internal node, and the data division culminates at the leaf nodes,
ultimately leading to the determination of the final classification results. As the classification
progresses from the root node to the leaf nodes, the class purity is enhanced, and the
classification process ceases upon meeting the predefined termination criteria.

Instead of adjusting the minimal sample size and maximal depth, we applied cost com-
plexity pruning to introduce the penalty for tree size [18,19]. The cost complexity pruning
algorithm computes the total cost of a decision tree by combining the misclassification cost
(error) and a complexity penalty proportional to the number of leaves in the tree [18,19].
The cost complexity pruning method prunes decision trees to minimize a cost complexity
Rα(T) [19]. The formula is as follows, where R(T) represents the misclassification cost of
the tree T, α represents the complexity parameter, and |T| represents the number of leaves.

Rα(T) = R(T) + α× |T|

By controlling α complexity parameter, the extent of pruning of the tree can be ad-
justed [19]. Increasing the value of α prunes the tree more, removing branches that con-
tribute little to reducing the misclassification cost relative to their complexity penalty [19].
This process could simplify the tree and help prevent overfitting [19]. Conversely, decreas-
ing the value of α allows for a more complex tree that may capture more intricate patterns,
but there is a risk of overfitting [19]. In this study, the α complexity parameter was adjusted
by controlling the “cpp_alpha” value of scikit-learn API.

3.3.3. Support Vector Machine

The Support Vector Machine (SVM) is a binary classification model designed to dis-
cover the most suitable hyperplane for classification in a high-dimensional space [20].
A linear SVM employs either a maximum-margin approach or soft-margin approach for
classification. A maximum-margin SVM classifier is trained to maximize the distance
between the classification hyperplane and the nearest data points to that hyperplane. By
contrast, a soft-margin SVM classifier is trained to tolerate misclassifications caused by
noise and outliers commonly found in real-world datasets. Nonlinear SVM models use
diverse kernel functions to transform data into high-dimensional feature spaces.

3.3.4. Random Forest

The Random Forest ensemble comprises numerous decision trees, with each tree
trained on a distinct dataset derived through bootstrapping [21]. The final classification
outcome is ascertained through a majority vote, wherein predictions from various decision
trees are aggregated.

3.3.5. Adaptive Boosting

Adaptive Boosting (AdaBoost) instructs weak classifiers using a dataset that highlights
the significance of certain elements, followed by an iterative reassessment of the importance
of patient data grounded in classification errors [22]. This iterative procedure entails the
successive training of weak classifiers on datasets with readjusted importance. With each
new iteration, a fresh classifier is trained on the dataset. Upon the culmination of these
iterations, the ultimate classification outcome is established through a weighted collective
vote from each classifier.
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3.3.6. Extreme Gradient Boosting and the Light Gradient Boosting Model

Extreme gradient boosting (XGBoost) and the Light gradient boosting model (LGBM)
consist of decision trees trained sequentially [23,24]. These trees are specifically designed
to mitigate prediction errors stemming from their predecessors. In the XGBoost model,
decision trees expand in a level-wise manner, whereas in the LGBM model, they expand
leafwise. The XGBoost and LGBM models from the ‘xgboost’ (1.7.2 version) and ‘lightgbm’
(3.3.4 version) Python packages, respectively, are utilized in our study, as depicted in the
Table S1.

3.3.7. K-Nearest Neighbors

The K-Nearest Neighbor (KNN) model conducts non-parametric classification by
utilizing a pre-existing dataset, eliminating the need for a distinct training procedure [25].
For a new observation, the model determines the k-nearest data points and assigns the
class that appears most frequently among these data points as the classification result for
the new observation [5,25].

3.3.8. Soft-Voting Ensemble

A voting ensemble model comprises multiple base models, and the predictions of
these models are integrated through a vote to derive the final classification outcome with
the highest score [26]. Voting ensemble models primarily employ hard and soft voting
methods. Hard voting combines the classification results of the base models through
majority voting, where the class with the highest frequency is the final classification result.
Soft voting averages the predicted probability results of the base models, and the class with
the highest probability is considered the overall classification result.

3.4. Model Development Process

The methodology of this study encompassed three key phases including validation,
test evaluation, and visualization of SHapley Additive exPlanations (SHAP) summary
plots. Initially, the original dataset was partitioned into training and test datasets com-
prising 80% and 20% of the patients, respectively. Validation involved 5-fold stratified
cross-validation [27] applied to the training dataset across ten different combinations. Each
cross-validation cycle split the training dataset into an 80% sub-training dataset and a
20% validation dataset based on the number of patients in the training dataset. Data pre-
processing was conducted using Multiple Imputation by Chained Equations (MICE) [28]
and min–max scaling [29]. In our study, MICE was implemented in a round-robin fash-
ion [30,31]. Each feature with missing values was imputed sequentially in a cyclic manner
until the algorithm converged to stable estimates [30]. Initially, each feature selected for
imputation was addressed in the specified order starting from features with the fewest
missing values to those with the most [30]. Other missing feature values were initially filled
with their median values [30]. A multivariate regression model then predicted the missing
values for the selected feature [30]. This step was repeated for each feature, completing one
cycle of the round-robin iterative process and producing updated imputed values distinct
from the initial median imputations [30]. The process iterates through multiple rounds,
using the previously estimated values until the imputed values converge across all fea-
tures [30]. The maximum number of imputation iterations was set to 20. Following MICE
imputation, integer-type variables were rounded off before applying min–max scaling. The
models were then trained with the best parameters via hyperparameter tuning, and their
performance was evaluated using the validation dataset. The overall performance metric
was the average of all iterations within this process. The test dataset underwent a similar
procedure in which it was subjected to MICE imputation and min–max scaling, followed
by model training and performance evaluation. Model performance metrics included
balanced accuracy, recall, precision, F1 score, and Area Under the Receiver Operating
Characteristic Curve (AUROC) [32–34]. Balanced accuracy is the average of sensitivity
(recall) and specificity, providing a balanced measure for imbalanced datasets [32]. Recall
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(sensitivity) is the proportion of actual positives correctly identified by the model [32].
Precision is the proportion of positive predictions that are correct [32]. The F1 score is
the harmonic mean of precision and recall, providing a single measure of the model’s
accuracy [32]. The ROC curve evaluates the performance of a binary classification model by
plotting sensitivity against 1-specificity across various thresholds, illustrating the trade-off
among these metrics [33,34]. The AUROC quantifies this performance as a single value,
representing the area under the ROC curve [33,34]. A higher AUROC indicates better
model performance, with a value closer to 1 being ideal [34]. The formulas for the metrics
are as follows, where TP, FP, FN, and TN represent True Positive, False Positive, False
Negative, and True Negative, and t represents the threshold values used to determine the
ROC curve.

