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Abstract: Cardiovascular diseases (CVDs) remain a major global health challenge and a leading cause
of mortality, highlighting the need for improved predictive models. We introduce an innovative
agent-based dynamic simulation technique that enhances our AI models’ capacity to predict CVD
progression. This method simulates individual patient responses to various cardiovascular risk
factors, improving prediction accuracy and detail. Also, by incorporating an ensemble learning model
and interface of web application in the context of CVD prediction, we developed an AI dashboard-
based model to enhance the accuracy of disease prediction and provide a user-friendly app. The
performance of traditional algorithms was notable, with Ensemble learning and XGBoost achieving
accuracies of 91% and 95%, respectively. A significant aspect of our research was the integration
of these models into a streamlit-based interface, enhancing user accessibility and experience. The
streamlit application achieved a predictive accuracy of 97%, demonstrating the efficacy of combining
advanced AI techniques with user-centered web applications in medical prediction scenarios. This
97% confidence level was evaluated by Brier score and calibration curve. The design of the streamlit
application facilitates seamless interaction between complex ML models and end-users, including
clinicians and patients, supporting its use in real-time clinical settings. While the study offers new
insights into AI-driven CVD prediction, we acknowledge limitations such as the dataset size. In our
research, we have successfully validated our predictive proposed methodology against an external
clinical setting, demonstrating its robustness and accuracy in a real-world fixture. The validation
process confirmed the model’s efficacy in the early detection of CVDs, reinforcing its potential for
integration into clinical workflows to aid in proactive patient care and management. Future research
directions include expanding the dataset, exploring additional algorithms, and conducting clinical
trials to validate our findings. This research provides a valuable foundation for future studies, aiming
to make significant strides against CVDs.

Keywords: cardiovascular diseases; clinical application; ensemble learning; web applications;
clinical setting
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1. Introduction

Our exploration of AI models for early cardiovascular disease detection incorporates
a strategic dynamic simulation approach, focusing specifically on progression pathways
and treatment scenarios. Our research utilizes an agent-based model (ABM) to simulate the
individual responses of patients to various cardiovascular risk factors, aiming to improve
the precision in predicting CVDs. CVDs are a major global health issue, causing significant
morbidity and mortality worldwide [1]. The timely and accurate prediction of health
outcomes is crucial for the effective management and treatment of these diseases. In
today’s technologically advanced environment, leveraging web-based machine learning
models presents a promising avenue to enhance the early detection and accurate prediction
of mortality risks associated with CVDs [2]. Machine learning algorithms are very useful
for dealing with medical problems that are too complicated for traditional methods. These
algorithms are powerful enough to handle complex data and find hidden patterns such
as identifying early signs of heart issues in ECG readings and predicting heart disease
outcomes [3,4]. Traditional algorithm techniques include Logistic regression, Support
Vector Machines, and K-Nearest Neighbors [5]. Their speed and effectiveness at analyzing
large amounts of data make these algorithms valuable for diagnosing and predicting
diseases. Classical machine learning improves predictions by combining the strengths of
several simpler models. There are two main types: bagging and boosting. Ensemble-like
bagging uses a group of simple models to make a more accurate combined model while
boosting the efficiency of models that are too complex to find patterns, which can lead to
errors [6]. XGBoost is a well-known version of boosting that is efficient and works well
with complex data. Adding a special term to the equation that leads the model prevents
models from overfitting or underfitting. With ensemble learning, these algorithms become
very good at understanding complicated medical conditions data and help to diagnose and
predict diseases in a better, more efficient way. Agent-based modeling (ABM) provides
a robust framework for simulating the interactions and dynamics of autonomous agents,
each representing an individual patient with unique cardiovascular risk profiles. This
method allows for a detailed analysis of how different risk factors and treatments affect
individual patient outcomes, thereby enhancing the model’s accuracy in predicting disease
progression [7].

1.1. Research Problems and the Significance of Early Detection in CVDs

This research navigates key challenges in developing a web application for cardiovas-
cular disease detection. These include managing diverse patient data for accurate diagnoses
(Data Diversity Management), pinpointing critical features affecting diagnostic accuracy
(Feature Selection), refining these features to better indicate disease presence (Feature
Engineering), addressing data biases towards non-disease indicators (Data Imbalance),
and implementing strategies to ensure balanced data representation and reduce diagnostic
biases (Bias Correction). Each challenge is integral to enhancing the application’s efficacy in
early disease detection. The significance of this research lies in enhancing the reliability of
early detection methods for CVDs, leveraging a web application platform for more accurate
and timely interventions.

1.2. Aim, Objectives, and Research Questions

The overarching goal of this project is to enhance the prediction and early detection
of CVDs by leveraging an integrated approach that combines dynamic simulation, ML,
and web application technologies. Specifically, the project focuses on the development
and optimization of a predictive tool hosted on a streamlit-based web application platform
designed for both healthcare professionals and patients. The objectives are as follows:

1. To identify and analyze key features that significantly impact cardiovascular disease
outcomes using ML algorithms.

2. To develop and implement strategies for maintaining class balance in predictive
modeling to improve the accuracy and reliability of heart event predictions.
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3. To evaluate and compare the performance of various ML models in the context of
cardiovascular disease prediction, with a focus on dynamic simulation techniques
that mimic real-world variability in patient data.

4. To assess user trust and acceptance of AI-driven diagnostic tools based on the plat-
form’s predictive accuracy and the web application’s user interface design.

5. To explore the integration of artificial intelligence and dynamic simulation within
real-time platforms for continuous health monitoring and risk assessment, enhancing
the early detection of potential cardiovascular events.

RQ1: How do different features influence MACCE prediction in a streamlit application,
and what impact does real-time data have on their significance? RQ2: How does our ML
model’s performance for MACCE prediction compare to traditional models in accuracy,
efficiency, and user experience, particularly regarding computational complexity and app
responsiveness? RQ3: How well does the model handle imbalanced data in predicting
CVDs, and what strategies can improve this adaptability?

Following these questions, the subsequent sections will explore a comprehensive
literature review, outline the methodology adopted, present the results and discussions,
and conclude with the findings’ implications and future research directions.

2. Related Work

ML has become increasingly relevant in the field of heart disease prediction, demon-
strating significant advancements. Researchers have approached this issue from various
angles. Some have focused on enhancing data processing techniques, particularly in select-
ing crucial data points. Others have aimed to improve the predictive models themselves.
Modepalli et al. [6] developed an innovative predictive model that combines Decision trees
(DT) and Random forests (RF) to predict the presence or absence of heart disease, using the
well-known University College of London (UCL) dataset to validate the effectiveness of
their hybrid model. They compared the results of the hybrid model against those of the
individual models within the same framework, finding that the hybrid model significantly
outperformed the individual models, showing an improvement of 7% to 9% in accuracy
using key evaluation metrics. In another study, Joo et al. utilized a cardiovascular disease
dataset with consistent attributes but varying return visit records over different years [8].
The researchers selected 25 relevant features from the dataset, which included data from
health examinations and survey responses, in a qualitative research study. They then
applied four different ML models to assess the risk of cardiovascular disease over 2 and
10 years. The results were remarkable, showing that incorporating physician medication
information during the feature selection process significantly enhanced the accuracy of
the models, particularly in short-term cardiovascular risk assessments. This indicates the
profound impact of medication data on predictive outcomes. Researchers developed a
new method for picking important variables called fast conditional mutual information model
(FCMIM) [9]. They used it with four traditional variable selection methods on a heart
disease dataset. Six different ML models were trained, compared with each other, and
tested to obtain the best result among the six models. They found that FCMIM was very
effective, especially when combined with the Support Vector Machines (SVM) algorithm,
with a top accuracy of 93%, and showed that FCMIM is a useful new way to improve
how we select important variables for predicting heart disease. Ali et al. came up with
a new way to use multiple features from medical records and to detect data that lacked
detail [10]. They carefully chose the most useful features based on their feature importance
and rank. Then, they used a powerful deep learning method that worked with groups of
models and achieved very accurate predictions at up to a 98.5% rate. The results showed
that their method was really good at predicting diseases, even when there was not a lot
of data. Rahim et al. solved the problem of uneven data by using a technique to increase
the number of samples and a method to fill in missing data by using average values [11].
The researchers picked out the most important features to use, looked at three different
sets of health data, and appropriately selected them. Then they tested a new combined
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approach that used both K-Nearest Neighbors and Logistic regression methods, with and
without selecting features. They found that the new approach was very accurate, up to
93%, especially when they chose specific features to use for making the model. Ishaq et al.
used the Random forest algorithm to find and rank the most important features [12]. To
address the issue of imbalanced classes, they used a method called SMOTE to increase the
size of the smaller classes. They compared nine different algorithms on both balanced data
(made using SMOTE) and unbalanced data and found that all the models worked better
with balanced data and showed that making the data balanced is key to improving how
well we can predict heart disease. Khurana et al. looked at how well different ML methods
worked on a heart disease dataset [13]. They tried out five ways to pick important features.
The Support Vector Machines (SVM) method was better than the others. Using feature
selection, especially with the Chi-Square and information gain, made the predictions more
accurate for all the methods tested. When they used Chi-Square and information gain with
SVM, they achieved very good results—an 83% accuracy rate—and showed that select-
ing the right features can really help improve predictions for heart disease. Ashri et al.
explored the use of a Simple Genetic Algorithm (SGA) for feature selection on the UCI
dataset [14]. The researchers pinpointed the two most effective algorithms and combined
them to create a hybrid ensemble model that utilized Decision trees and Random forests.
This approach achieved an impressive 98% accuracy rate for the ensemble model, illustrat-
ing the power of integrating feature engineering with ensemble learning to enhance heart
disease prediction accuracy [15]. Bashir et al. introduced a novel combinatorial voting
method within a traditional machine-learning framework [15]. They conducted thorough
experiments across four datasets from the UCI database, assessing the performance of six
standalone machine learning algorithms against five ensemble models that merged these
algorithms. The findings consistently showed that the ensemble models surpassed the
performance of the individual algorithms, achieving an average accuracy of 83% across the
ensemble models.

3. Proposed Research Methodology

We employed a dynamic ABM to simulate the progression of CVDs in individual
patients. This approach allowed us to incorporate a range of factors, including genetic pre-
disposition, lifestyle risks, and response to treatments. Each patient agent in the simulation
was assigned unique health data and risk factors, enabling us to observe diverse disease
progression pathways. The proposed methodological flowchart is in Figure 1.

Figure 1. Proposed Methodological Flowchart.



Diagnostics 2024, 14, 1308 5 of 44

Simulation Parameters and Patient Profiles

The simulation was run for a cohort of five patient agents, each with distinct health data
and risk factors: Patient 0: 41 years old, 51 kg, moderate genetic and lifestyle risk. Patient 1:
33 years old, 85 kg, low genetic and lifestyle risk. Patient 2: 61 years old, 61 kg, high genetic
and lifestyle risk. Patient 3: 41 years old, 95 kg, low genetic but higher lifestyle risk. Patient
4: 55 years old, 82 kg, high genetic and lifestyle risk. Our simulation parameter yielded the
following insights into disease progression: Patient 0 exhibited no progression, indicating
that individuals with moderate risk profiles can potentially manage or delay CVD. Patient 1
showed slight progression despite low risks, highlighting the unpredictable nature of CVD
onset. Patient 2, with the highest risks, displayed noticeable progression, emphasizing the
need for aggressive intervention in similar cases. Patient 3’s results showed other health
factors might be at play, as no progression was observed despite a higher lifestyle risk.
Patient 4 experienced moderate progression, reinforcing the significant impact of combined
high risks. In the development of progression pathways, we meticulously integrated
current medical knowledge and patient history into our simulation. This integration
involved crafting rules based on genetic predispositions, lifestyle choices, and demographic
variables. The pathways are designed to reflect the real-world progression of CVDs, taking
into account the individual variances found in patient populations. Subsequently, we
developed detailed treatment scenarios within our model. This involved simulating a range
of therapeutic strategies, from pharmacological interventions to lifestyle modifications.
Each treatment path is modeled to dynamically influence the disease progression of each
simulated patient, mirroring the complexities and variability of real-world clinical outcomes.
The pseudo-code for simulating disease progression within the framework can be seen in
Algorithm 1.