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
Recall =

TP
TP + FN

Precision =
TP

TP + FP

F1 Score = 2 × Presicion × Recall
Presicion + Recall

AUROC =
∫ 1

0
ROC(t)dt

True Positive is the number of correctly identified positive instances, False Positive is
the number of instances incorrectly identified as positive, False Negative is the number of
instances incorrectly identified as negative, and True Negative is the number of correctly
identified negative instances [32].

The model with the highest AUROC for the validation and test evaluations was
selected as the best-performing model. Figures 4 and 5 show the overall procedures for the
validation and test evaluation stages, respectively.
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To optimize the AUROC score, a grid-search hyperparameter tuning algorithm [35] was
employed based on 3-fold stratified cross-validation. Further, in Scikit-learn (1.2.2 version)
and lightgbm (3.3.4 version) python package tools utilized in our study, the “class_weight”
parameter of machine learning models such as logistic regression, decision tree, Random
Forest, SVM, and LGBM were adjusted with “balanced,” ensuring each class’s weight was
inversely proportional to its frequency [36,37]. This adjustment was implemented throughout
this study. A soft voting ensemble model incorporating these optimized models was con-
structed to enhance the AUROC score. The construction of the ensemble model is depicted in
Figure 6, and Table 2 lists the parameter settings and optimal parameter configurations for the
entire training dataset.
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ensemble model consists of the models with an optimized parameter set and is trained with the training
dataset. The models with non-tuned parameters are colored white, while those with tuned parameters
are colored light brown. The abbreviations are as follows: LR: logistic regression, DT: decision tree,
RF: Random Forest, SVM: Support Vector Machine, ADA: Adaptive Boosting (AdaBoost), XGB: Extreme
Gradient Boosting (XGBoost), LGBM: Light Gradient Boost Model, KNN: K-Nearest Neighbor.

Table 2. Parameter settings for grid search by model and optimal parameters.

Model Parameter Settings Optimal Set of Parameters

Logistic regression C (0.7, 1.0, 1.2) 1.0
Decision tree ccp_alpha (0.005, 0.01, 0.015, 0.02, 0.025) 0.02

Random Forest n_estimators (50, 100, 150) 100
ccp_alpha (0.01, 0.05, 0.1) 0.05

Support Vector Machine C (0.4, 0.6, 0.8) 0.6
kernel (“linear”) “linear”
degree (2, 3) 2

AdaBoost n_estimators (20, 40, 60, 100) 20
learning_rate (0.6, 1.0, 1.4) 0.6

XGBoost n_estimators (50, 100, 200) 50
learning_rate (0.6, 0.8, 1.0, 1.2) 0.6

reg_alpha (0.4, 0.8, 1.2, 1.6) 0.8
reg_lambda (1.4, 1.8, 2.2, 2.6) 2.6

gamma (0.6, 1.0, 1.4, 1.8) 0.6
LGBM n_estimators (25, 50, 100) 25

learning_rate (0.2, 0.4, 0.6, 0.8, 1.0) 0.2
reg_alpha (0.8, 1.2, 1.6, 2.0) 2.0

reg_lambda (0.8, 1.2, 1.6, 2.0) 2.0
K-Nearest Neighbors n_neighbors (5, 10, 15, 20, 25) 25

weights (“uniform”, “distance”) “distance”
Soft-Voting ensemble none none none

3.5. SHAP Values

In this study, SHAP [38] values were computed using the outcomes of the top-
performing model during the test evaluation phase. The significance of each variable
was quantified by calculating the mean absolute SHAP values [38,39]. This process led
to the identification of the 20 most influential variables. The SHAP summary plot graphi-
cally represents the relationships among these variables and the predictive outcomes of
the model.

The SHAP summary plot for the best-performing model was used to elucidate the
influence of the key variables on prognosis prediction. In the SHAP summary plot, the
horizontal axis denotes the SHAP values, indicating the degree of impact of the variable
on the model’s predictions. The vertical axis ranks the features based on their relative
importance, with more critical features positioned higher than those with lower significance.
This plot is an amalgamation of the individual dot plots for each variable, where each dot
symbolizes specific patient data. In these dot plots, the color of each dot reflects the value
of the corresponding variable. A transition towards red indicates an increase in the value of
the variable, whereas a shift towards blue indicates a decrease. The color gradient serves as
an intuitive indicator of the influence of the variable; red-hued dots at higher SHAP values
suggest a positive contribution to the model’s prediction, whereas blue-hued dots imply a
negative influence.

4. Results
4.1. Impact of Patient-Personalized Siegel’s Criteria on the Recovery Distribution

The application of traditional Siegel’s criteria, focusing on the 0.5, 1, 2, and 3 kHz
frequency domains, identified 334 patients (57.5%) as non-recovery and 247 patients (42.5%)
as recovery. However, when this study implemented Patient-Personalized Siegel’s criteria,
which were tailored to each patient’s specific frequency domain impairments, there was a
noticeable shift in the distribution as follows: 361 patients (62.1%) were categorized as non-
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recovery and 220 patients (37.9%) were classified as recovery. This implementation resulted
in a change in the recovery status of 41 patients. Notably, 7 patients were reclassified
from non-recovery to recovery, whereas 34 moved from recovery to non-recovery. To
evaluate the statistical significance of the observed shift, we conducted a chi-square test
using SPSS software version 26. The input table was structured with rows representing the
method (traditional Seigel’s criteria and Patient-Personalized Seigel’s criteria) and columns
representing the recovery state (recovered or non-recovered). Specifically, the table included
334 recovered and 247 non-recovered patients according to traditional Seigel’s criteria and
220 recovered and 361 non-recovered patients according to Patient-Personalized Seigel’s
criteria. The chi-square test yielded a value of approximately 2.61, with a p-value of 0.106,
indicating no statistically significant difference (p > 0.05).