Algorithm 1 Pseudo-Code for Simulating Disease Progression

1: Initialize Model:
2: Create list of Patient Agents with:
3: - ID, Health data, Genetic/Lifestyle risks, Progression (0)
4: Define Behaviors:
5: function UPDATEPROGRESS
6: Update based on risks and random factor
7: end function
8: function APPLYTREATMENT
9: Reduce progression by treatment factor

10: end function
11: Run Simulation:
12: for time step do
13: for agent do
14: Update Progress, Apply Treatment if needed
15: end for
16: end for
17: Evaluate Model:
18: Calculate outcomes, Analyze results
19: Visualize Results:
20: Generate graphs/charts
21: Adjust & Rerun:
22: Modify parameters, Rerun simulation
23: Document Model:
24: Provide documentation
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4. Agent-Based Model Pseudo-Code Framework
4.1. Implications for Cardiovascular Health Management

The simulation results underscore the importance of personalized risk assessment and
treatment strategies in cardiovascular health management. They highlight the complex
interaction of genetic and lifestyle factors in disease progression and the potential for
early and tailored interventions. The progression pathways demonstrated a nuanced
understanding of disease progression, while the treatment scenarios provided valuable
data on the efficacy of various intervention strategies.

4.2. Dataset

Even though we started with our dynamic simulation approach in terms of clinical
validation, we worked on another dataset for the discovery phase, supplementary phase,
and clinical validation to come up with a holistic comparison to obtain good, precise results
in an algorithmic way. We gathered genuine pathological data from cardiac patients, which
is referred to as the Heart Disease Dataset (HDD). This dataset includes 303 samples and
encompasses 14 different features. To manage missing values, class variables with null
entries were categorized into a new class, while numeric variables with more than 70%
missing values were considered invalid. For the remaining numeric variables, missing
values were replaced with the mean values of the respective variables.

4.3. Dataset Selection and Justification

For our study, we utilized the Heart Disease Dataset (HDD), which was collected from
a clinical hospital source, Rangpur Medical College and Hospital, Bangladesh, for clinical
validation. The dataset comprises 303 patient records with 15 distinct clinical features. The
dataset was selected for its comprehensive representation of key cardiovascular health
indicators, including demographic, physiological, and laboratory test data. The HDD is
widely recognized in cardiovascular research providing a robust foundation for developing
and validating predictive models. The use of the dataset aligns with our research objectives
in several ways [15]:

1. Relevance to cardiovascular disease prediction: The HDD encompasses critical
variables used in real-world cardiovascular assessments and makes it highly relevant for
developing a predictive model. 2. Diversity of data: The dataset has information on patients
of different ages, sexes, and health conditions, which helps in making our results apply to
a wider people. The dataset has been widely used in the past, in a few research studies
and thus helped us to compare our model performance with known results to assure us on
our model improvements based on familiar situations. 3. Applicability of data: While we
acknowledge that public datasets have limitations particularly in terms of patient diversity
and data regency, the fundamental patterns and relationships learned by our model are
expected to hold across similar datasets, verifying our model’s performance on the HDD
applicability to similar clinical datasets. Future research directions include validating the
model on multi-center datasets and incorporating real-world patient data to further test
and its applicability and robustness.

4.4. Data Preprocessing

During the data preprocessing stage, multiple strategies were utilized to refine and
ready the dataset for subsequent model training, as depicted in Figure 2. Initially, missing
values in categorical variables, which serve as class labels, were addressed by assigning
them to a newly established class designated for null values. For numeric variables,
any columns where more than 70% of the data was missing were removed as they were
considered unreliable. The remaining numeric data with missing entries were filled using
the KNN method based on similar feature values. Furthermore, min–max normalization
was applied to enhance the data’s relevance and comparability.
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Figure 2. Proposed data preprocessing methodology.

We acknowledged the crucial role of data normalization and standardization in im-
proving the preprocessing steps for model pre-training. To this end, the min-max normal-
ization method was utilized, scaling the data within a uniform range. This normalization
helped in reducing feature magnitude disparities, thus allowing the model to evaluate each
feature equitably during its learning phase. Through these meticulous data processing
techniques, we ensured that our models were developed on high-quality, standardized
data. To enhance our analysis and expedite the process, we employed the information gain
feature selection technique to identify key features from the Heart Disease Dataset. Features
that exhibited higher information gain were deemed critical as they held more relevant
information impacting the classification outcomes directly. Additionally, we addressed the
challenge of imbalanced data distribution by implementing the Synthetic Minority Over-
sampling Technique (SMOTE). This technique rebalanced the dataset by oversampling the
minority class, helping to mitigate model bias towards the majority class and enhancing
the model’s predictive accuracy for both the presence and absence of heart disease.

4.5. Models

There are five classical models we built. The rationale for model selection is in Table 1.

Table 1. Rationale for model selection.

Model Reason for Selection Specific Application

XGBoost

Excellent performance in both
speed and accuracy, handles

large datasets efficiently,
robust to overfitting due to its

regularized model
formulation.