4.2. Clinical Characteristics of ISSHL Patients according to Patient-Personalized Seigel’s Criteria

The distribution of age and gender in the non-recovery and recovery groups was as
follows: In the non-recovery group, the median age was 55 (Q1: 47, Q3: 64), and there were
185 males (51.25%) and 176 females (48.75%). In the recovery group, the median age was 48
(Q1: 38.25, Q3: 57), and there were 99 males (45%) and 121 females (55%). The statistical
comparison between the recovery and non-recovery groups, focusing on variables with
significant differences (p < 0.05), is detailed in Table 3. The statistical comparison between
the recovery and non-recovery groups on all variables is clarified in Table S2. The variables
demonstrating significant disparities (p < 0.001) included age, blood urea nitrogen (BUN)
level, PTA averages in hearing-impaired frequencies for both affected and unaffected ears,
hypertension, dizziness, and various audiogram types (ascending, U-shaped, flat, and deaf).
In general, the median values of the continuous variables were higher in the non-recovery
group than in the recovery group. For categorical variables, apart from tinnitus and some
audiogram types (ascending, U-shaped, and flat), higher percentages were observed in the
non-recovery group.

Table 3. Comparison of recovery and non-recovery patients with a variable that has a statistically
significant difference.

Variable Non-Recovery
(n = 361)

Recovery
(n = 220)

Total
(n = 581) p-Value

Continuous variables, median (Q1, Q3)

Age, year 55.00 (47.00, 64.00) 48.00 (38.25, 57.00) 52.00 (43.00, 60.00) <0.001

Triacylglycerol, mg/dL 99.00 (66.50, 148.00) 82.00 (56.00, 132.00) 93.00 (61.00, 142.50) 0.006
Missing values, No. (%) 156 (43.21) 77 (35.00) 233 (40.10)

Blood urea nitrogen, mg/dL 15.20 (12.40, 19.58) 13.60 (11.50, 16.00) 14.50 (11.90, 18.30) <0.001
Missing values, No. (%) 49 (13.57) 21 (9.55) 70 (12.05)

Creatinine, mg/dL 0.88 (0.71, 1.04) 0.83 (0.70, 0.98) 0.86 (0.70, 1.02) 0.025
Missing values, No. (%) 41 (11.36) 16 (7.27) 57 (9.81)

Duration time between onset and
ITDI treatment, day 6.00 (3.00, 16.00) 5.00 (2.00, 8.50) 6.00 (2.00, 13.50) 0.003

Missing values, No. (%) 137 (37.95) 95 (43.18) 232 (39.93)

PTA average of affected frequency
range (AE), dB 75.63 (56.77, 98.44) 61.25 (48.33, 77.34) 69.38 (51.25, 90.00) <0.001

PTA average of affected frequency
range (UAE), dB 23.13 (15.00, 36.25) 16.88 (10.83, 23.59) 20.00 (13.00, 30.73) <0.001

Categorical variables, No. (%)

Hypertension 131 (36.29) 46 (20.91) 177 (30.46) <0.001
Missing values, No. (%) 2 (0.6) 3 (1.4) 5 (0.9)

Diabetes 113 (31.30) 47 (21.36) 160 (27.54) 0.01
Missing values, No. (%) 2 (0.6) 2 (0.9) 4 (0.7)

Myocardial infarction or angina 21 (5.82) 3 (1.4) 24 (4.13) 0.009
Missing values, No. (%) 2 (0.6) 3 (1.4) 5 (0.9)
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Table 3. Cont.

Variable Non-Recovery
(n = 361)

Recovery
(n = 220)

Total
(n = 581) p-Value

Dizziness 152 (42.11) 39 (17.73) 191 (32.87) <0.001
Missing values, No. (%) 1 (0.3) 2 (0.9) 3 (0.5)

Tinnitus 230 (63.71) 164 (74.55) 394 (67.81) 0.006
Missing values, No. (%) 1 (0.3) 1 (0.5) 2 (0.3)

Category of time between onset and
ITDI treatment 0.005

1 (0–3 days from onset) 72 (19.94) 51 (23.18) 123 (21.17)
2 (4–7 days from onset) 51 (14.13) 40 (18.18) 91 (15.66)

3 (8–12 days from onset) 28 (7.76) 14 (6.36) 42 (7.23)
4 (13~ days from onset) 73 (20.22) 20 (9.09) 93 (16.01)
Missing values, No. (%) 137 (37.95) 95 (43.18) 232 (39.93)

Categorized severity level of PTA
average (AE) <0.001

1 (Mild: 20 dB to 40 dB) 10 (2.77) 14 (6.36) 24 (4.13)
2 (Moderate: 40 dB to 60 dB) 87 (24.10) 90 (40.91) 177 (30.46)

3 (Severe: 60 dB to 80 dB) 100 (27.70) 68 (30.91) 168 (28.92)
4 (Profound: 80 dB to 100 dB) 119 (32.96) 46 (20.91) 165 (28.40)

5 (Deaf: ≥100 dB) 45 (12.47) 2 (0.91) 47 (8.09)

Categorized severity level of PTA
average (UAE) <0.001

1 (Mild: 20 dB to 40 dB) 282 (78.12) 207 (94.09) 489 (84.17)
2 (Moderate: 40 dB to 60 dB) 45 (12.47) 5 (2.27) 50 (8.61)

3 (Severe: 60 dB to 80 dB) 18 (4.99) 5 (2.27) 23 (3.96)
4 (Profound: 80 dB to 100 dB) 14 (3.88) 2 (0.91) 16 (2.75)

5 (Deaf: ≥100 dB) 2 (0.55) 1 (0.45) 3 (0.52)

Audiogram type—ascending 35 (9.69) 47 (21.36) 82 (14.11) <0.001

Audiogram type—U-shaped 17 (4.71) 28 (12.72) 45 (7.75) <0.001

Audiogram type—descending 119 (32.96) 53 (24.09) 172 (29.60) 0.023

Audiogram type—flat 81 (22.44) 83 (37.73) 164 (28.22) <0.001

Audiogram type—deaf 109 (30.19) 9 (4.09) 118 (20.31) <0.001

Length of affected frequency range 0.001
3 21 (5.82) 24 (10.91) 45 (7.75)
4 18 (4.99) 21 (9.55) 39 (6.71)
5 20 (5.54) 11 (5.00) 31 (5.34)
6 17 (4.71) 17 (7.73) 34 (5.85)
7 13 (3.60) 16 (7.27) 29 (4.99)
8 272 (75.34) 131 (59.55) 403 (69.36)

All variables in this table show statistically significant differences between the two groups at a significance
level of 0.05. For continuous variables, the Shapiro–Wilk test assessing the normality of the distribution of
continuous variables, an independent sample t-test (normally distributed), or a Mann–Whitney U test (not
normally distributed) was conducted. For categorical variables, chi-square or Fisher’s exact test was conducted.
ITDI: initial intratympanic dexamethasone injection, PTA: pure tone audiometry, dB: decibel, AE: affected ear,
UAE: unaffected ear.

In the demographic category, the age variable showed a significant difference between
the recovery and non-recovery groups. The non-recovery group (median age 55, Q1: 47,
Q3: 64) was older than the recovery group (median age 48, Q1: 38.25, Q3: 57).

In the health records category, significant differences were observed in the presence of
hypertension, diabetes, myocardial infarction or angina, dizziness, and tinnitus between
the recovery and non-recovery groups. The non-recovery group had higher frequencies
of hypertension ((131 patients, 36.29%) vs. (46 patients, 20.91%), (number of patients,
proportion of patients)), diabetes ((113 patients, 31.30%) vs. (47 patients, 21.36%)), my-
ocardial infarction or angina ((21 patients, 5.82%) vs. (3 patients, 1.4%)), and dizziness
((152 patients, 42.11%) vs. (39 patients, 17.73%)). Conversely, tinnitus was less frequent in
the non-recovery group ((230 patients, 63.71%) vs. (164 patients, 74.55%)).

In the laboratory testing category, triacylglycerol, blood urea nitrogen, and creatinine
levels showed significant differences between the two groups. The non-recovery group had
higher levels of triacylglycerol (99.00 mg/dL (66.50, 148.00) vs. 82.00 mg/dL (56.00, 132.00),
median (Q1, Q3)), blood urea nitrogen (15.20 mg/dL (12.40, 19.58) vs. 13.60 mg/dL (11.50,
16.00)), and creatinine (0.88 mg/dL (0.71, 1.04) vs. 0.83 mg/dL (0.70, 0.98)) compared with
the recovery group.
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In the onset and treatment category, significant differences were found in the duration
between onset and ITDI treatment, the categorization of this duration, and the length of the
affected frequency range. The non-recovery group had a longer duration between onset
and treatment (6.00 days (3.00, 16.00) vs. 5.00 days (2.00, 8.50), median (Q1, Q3)). Most
patients in the non-recovery group received treatment after 13 days or more from symptom
onset (73 patients, 20.22%), while most patients in the recovery group received it within
3 days (51 patients, 23.18%). The non-recovery group also had a higher frequency of the
full-length affected frequency range (272 patients, 75.34% vs. 131 patients, 59.55%).

In the PTA records category, significant differences were observed in the PTA average
of affected and unaffected ears, categorized severity levels, and audiogram types. Patients
in the non-recovery group had more severe hearing loss in the affected ear (75.63 dB
(56.77, 98.44) vs. 61.25 dB (48.33, 77.34)). Moderate hearing loss was most frequent in the
recovery group (90 patients, 40.91%), while profound hearing loss was most frequent in
the non-recovery group (119 patients, 32.96%). For the unaffected ear, the non-recovery
group had a higher average hearing threshold (23.13 dB (15.00, 36.25) vs. 16.88 dB (10.83,
23.59)). The mild category was the most dominant category in both the recovery and
non-recovery groups. But, in detail, more severe categories than mild categories were more
frequent in the non-recovery group (79 patients, 21.88%) compared with the recovery group
(13 patients, 5.91%). Lastly, the presence of ascending (35 patients, 9.69% vs. 47 patients,
21.36%), U-shaped (17 patients, 4.71% vs. 28 patients, 12.72%), and flat (81 patients,
22.44% vs. 83 patients, 37.73%) audiogram types were more frequent in the recovery
group. Conversely, descending (119 patients, 32.96% vs. 53 patients, 24.09%) and deaf
(109 patients, 30.19% vs. 9 patients, 4.09%) audiogram types were more frequent in the
non-recovery group.

Additionally, patients treated solely with systemic steroids exhibited a lower degree of
hearing loss compared with those treated with both systemic steroids and ITDI. However,
this difference was not statistically significant according to the Mann–Whitney U test
(median PTA (Q1, Q3): 65.31 (50.00, 86.72) dB vs. 72.50 (53.75, 91.25) dB, p = 0.066).

4.3. Model Performance and Key Variables

The soft voting classifier emerged as the most effective model, achieving the highest
AUROC and precision scores among all the models tested in both validation and test
evaluations. During validation, the performance metrics were as follows: AUROC, 0.775
(95% CI, 0.659–0.887); balanced accuracy, 0.686; recall, 0.597; precision, 0.620; and F1 score,
0.605. In the test evaluation phase, the model demonstrated an AUROC of 0.864 (95% CI,
0.801–0.927), balanced accuracy of 0.772, recall of 0.750, precision of 0.688, and F1 score
of 0.717.