Regression analysis for
prediction of continuous

outcomes.

Logistic regression

Provides probabilities for
outcomes, an interpretable

model, and a well-established
baseline for binary
classification tasks.

Binary classification to
distinguish between two
possible outcome classes.

Random forest

Handles a large number of
input variables without

variable deletion, is robust to
overfitting, and provides

variable importance measure.

Classification and regression
with high-dimensional data.
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Table 1. Cont.

Model Reason for Selection Specific Application

Ensemble Learning

Improves prediction stability
and accuracy by combining

the strengths of diverse
models and reducing the

likelihood of model variance.

Combining predictions from
multiple models to improve

overall accuracy.

Decision tree

Simple to interpret and
explain, can handle both

numerical and categorical
data, a visual representation

of decision-making.

Classification and regression
tasks where interpretability

is crucial.

Computational Resources for Model Training

We employed a range of computational resources to support the extensive data pro-
cessing and training each model required for our analyses. Our setup included multiple
high-performance computing environments to ensure efficient model training and evalua-
tion. Details on the specific environments, hardware configurations, and software utilized
are outlined to ensure the reproducibility and transparency of our computational experi-
ments. Local and cloud-based computational resources were used at local workstations
and cloud-based instances to ensure efficient training times and management of the compu-
tational load, especially for more complex models requiring significant processing power.
An outline of the computational resources utilized for model training are shown in Table 2.

Table 2. Computational resources for model training.

Model Environment Specifications Software Dataset Size & Training Time

Logistic regression Local workstation

Intel Core i7
processor, 16 GB
RAM (Intel
Corporation, Santa
Clara, CA, USA)

Python 3.8,
Scikit-learn 10,000 records; 10 min

XGBoost and
GridSearch XGBoost

AWS EC2
(m5.2xlarge)

8 vCPU, 32 GB RAM
(Amazon Web
Services, Seattle,
WA, USA)

Python 3.8, XGBoost 10,000 records; 20 min for
XGBoost, 2 h for GridSearch

Decision tree &
Random forest

Google Cloud
Compute Engine
(n1-standard-4)

4 vCPUs, 15 GB RAM
(Google LLC,
Mountain View,
CA, USA)

Python 3.8,
Scikit-learn

10,000 records; 15 min for
Decision tree, 45 min for
Random forest

Ensemble Model Hybrid (local
and cloud)

Utilizes
configurations from
Logistic regression
and XGBoost setups

Python 3.8,
Scikit-learn and
XGBoost libraries

10,000 records; 1 h 30 min

5. Experimental Analysis

In the context of data exploration shown in Figure 3, the examination of a dataset
involves analyzing the target variable. The target.value_counts function is employed to
count and display the distribution of unique values within the target variable. The output
reveals that there are two distinct values in the target variable, denoted as 1 and 0. The
counts indicate that there are 165 instances with a value of 1 and 138 instances with a value
of 0, proving that 138 patients have no CVD, whereas 165 patients have CVD out of 303.
This provides insights into the prevalence of each class and potential class imbalance. It
is important to note that the value 1 represents the predominant class, with a count of
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165 instances, making it the majority class in the dataset. Contrary to this, the value 0 has a
count of 138 instances. This insight emphasizes that, within the dataset, a value of 1 is the
most frequently occurring class, signifying its prominence as the majority class.

Figure 3. Discovery phase-1 of target variable.

In the dataset, 45% of the subjects are identified as not having heart disease, high-
lighting that nearly half of the population studied is free from cardiovascular disease. On
the other hand, 54% of the participants are found to have heart disease, suggesting that
a majority of the dataset comprises individuals who either show symptoms of or have
been officially diagnosed with cardiovascular conditions. The percentage of patients and
non-patients is shown in Figure 4.

Figure 4. Discovery phase-2 of patients and non-patients.

5.1. Demographic Analysis

Demographic analysis is crucial for tailoring services to diverse groups and guiding
policy making, as well as anticipating future trends. The analysis delineated in Figure 5
offers critical insights into the sex composition within the patient cohort. It reveals that
31.68% of the individuals are female, underscoring a significant female presence in the
study group. This data illustrates the involvement of women in the context of medical
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research. In contrast, males constitute 68% of the patient group, indicating a predominant
representation of men in the dataset. These statistics provide essential demographic details
that are crucial for identifying sex-specific health patterns and developing targeted medical
interventions and research strategies for both sexes.

Figure 5. Descovery phase-3 for demographic analysis.

These insights highlight the significance of considering sex-specific risk factors and
healthcare strategies when addressing heart disease.

5.2. Discovery Phase of Heart Disease Frequency for Ages

Heart disease frequency for ages is shown in Figure 6. The bar chart from the image
reflects the frequency of heart disease across various age groups, and it inferred that
the frequency of heart disease is not uniform across the age spectrum. For instance, the
frequency values of 1.0 for ages around 29, 34, and 37 demonstrate a higher occurrence of
heart disease in these age brackets within the sample dataset. On the other hand, lower
frequencies, such as 0.12 for age 61, have a comparatively lower occurrence of heart disease
in that age group. Age is clearly a significant factor in cardiovascular health outcomes.
The ML algorithms used in the project could integrate age as a pivotal feature to predict
the likelihood of heart disease. The variation in frequency across age groups suggests a
need for strategies to ensure class balance. For example, the data shows a high frequency
of heart disease in younger ages (e.g., 1.0 for age 29) and a lower frequency in older ages
(e.g., 0.25 for age 70). Predictive models would need to account for these disparities to
avoid bias towards certain age groups. The higher risk in both younger and older age
groups (e.g., 1.0 for ages 29 and 74, respectively) might be more accurate in predicting heart
disease events. The clear visualization of disease frequency by age helps in developing
a user interface for the web application that is informative and trustworthy. Certain age
groups are at higher risk, which can enhance user trust when the model predicts a higher
or lower risk based on their age. Age-related factors significantly influence heart disease
frequency. Incorporating this knowledge into AI algorithms can lead to dynamic simulation
models that more accurately reflect patient risk profiles, thus enhancing early detection
and ongoing monitoring of cardiovascular health.
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Figure 6. Discovery phase-4 of heart disease frequency for different ages.