In addition, the logistic regression and Support Vector Machine models outperformed the
soft voting classifier in terms of balanced accuracy, recall, and F1 scores. The detailed performance
metrics for the validation and test evaluations are presented in Tables 4 and 5, respectively.

Table 4. Validation performance of the machine learning models.

Metrics Machine Learning Models

LR DT RF SVM ADA XGB LGBM KNN SVC

BACC 0.685 0.677 0.684 0.676 0.664 0.651 0.675 0.624 0.686

Recall 0.695 0.659 0.673 0.705 0.548 0.514 0.618 0.434 0.597

Precision 0.569 0.577 0.587 0.552 0.610 0.598 0.587 0.591 0.620

F1 0.624 0.609 0.618 0.618 0.573 0.548 0.599 0.497 0.605

AUROC 0.767 0.707 0.766 0.761 0.748 0.715 0.743 0.719 0.775

AUROC 95% CI 0.646–0.878 0.596–0.816 0.644–0.880 0.636–0.877 0.625–0.865 0.581–0.846 0.613–0.867 0.595–0.835 0.659–0.887

BACC: balanced accuracy, CI: confidence interval, AUROC: Area Under the Receiver Operating Characteristic
Curve, LR: logistic regression, DT: decision tree, RF: Random Forest, SVM: Support Vector Machine, ADA:
Adaptive Boosting (AdaBoost), XGB: Extreme Gradient Boosting (XGBoost), LGBM: Light Gradient Boost Model,
KNN: K-Nearest Neighbor, SVC: Soft Voting Classifier.
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Table 5. Test Evaluation Performance of the Machine Learning Models.

Metrics Machine Learning Models

LR DT RF SVM ADA XGB LGBM KNN SVC

BACC 0.797 0.706 0.722 0.788 0.745 0.722 0.747 0.611 0.772

Recall 0.841 0.727 0.909 0.864 0.682 0.636 0.727 0.455 0.750

Precision 0.673 0.582 0.541 0.644 0.682 0.667 0.653 0.541 0.688

F1 0.747 0.646 0.678 0.738 0.682 0.651 0.688 0.494 0.717

AUROC 0.850 0.752 0.803 0.861 0.858 0.832 0.847 0.734 0.864

AUROC 95% CI 0.781–0.918 0.671–0.832 0.734–0.872 0.792–0.929 0.797–0.919 0.756–0.907 0.780–0.913 0.639–0.829 0.801–0.927

Figure 7 shows the impact of the top 20 most influential variables on the recovery
prediction of the soft voting classifier. The five variables with the most significant influence
included the average PTA of the affected frequency in both the affected and unaffected
ears, the time elapsed between the onset of symptoms and the initiation of treatment, the
presence of dizziness, and the presence of a descending audiogram. Notably, all these
variables negatively affected the prediction of recovery, indicating that higher values or the
presence of these factors may be associated with a decreased likelihood of recovery.
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5. Discussion
5.1. Impact of Applying Patient-Personalized Siegel’s Criteria on the Recovery Assessment

The Patient-Personalized Siegel criteria led to notable changes in ISSHL recovery
classification in 41 patients (7%). Specifically, 7 patients were reclassified from non-recovery
to recovery, and 34 underwent a transition from recovery to non-recovery. This shift
underscores the importance of considering patient-specific impaired frequency ranges in
hearing assessments. Figure 8 shows how recovery status can differ based on the frequency
range used for the assessment. In the example shown in Figure 8, the patient-specific
hearing impairment is 0.125, 0.25, 0.5, and 1 kHz, and the average hearing threshold is
63.75 dB in the initial record and 47.5 dB at one month after treatment. With 0.5, 1, 2,
and 3 kHz, the average hearing threshold is 41.25 dB in the initial record and 25 dB one
month after treatment. The Patient-Personalized Seigel’s criteria could be better than
the traditional method of capturing patient-specific hearing damage. A patient classified
as recovered under conventional Siegel’s criteria might be deemed non-recovered when
evaluated with the patient-specific frequency range. These findings emphasize the need for
personalized assessments to accurately determine the prognosis of patients with ISSHL.
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frequency range, their individual frequency domains and hearing thresholds are emphasized with
bold style except the hearing threshold of 1 kHz domain after one month treatment which is lower
than 30 dB. After one month of treatment, the patient is determined to have recovered according to
Seigel’s criteria considering the conventional frequency range (light blue rounded square). However,
the patient is determined to be non-recovered according to the Seigel’s criteria considering the hearing-
impaired frequency range (light red rounded square). PTA: pure tone audiometry, dB: decibel.

5.2. The Distinct Characteristics of this Study

The novelties of this study include (1) applying Patient-Personalized Seigel’s criteria
to capture individual variability in hearing damage, (2) conducting statistical tests to
determine the difference between traditional Seigel’s criteria and Patient-Personalized
Seigel’s criteria, (3) eliminating detailed hearing threshold features to mitigate the model’s
high reliance on hearing threshold features. Based on the result of these three keys, we
emphasize the three main strengths of our research.

Patient-Personalized Seigel’s criteria not only assess recovery focusing on patient-
specific hearing impairment but may also assess recovery with no significant difference



Diagnostics 2024, 14, 1296 18 of 23

from traditional Seigel’s criteria. Significant differences in recovery assessments could cause
confusion for clinicians using traditional Seigel’s criteria, thus affecting their willingness to
accept the newly applied Seigel’s criteria. There is one comparable study that developed
an ISSHL prognostic model considering affected frequencies [8]. In this study, it could
not be confirmed whether there is a significant difference in the recovery assessment
result between affected criteria and traditional criteria. But, in our study, we confirmed a
distribution shift in the recovery assessment when changing Seigel’s criteria and conducted
a chi-square test to investigate the statistical significance of the shift. As a result, the chi-
square value was about 2.61 and the p-value was 0.106, indicating no statistical significance
in the difference between the two Seigel’s criteria.

By eliminating the detailed hearing threshold features, the ISSHL prognosis model
could avoid issues related to the inaccurate measurement of detailed PTA records. In
previous studies, detailed hearing level variables such as single hearing frequency have
virtually the highest variable importance [5–8]. In our study, we included only the average
hearing threshold as a hearing level variable in the dataset as follows: the average hearing
thresholds of the affected and unaffected ears in the hearing-impaired frequency domains
and its categorical variables. The average hearing thresholds of the affected and unaffected
ears have the highest feature importance in our model. The models in previous studies
could be vulnerable to the inaccurate hearing threshold of a single frequency because of its
highest feature importance. If measuring the hearing threshold of certain frequencies is not
possible or not accurately performed, there would be significant variance in the model’s
prognosis prediction. But our model can avoid this potential limitation.

Also, despite utilizing a minimal set of hearing level variables, machine learning
models succeeded in predicting the prognosis of ISSHL. Except for the decision tree and
KNN, the AUROC scores were all over 0.80 in the test evaluation. The soft voting ensemble
model was the best-performing model, with an AUROC of 0.864 (95% CI: 0.801–0.927). The
soft voting ensemble model not only had the highest AUROC score but also a high rank in
terms of balanced accuracy and highest precision in both validation and test evaluation.
The soft-voting ensemble model addresses the weaknesses of the individual component
models and reduces both the bias and variance of each component model [40].

5.3. Clinical Interpretation of the Soft-Voting Ensemble Model’s Prediction

We visualized the effect of 20 key variables of the soft voting ensemble model on
recovery prediction using a SHAP summary plot. The average PTA value of the affected
ear was found to have a negative impact on recovery prediction. Moderate hearing loss
was the most frequent category in the recovery group, while profound hearing loss was the
most frequent category in the non-recovery group regarding clinical characteristics. It is
speculated that greater hearing damage implies more significant hearing loss, which, in
turn, suggests substantial damage to hair cells, making recovery almost impossible [9,41].
The influence of the hearing level of the affected ear on recovery is consistent with numerous
studies [6,41,42]. The high average PTA value in the unaffected ear also had a negative effect
on recovery prediction in this study. Hearing impairment in the unaffected ear suggests
a compromised state of the overall auditory system, making recovery less likely [43].
The influence of the extent of hearing in the unaffected ear on ISSHL recovery has been
confirmed in multiple studies [43,44]. Additionally, although it was not possible to confirm
the baseline hearing in the affected ear before the onset of ISSHL, assuming that hearing
in both ears was symmetrical in most patients before the onset of ISSHL, hearing in the
unaffected ear would have been similar to the baseline hearing in the affected ear. In such
cases, the maximum hearing in the affected ear after treatment was similar to that in the
unaffected ear, making hearing in the unaffected ear important for treatment outcomes.
Binaural hearing is important for sound localization and distinguishing sound from noise;
hence, the recovery of hearing in the unaffected ear up to the level of the unaffected hearing
in the affected ear is crucial for daily life [45].
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All five variables related to audiogram type were significant. The audiogram types
with a positive effect on recovery prediction were flat, ascending, and U-shaped, whereas
those with a negative effect were deaf and descending. These findings are consistent with
those of a previous study that developed an ISSHL prognosis model [9]. We suggest that
hearing recovery in the low- and mid-frequency regions is better than that in the high-
frequency region [6,46,47]. This difference in recovery is attributed to variations in the
metabolism and blood supply between the basal and apical cochlea [47]. Additionally,
low-frequency sensorineural hearing loss can repeatedly occur as an early symptom of
Meniere’s disease, which is characterized by endolymphatic hydrops. In this case, because
of its fluctuating tendency, hearing recovery may appear to be more successful [48,49].

Systemic steroid therapy is known to be the most effective treatment for ISSHL. The
spontaneous recovery rate of hearing in ISSHL is about 50% [47], but with systemic steroid
therapy, approximately 80% of patients show hearing improvement [50]. Intratympanic
dexamethasone injection (ITDI) is used as an additional treatment method for refractory
ISSHL patients who do not respond to systemic steroids or concurrently with systemic
steroids based on clinical judgment. Previous studies have indicated that the concurrent
use of systemic steroids and ITDI is more effective in promoting recovery than the use
of systemic steroids [51–53]. However, the SHAP summary plot in this study revealed a
positive effect on prognosis prediction when only systemic steroids were administered,
whereas other treatments, including ITDI, had negative effects. These contrasting results
appear to be influenced by the severity of the initial hearing loss in the patients enrolled
in this study. The group of patients who received systemic steroids as a single treatment
had a lower level of hearing loss than the group of patients who received a combination
of systemic steroids and ITDI. This may be due to the tendency for higher compliance
with ITDI in patients with more severe hearing impairment, leading to patients with
a higher initial PTA receiving additional ITDI treatment. Therefore, poor therapeutic
outcomes observed in patients receiving a combination of systemic steroids and ITDI may
be attributed to their poor initial hearing status.

The duration between onset and initial treatment, as well as the categorized duration
between onset and initial ITDI treatment, negatively impacted the prediction of recovery as
their extent increased. This negative impact is attributed to the timing of treatment. The
longer the delay in treatment, the more challenging it is to recover from ISSHL. Previous
studies demonstrated similar treatment delays [41,44,54–56].

Among blood test-related variables, BUN and lymphocyte count (%) were important
for predicting recovery. A high BUN level was a negative predictor of recovery. We believe
that an increase in the BUN level indicates a decrease in blood volume [57], which can lead
to reduced blood flow to the inner ear. However, the correlation between BUN levels and
hair cell damage has shown conflicting results across studies. Several studies on ISSHL
have indicated that BUN is a negative prognostic factor for hearing [9,58]. Additionally, it
has been shown that BUN levels are correlated with hearing loss in patients with chronic
kidney disease [59,60]. On the other hand, other studies have found no correlation between
BUN levels and hearing loss in CKD patients [61–63]. Therefore, further research is needed
to clarify the correlation between BUN levels and cochlear damage. Higher levels of blood
lymphocytes (%) have a positive impact on recovery prediction. It is believed that lymphoid
cells play a role in regulating inflammatory responses and that regulatory T cells, which
are a subtype of lymphoid cells, can help prevent arteriosclerosis [64]. Other statistical
analyses indicate that lymphocytes (%) are significantly lower in non-recovered patient
groups than in recovered patient groups [65].