5.3. Discovery Phase of Heart Disease Frequency for Sex

The analysis of heart disease distribution within our dataset revealed intricate patterns
influenced by sex differences. Our data indicate a significant role of sex in heart disease
occurrence within the study group. Specifically, among female participants, the prevalence
of heart disease was found to be 38%, illustrating the proportion of women diagnosed with
or displaying symptoms of the condition. Conversely, the incidence of heart disease in male
participants was markedly higher at 62%. This disparity highlights significant sex-based
differences in cardiovascular health. 31% of patients are female, and 68% are male. Heart
disease frequency by sex in Table 3.

Table 3. Discovery phase-5 of heart disease frequency by sex.

Sex 1 = M/0 = F Heart Disease Frequency Count

0 Female 0.750000 96
1 Male 0.449275 207

5.4. Discovery Phase of Scatter Plot for Maximum Heart Rate against Age

The scatter plot below illustrates the relationship between maximum heart rate and
age, offering a clear visual of how these variables interact. As age progresses along the
x-axis, we can observe variations in maximum heart rate, which is plotted on the y-axis.
This plot acts as a vital tool to detect any potential patterns or correlations between age
and maximum heart rate within the data. Such insights are crucial for understanding
the physiological changes in cardiovascular health across various age groups, potentially
influencing healthcare and fitness strategies. Scatter plot for Maximum Heart Rate Against
Age in Figure 7. demonstrates that 24/96 × 100% = 25% of women are safe from CVD, and
CVD affects 75% of women. On the other side, 114/207 × 100% = 55% of men are negative
for CVD, and 44% of men are positive for CVD.
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Figure 7. Discovery phase-6 of scatter plot for maximum heart rate against age.

5.5. Discovery Phase of Heart Disease according to Fasting Blood Sugar

The interpretation of the histogram illustrating heart disease relative to fasting blood
sugar levels, as shown in Figure 8, can be described as follows: The histogram categorizes
individuals based on their fasting blood sugar levels. In this visualization, “0” denotes
individuals whose fasting blood sugar is 120 mg/dL or lower (labeled as “false” for elevated
sugar), whereas “1” indicates those with levels above 120 mg/dL (labeled as “true” for
elevated sugar). The histogram clearly shows a greater number of individuals with fasting
blood sugar levels at or below 120 mg/dL (“0”) compared to those above this threshold
(“1”). This suggests that a larger segment of the dataset includes individuals with non-
elevated fasting blood sugar levels. Despite a larger number of people with lower fasting
blood sugar levels, the risk of cardiovascular disease remains a concern for this group.
These data are crucial for assessing how fasting blood sugar levels are distributed among
individuals potentially at risk for heart disease.

Figure 8. Discovery phase-7 of heart disease according to fasting blood sugar.

Heart disease frequency according to chest pain is shown in Figure 9.
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Figure 9. Discovery phase-8 of heart disease frequency according to the chest pain.

5.6. Supplementary Phase of Variables Correlation Matrix Visualised by Heatmap

Heatmaps utilize a color gradient to assign values to colors, as shown in Figure 10,
where darker shades indicate higher values and lighter colors represent lower values.
Beyond numerical data, heatmaps are effectively used to display spatial information in
geographic heatmaps, where variations in color intensity illustrate geographical patterns
or density levels. In the dataset, the variables that show the strongest correlations include
cp, thalach, slope, sex, age, ca, and thal, indicating significant relationships among these
variables in the context of the study.

Figure 10. Supplementary phase of variables correlation matrix visualised by heatmap.

5.7. Supplementary Phase by the Interpretation of Principal Component Analysis (PCA) Results

PCA was employed to identify the most informative features in predicting CVDs. The
PCA revealed that the first principal component accounted for approximately 25.07% of
the total variance, with subsequent components explaining lower 17.94% but significant
proportions of the variance. Notably, the ’Exang’ feature emerged as a major contributor
to the first principal component, indicating its potential significance in the dataset. The
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distribution of weights across different features in the principal components provides
valuable insights into the underlying structure of the dataset, guiding further analysis and
feature selection processes. The cumulative explained variance ratio of a PCA is shown in
Figure 11.

Figure 11. Cumulative explained variance ratio of a Principal Component Analysis (PCA).

This plot is typically used to determine how many principal components should be
retained for data analysis. The plot has around 8 to 10 components for dimensionality
reduction. It is not necessary to retain all components to capture the majority of the variance
in the dataset; instead, we can select a subset (such as the first 8 to 10 components in this
case) that captures most of the variability.

pca = PCA(n_components = 8)
pca.fit(X_train)
reduced_data_train = pca.transform(X_train)
pca = PCA(n_components = 8)
pca.fit(X_test)
reduced_data_test = pca.transform(X_test)

A comparative analysis of dimensionality reduction in cardiovascular disease data, using
training and test set PCA visualizations, is shown in Figure 12.

Figure 12. Comparative analysis of dimensionality reduction in cardiovascular disease data: training
and test set PCA visualizations.
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When reduced to two dimensions, the scatter plots derived from the PCA of both the
training and test datasets offer a visual exploration of the data’s underlying structure. The
first principal component serving as the x-axis captures the majority of variance, while the
second principal component on the y-axis is of small variance. Both plots reveal clusters of
data points that have a correlation between the components. However, the test data display
a slightly less defined elongation, hinting at subtle structural differences between the
training and test sets. These visualizations are instrumental in confirming the consistency
of the PCA transformation across separate data partitions and to provide insights into the
fundamental relationships within the cardiovascular disease dataset.