In the health-related and democratic information categories, BMI, dizziness, tinnitus,
age, weight, and diabetes are significant variables for recovery. Dizziness negatively affects
recovery predictions. This is attributed to inflammatory reactions in the basal cochlea that
extend into the semicircular canal, leading to dizziness [41]. Damage to the basal cochlea
implies hearing loss in the high-frequency range, which contributes to a low recovery
rate of ISSHL [6,46,47]. Previous studies have also highlighted the negative effects of
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tinnitus [41–43]. The onset of tinnitus can have variable effects on the prediction of recovery
because recovery rates may differ based on the persistence time of tinnitus [66]. However,
in our study, tinnitus onset had a positive effect on recovery prediction. This aligns with
the findings of previous research [41,67]. The presence of tinnitus may indicate ongoing
auditory cell function and potential for recovery, whereas the absence of tinnitus may
indicate irreversible auditory cell damage [67]. Older age is presumed to have a negative
effect on recovery prediction. We believe that older patients are prone to developing
microangiopathy, which can lead to chronic inner ear damage due to insufficient oxygen
supply [68], resulting in a negative impact of older age on recovery. The effect of older age
on recovery prediction has been reported in previous studies [6,42,68,69]. Furthermore,
high BMI and body weight negatively affect the prediction of recovery. This is likely due
to increased body fat, which elevates blood fat levels and may hinder blood flow to the
cochlea through microcirculation caused by increased blood viscosity [70]. Previous studies
have highlighted the negative effect of BMI on recovery [70,71]. The presence of diabetes
has a negative effect on prognosis, as reported in previous studies [72,73]. Microangiopathy
of the cochlea in diabetes patients may lead to a low probability of ISSHL recovery [72,73].
Although the affected side and height are included in the list of the top 20 variables, they
have little effect on prognostic prediction.

5.4. Limitations

This study has several limitations. The prediction of the model was restricted to one
month post-treatment. Since the steroid-based treatment has long period effects, future
models should aim to predict ISSHL recovery for longer than one month after treatment,
such as three or six months after treatment. Moreover, the exclusion of patients because
of missing PTA records could generate bias. The statistical significance of the recovery
assessment shift should be conducted again with a larger dataset. Also, the application
of Patient-Personalized Seigel’s criteria and model development with the elimination
of detailed PTA features must be conducted using a larger dataset as well. Lastly, the
high missing ratio not only in PTA features but also the other clinical features limits the
completeness of the dataset, necessitating more data gathering and the development of
more robust imputation strategies.

6. Conclusions

This retrospective study demonstrates that a soft voting classifier can effectively predict
recovery from Idiopathic Sudden Sensorineural Hearing Loss (ISSHL) based on patient-
specific hearing impairment frequency domains. Unlike traditional methods, this approach
considers the individual variability in hearing loss, leading to a more accurate prognosis.
We statistically tested the distribution shift of recovery assessment when changing from
traditional Seigel’s criteria to Patient-Personalized Seigel’s criteria. In developing the model,
we eliminated the detail hearing threshold parameters to mitigate the model’s high reliance
on the PTA records. Factors that negatively impact prognosis were discovered based on the
SHAP value, which included the following: average hearing threshold, dizziness, delay in
treatment onset, and descending audiogram type. The distribution shift in the recovery
assessment was not statistically significant based on the result of the chi-square test. Our
study underscores the significance of the ISSHL prognostic model, which accounts for
patient-specific hearing impairments. Further research is required to validate our findings
in larger and more diverse patient populations. Further prospective studies are needed to
investigate the impact of our machine learning models on clinical outcomes.
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54. Ceylan, A.; Celenk, F.; Kemaloğlu, Y.; Bayazıt, Y.; Göksu, N.; Özbi, S. Impact of prognostic factors on recovery from sudden
hearing loss. J. Laryngol. Otol. 2007, 121, 1035–1040. [CrossRef]

55. Ferri, E.; Frisina, A.; Fasson, A.C.; Armato, E.; Spinato, G.; Amadori, M. Intratympanic steroid treatment for idiopathic sudden
sensorineural hearing loss after failure of intravenous therapy. Int. Sch. Res. Not. 2012, 2012, 647271. [CrossRef]

56. Wu, H.; Wan, W.; Jiang, H.; Xiong, Y. Prognosis of idiopathic sudden sensorineural hearing loss: The nomogram perspective. Ann.
Otol. Rhinol. Laryngol. 2023, 132, 5–12. [CrossRef]

57. Baum, N.; Dichoso, C.C.; Carlton, C.E., Jr. Blood urea nitrogen and serum creatinine: Physiology and interpretations. Urology
1975, 5, 583–588. [CrossRef]

58. Abe, Y.; Okada, M.; Tanaka, K.; Toyama, K.; Miyamoto, Y.; Hato, N. The Association between Dehydration and the Prognosis of
Sudden Sensorineural Hearing Loss. Otol. Neurotol. Open 2023, 3, e041. [CrossRef]

59. Seo, Y.J.; Ko, S.B.; Ha, T.H.; Gong, T.H.; Bong, J.P.; Park, D.-J.; Park, S.Y. Association of hearing impairment with chronic kidney
disease: A cross-sectional study of the Korean general population. BMC Nephrol. 2015, 16, 154. [CrossRef]

60. Saha, P.; Mondal, P. Study of prevalence and pattern of sensorineural hearing impairment in stage 5 chronic kidney disease
patients on haemodialysis-at a tertiary health care setup in India. Int. J. Med. Sci. Diagn. Res. 2020, 4, 1–7.