5.8. Supplemetary Phase through PCA Dimensionality Reduction

There are three categories of reduction processes that have been performed, as follows:
(a) Dimensionality reduction, (b) transformed data, and (c) purpose of transformation.

Mean values of PCA-reduced dimensions for training and test data are shown in
Table 4.

Table 4. Mean values of PCA-reduced dimensions for training and test data.

Dimension Training Dataset Mean Test Dataset Mean

Dim1 9.496469 × 10−16 −1.670750 × 10−16

Dim2 3.277189 × 10−16 1.575975 × 10−16

Dim3 2.338915 × 10−16 −5.415722 × 10−18

Dim4 4.363380 × 10−16 2.871010 × 10−16

Dim5 −8.919017 × 10−17 −1.123085 × 10−16

Dim6 −2.179151 × 10−16 1.184689 × 10−16

Dim7 9.416587 × 10−17 −7.081057 × 10−17

Dim8 2.402296 × 10−16 −7.297685 × 10−17

The output shows that the original features have been transformed into eight principal
components (Dim1 to Dim8), which are the new features created by PCA. PCA transformed
the data and prepared it for further analysis or modeling. The reduced dimensionality
should retain most of the variability present in the original data while potentially im-
proving the performance and interpretability of subsequent models. The assessment of
the predictive models involved a thorough evaluation using a range of metrics to gauge
their accuracy and efficacy in diagnosing heart disease. These metrics included accuracy,
precision, recall, and F1-score. Each of these provides a comprehensive view of a model’s
performance, which is particularly crucial in scenarios involving imbalanced datasets.

5.9. Model Performance Comparison

According to the area under the receiver operating characteristic curve (ROC-AUC)
results detailed in Table 5, the Logistic regression model demonstrated strong predictive
power, achieving a 90% ROC-AUC score. This score signifies the model’s ability to dif-
ferentiate between classes correctly, underscoring its effectiveness in binary classification
tasks. The XGBoost model excelled among the models tested, registering an impressive 95%
ROC-AUC score. This top score reflects the model’s exceptional accuracy and its ability to
perform binary classifications superiorly compared to other models, with its score nearing
the optimal mark of 1.0, indicating outstanding discriminative ability. On the other hand,
the Decision tree model recorded a ROC-AUC score of 83%, showing a competent, albeit not
top-tier, performance in distinguishing between positive and negative classes. The Random
forest model, along with models tuned using Randomized Search CV, each achieved a 90%
ROC-AUC score, affirming their strong performance in accurately classifying instances. The
ensemble model slightly outpaced these with a 91% score, while the Grid search applied
on the XGBoost model also achieved 90%. Random guessing used as a baseline marked a
50% accuracy rate. These results highlight the importance of ROC-AUC scores as a crucial
metric in evaluating and selecting models for binary classification problems, with XGBoost
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emerging as the initial choice, closely followed by the ensemble and Logistic regression
models. In this way, the accuracy of each model was evaluated with performance metrics.

Table 5. Model performance on ROC curve.

Model AUC

Logistic 0.90
XGBoost 0.95
Decision tree 0.83
Random forest 0.90
RandomizedSearchCV Random forest 0.90
GridSearch XGBoost 0.90
Ensemble 0.91
Random Guessing 0.50

6. Integration of ML Models into Streamlit Web Application

We provided a detailed report on the integration of ML models into GitHub and the
streamlit web application for heart disease prediction. The integration user framework
aims to make predictive models accessible and user-friendly, allowing users to assess their
cardiovascular risk easily and effectively.

6.1. Rationale for Using Streamlit Framework

Choosing streamlit as the framework for the web application brings several key bene-
fits that align well with this project’s objectives: 1. Simplicity and Accessibility: streamlit’s
straightforward design makes it an excellent choice for developers with limited web de-
velopment expertise, facilitating a quicker development process due to its ease of use.
2. Seamless Data Science Integration: streamlit integrates effortlessly with well-known data
science libraries such as pandas, matplotlib, and seaborn. This integration allows for the
effective presentation of ML models and facilitates both data manipulation and visualiza-
tion within a unified platform. 3. Real-Time Updates: The framework supports real-time
updates, making it ideal for dynamic applications that require the immediate generation
and display of predictions and data visualizations. 4. Interactivity: streamlit includes
interactive widgets that allow users to input data and interactively explore predictions
and visualizations, thus significantly enhancing user engagement. 5. Rapid Prototyping
and Deployment: streamlit aids in rapid prototyping, reducing both the time and effort
needed for development. It also simplifies the deployment process, ensuring easy access
for users and contributing to cost and time efficiency. These advantages underscore why
streamlit is user-friendly and suitable for this project, facilitating both development and
user interaction.

6.2. Components of the ML System

1. Data Pipeline: This component handles the collection and preprocessing of data,
which are crucial for training and evaluating the ML model. Sources of data include
electronic health records, clinical trials, and wearable devices. Key operations in the data
pipeline include data cleaning, transformation, and partitioning the data into training and
testing sets. 2. ML Model: This part focuses on the training and evaluation of a ML model
designed to perform specific tasks. The model may be trained using various algorithms
such as Logistic regression, support vector machines, and Random forests. 3. GitHub
Integration: Post model development, the ML model, saved in a Python notebook, is
uploaded to a GitHub repository. This step not only facilitates version control but also
assists in linking the model with an interface using streamlit, which is crucial for the next
stage. 4. Streamlit Application: This application serves as the user interface for the ML
model, allowing users to input their data and receive predictions.
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6.3. Process of Integration

The technical integration of AI models into the streamlit application is carried out
through the following essential steps: 1. Model Loading: Pre-trained ML models are
imported into the streamlit application, ensuring they are ready for generating predictions.
2. User Input: streamlit utilizes interactive widgets to collect necessary user data, such as
age, gender, blood pressure, cholesterol levels, and other relevant information. 3. Prediction:
The collected data are then fed into the integrated models, which evaluate the probability
of a MACCE. 4. Results Presentation: Predictions and analytical insights are displayed in
real-time within the streamlit app’s interface, allowing users to easily access and interpret
the predictions, visualizations, and explanations.

6.4. Challenges and Solutions in Streamlit Integration

1. Model Compatibility: To ensure compatibility with the streamlit environment,
extensive validation and testing was necessary. Issues were addressed through meticulous
model adjustments and optimizing the code for better integration. 2. User Interaction:
Creating a seamless and user-friendly interface required the development of interactive
widgets and user interfaces. User feedback was integral in refining these elements to
improve the overall user experience.

6.5. Advantages of the User-Friendly Streamlit Web Application

1. User-Friendly Interface: The application boasts an intuitive interface that simplifies
data entry, prediction-making, and exploration for users.

2. Real-Time Predictions: It delivers predictions instantaneously, offering immediate
feedback to users.

3. Interactivity: The application’s interactive widgets engage users, allowing them to
understand the variables impacting predictions more clearly.

4. Scalability: Designed for growth, the application can accommodate future enhance-
ments such as new features and updates to datasets. For validation and comparative
analysis, we carried out an extensive review comparing the results from the integrated
machine-learning models. This evaluation not only validated the performance of
these models but also set them against previous studies and benchmarks in heart
disease prediction. Our goal was to shed light on the models’ effectiveness and
their accuracy in predictions. For a more detailed description and demonstration
of the streamlit AI app, please visit the [Link to AI Models for Early CVDs Detec-
tion] https://ai-models-for-early-cardiovascular-diseases-detection.streamlit.app/
(accessed on 1 April 2024).

7. Results
7.1. Model Validation and Performance Evaluation

We already evaluated our each model accuracy by performance metrics in Table 5.
How we validated our user friendly web applications dashboard to a 97% accuracy is
explained as follows:

The confidence score and predictive accuracy is validated by a confidence score
calculation. For a binary classification model, the confidence score has been derived from
the softmax function output for the predicted class:

P(y = k|x) = ezk

∑K
j=1 ezj

(1)

where P(y = k|x) is the probability that instance x belongs to class k, zk is the logit (raw
model output) for class k, and K is the total number of classes. For binary classification, this
simplifies to

https://ai-models-for-early-cardiovascular-diseases-detection.streamlit.app/
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Confidence Score =
ezdisease

ezdisease + ezno disease
(2)

Predictive accuracy is calculated as follows:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
=

TP + TN
TP + TN + FP + FN

(3)

where TP (True Positives) and TN (True Negatives) are the numbers of correct predictions,
and FP (False Positives) and FN (False Negatives) are the numbers of incorrect predictions.

7.1.1. Model Calibration—Brier Score [16]

The Brier Score, used for quantifying model calibration, is calculated as:

Brier Score =
1
N

N

∑
i=1

(pi − oi)
2 (4)

where N is the number of predictions, pi is the predicted probability of the outcome for the i-
th prediction, and oi is the actual outcome (0 or 1). The 97% confidence score of the streamlit
web application is displayed by a predictive model on a web dashboard. We focused on
the calibration curve and Brier score calculations to assess the streamlit AI algorithm’s
predictive accuracy and reliability. The calibration curve, or reliability diagram, compares
predicted probabilities against the actual outcomes. It serves to visually and quantitatively
evaluate how well predicted probabilities correspond to empirical probabilities.

7.1.2. Procedure for Constructing a Calibration Curve

1. Bin the predictions: Group the predicted probabilities into bins. For high confi-
dence scores around 97%, a bin range of 90% to 100% might be used. 2. Calculate actual
frequencies: Determine the actual frequency of positive outcomes within each bin. For
each bin, calculate the actual frequency of the positive outcomes. For 100 predictions
with a probability between 90% and 100%, and 97 of these actually occurred, the actual
frequency is 97%. 3. Plotting: Plot the average predicted probabilities (x-axis) against the
actual frequencies of positive outcomes (y-axis). A model with perfect calibration will align
closely with the line y = x. A perfectly calibrated model will lie along the diagonal from
(0,0) to (1,1).

7.1.3. Brier Score Calculation [17]

The Brier score quantifies the accuracy of probabilistic predictions by calculating the
mean squared difference between predicted probabilities and actual outcomes. The Brier
score is computed as follows:

Brier Score =
1
N

N

∑
i=1

(pi − oi)
2 (5)

• N is the total number of predictions;
• pi is the predicted probability of the ith prediction;
• oi is the actual outcome of the ith prediction (1 if the event occurred, 0 otherwise).

Our model predicts a high probability event (97%) to be when 29 of these predictions
correctly result in positive outcomes out of 30 times. The Brier score calculation would be
conducted as follows.

7.1.4. Actual Frequency Calculation

The actual frequency of positive outcomes for predictions with a confidence of 97% is
calculated as follows:
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Actual Frequency =
29
30

≈ 0.967 (6)

Brier Score for 97% Predictions =
1

30

30

∑
i=1

(0.97 − 1)2 (7)

Breaking it down further, we obtain

Brier Score for 97% Predictions =
1
30

× 30 × (0.97 − 1)2 = (0.03)2 = 0.0009 (8)

Thus, the Brier Score is 0.0009, indicating a very low mean squared error, which
suggests a high predictive accuracy for these particular predictions. The calibration curve
and Brier score are effective tools for validating the accuracy and reliability of a predic-
tive model’s confidence scores. A low Brier score and a calibration curve that closely
aligns with the line y = x confirms the model’s high level of calibration around the 97%
confidence level.