61. Purnami, N.; Roosmilasari, A.; Artono, A.; Mardiana, N. Correlation between blood urea nitrogen level and cochlear outer hair
cell function in non-dialysis chronic kidney disease patients. J. Public Health Res. 2022, 11, 2533. [CrossRef]

62. Fufore, M.; Kirfi, A.; Salisu, A.; Samdi, M.; Abubakar, A.; Lawal, J. Hearing loss in chronic kidney disease: An assessment of
multiple aetiological parameters. Otolaryngology 2020, 10, 393.

63. Reddy, E.; Prakash, D.S.; Krishna, M.G.R. Proportion of hearing loss in chronic renal failure: Our experience. Indian J. Otol. 2016,
22, 4–9.

64. Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil lymphocyte ratio and cardiovascular
disease risk: A systematic review and meta-analysis. BioMed Res. Int. 2018, 2018, 2703518. [CrossRef]

65. Durmus, K.; Terzi, H.; Karatas, T.D.; Dogan, M.; Uysal, I.Ö.; Sencan, M.; Altuntas, E.E. Assessment of hematological factors
involved in development and prognosis of idiopathic sudden sensorineural hearing loss. J. Craniofacial Surg. 2016, 27, e85–e91.
[CrossRef]

66. Hikita-Watanabe, N.; Kitahara, T.; Horii, A.; Kawashima, T.; Doi, K.; Okumura, S.-I. Tinnitus as a prognostic factor of sudden
deafness. Acta Oto-Laryngol. 2010, 130, 79–83. [CrossRef]

67. Danino, J.; Joachims, H.; Eliachar, I.; Podoshin, L.; Ben-David, Y.; Frandis, M. Tinnitus as a prognostic factor in sudden deafness.
Am. J. Otolaryngol. 1984, 5, 394–396. [CrossRef]

68. Lionello, M.; Staffieri, C.; Breda, S.; Turato, C.; Giacomelli, L.; Magnavita, P.; de Filippis, C.; Staffieri, A.; Marioni, G. Uni-and
multivariate models for investigating potential prognostic factors in idiopathic sudden sensorineural hearing loss. Eur. Arch.
Oto-Rhino-Laryngol. 2015, 272, 1899–1906. [CrossRef]

69. Xenellis, J.; Karapatsas, I.; Papadimitriou, N.; Nikolopoulos, T.; Maragoudakis, P.; Tzagkaroulakis, M.; Ferekidis, E. Idiopathic
sudden sensorineural hearing loss: Prognostic factors. J. Laryngol. Otol. 2006, 120, 718–724. [CrossRef]

70. Lee, J.S.; Kim, D.H.; Lee, H.J.; Kim, H.J.; Koo, J.W.; Choi, H.G.; Park, B.; Hong, S.K. Lipid profiles and obesity as potential risk
factors of sudden sensorineural hearing loss. PLoS ONE 2015, 10, e0122496. [CrossRef]

71. Rinaldi, M.; Cavallaro, G.; Cariello, M.; Scialpi, N.; Quaranta, N. Metabolic syndrome and idiopathic sudden sensori-neural
hearing loss. PLoS ONE 2020, 15, e0238351. [CrossRef]

72. Zhang, Y.; Jiang, Q.; Wu, X.; Xie, S.; Feng, Y.; Sun, H. The influence of metabolic syndrome on the prognosis of idiopathic sudden
sensorineural hearing loss. Otol. Neurotol. 2019, 40, 994–997. [CrossRef]

73. Lin, C.F.; Lee, K.J.; Yu, S.S.; Lin, Y.S. Effect of comorbid diabetes and hypercholesterolemia on the prognosis of idiopathic sudden
sensorineural hearing loss. Laryngoscope 2016, 126, 142–149. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1001/archotol.1980.00790360050013
https://doi.org/10.1016/j.anl.2020.06.009
https://doi.org/10.1177/0194599815615121
https://doi.org/10.1017/S0022215107005683
https://doi.org/10.5402/2012/647271
https://doi.org/10.1177/00034894221075114
https://doi.org/10.1016/0090-4295(75)90105-3
https://doi.org/10.1097/ONO.0000000000000041
https://doi.org/10.1186/s12882-015-0151-0
https://doi.org/10.4081/jphr.2022.2533
https://doi.org/10.1155/2018/2703518
https://doi.org/10.1097/SCS.0000000000002241
https://doi.org/10.3109/00016480902897715
https://doi.org/10.1016/S0196-0709(84)80054-X
https://doi.org/10.1007/s00405-014-2992-8
https://doi.org/10.1017/S0022215106002362
https://doi.org/10.1371/journal.pone.0122496
https://doi.org/10.1371/journal.pone.0238351
https://doi.org/10.1097/MAO.0000000000002352
https://doi.org/10.1002/lary.25333

	Introduction 
	Materials 
	Data Collection and Study Population 
	Data Variables and Minimizing PTA Variables 

	Methods 
	Recovery Assessment by the Newly Developed Patient-Personalized Seigel’s Criteria 
	Statistical Analysis to Investigate Clinical Characteristics of ISSHL Patients 
	Machine Learning Models 
	Logistic Regression 
	Decision Tree 
	Support Vector Machine 
	Random Forest 
	Adaptive Boosting 
	Extreme Gradient Boosting and the Light Gradient Boosting Model 
	K-Nearest Neighbors 
	Soft-Voting Ensemble 

	Model Development Process 
	SHAP Values 

	Results 
	Impact of Patient-Personalized Siegel’s Criteria on the Recovery Distribution 
	Clinical Characteristics of ISSHL Patients according to Patient-Personalized Seigel’s Criteria 
	Model Performance and Key Variables 

	Discussion 
	Impact of Applying Patient-Personalized Siegel’s Criteria on the Recovery Assessment 
	The Distinct Characteristics of this Study 
	Clinical Interpretation of the Soft-Voting Ensemble Model’s Prediction 
	Limitations 

	Conclusions 
	References