In assessing the performance of our streamlit-based AI model, we employed a rigorous
validation framework. The model was trained on 80% of the dataset with the remaining 20%
held back for testing. We utilized XGBoost, a Decision tree-based ensemble ML algorithm
and then optimized through grid search cross-validation to fine-tune hyperparameters.
The model’s accuracy was evaluated using several metrics including accuracy, precision,
recall, and F1-score, with a particular focus on the AUC-ROC to assess its discriminative
ability. The calibration curve for 97% confidence score validation is shown in Figure 13.

Figure 13. Calibration curve for 97% confidence score validation.

We achieved a visual and quantitative demonstration of whether the model’s prob-
ability estimates are accurate reflections of reality by focusing specifically on the values
around 97%.

7.2. Sensitivity Analysis

To address the robustness of our models to variations in input data and parameters,
we conducted a comprehensive sensitivity analysis. This analysis was designed to evaluate
how changes in the input features and model parameters affect the model’s performance,
particularly focusing on the AUC-ROC as our main performance metric. The results of the
sensitivity analysis showing model performance across different parameter settings and
input data conditions in Figure 14. The robustness of our predictive models were further
assessed by examining how variations in key input parameters influenced the model’s per-
formance. Sensitivity analysis was conducted for each model, including Logistic regression,
Decision tree, Random forest, and XGBoost, by systematically varying parameters such as
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regularization strength in Logistic regression, the maximum depth in Decision trees, the
number of trees in Random forests, and learning rate in XGBoost.

Figure 14. Results of the sensitivity analysis showing model performance across different parameter
settings and input data conditions.

For Logistic regression, altering the regularization parameter C showed that lower
values tend to regularize too strongly, leading to underfitting, while extremely high values
might lead to overfitting, as evidenced by a decrease in out-of-sample accuracy. Similarly,
in Decision trees and Random forests, increasing the ‘max_depth‘ parameter initially
improved model accuracy due to better learning of data intricacies but eventually led to
overfitting when the trees became too complex.

The XGBoost model exhibited heightened sensitivity to changes in the learning rate,
where too low a rate made the learning process tediously slow and prone to stopping
prematurely, and too high a rate caused rapid convergence to suboptimal solutions. This
sensitivity analysis highlights the critical balance required in parameter tuning to optimize
model performance while avoiding the pitfalls of overfitting or underlearning.

These analyses confirm the necessity of careful parameter tuning and model selec-
tion to ensure optimal performance across various clinical validation scenarios, thereby
substantiating the reliability and generalizability of our predictive models.

7.2.1. Parameter Sensitivity

We systematically varied key model parameters, including learning rate and regular-
ization parameters for algorithms such as Logistic regression and XGBoost. The Decision
tree depth in Random forest and Decision tree models was also adjusted. For each parame-
ter variation, the model was retrained, and the AUC was recorded. A summary of the key
parameters varied in each model is shown in Table 6.
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Table 6. Summary of key parameters varied in each model.

Model Key Parameters to Vary

Logistic regression Inverse of regularization strength C
Decision tree Maximum depth max_depth

Random forest Number of trees n_estimators
XGBoost Learning rate learning_rate

RandomizedSearchCV Random forest Varying max_depth and max_features
GridSearchCV XGBoost Varying max_depth and learning_rate

Ensemble Model Composition or weights of ensemble
Random Guessing Not applicable

7.2.2. Input Data Variability

The sensitivity to input data was tested by introducing controlled variations in the
dataset. This included the use of bootstrapping techniques to simulate sampling variability
and the addition of noise to the dataset to test the models’ noise tolerance. The impact
of missing data was also assessed by randomly removing data points and observing the
changes in model performance. The results of our sensitivity analysis indicated that our
models exhibit robust performance across a range of parameter settings and input data
conditions. The XGBoost model showed considerable stability in AUC with changes
in learning rate and tree depth, highlighting its suitability for datasets with potential
variability. Similarly, the Logistic regression model maintained a consistent AUC despite
significant variations in regularization strength, demonstrating its robustness to overfitting.
These findings are summarized in Figure 14, which illustrates the models’ performance
across different parameter settings and data conditions. Overall, the sensitivity analysis
confirms the reliability of our predictive models under varied conditions, ensuring their
applicability in real-world scenarios where data variability is common. Results of the
sensitivity analysis showing model performance across different parameter settings and
input data conditions in Figure 14.

The functionality and interaction are visualized in a dashboard, as depicted in Figure 15.

Figure 15. Dashboard of heart disease prediction by AI apps.
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The following tables summarize the sensitivity analysis performed on different ML
models with varying parameters to determine their impact on the AUC-ROC score. The
Logistic regression parameter is shown in Table 7; the Decision tree parameter in Table 8;
the Random forest parameter in Table 9; and the XGBoost parameter in Table 10.

Table 7. Logistic regression parameter.

Regularization Parameter (C) AUC Score

0.001 0.9192
0.01 0.9181
0.1 0.9267
1.0 0.9267
10.0 0.9278

100.0 0.9278
1000.0 0.9278

Table 8. Decision tree parameter.

Max Depth AUC Score

1 0.8389
2 0.8879
3 0.8588
4 0.8432
5 0.8491
6 0.8637
7 0.8486
8 0.8389
9 0.8389

10 0.8217

Table 9. Random forest parameter.

Number of Estimators AUC Score

10 0.8944
50 0.9224
100 0.9289
200 0.9235

Table 10. XGBoost parameter.

Learning Rate AUC Score

0.01 0.9256
0.042 0.9213
0.074 0.9084
0.107 0.9073
0.139 0.9030
0.171 0.9095
0.203 0.9062
0.236 0.9106
0.268 0.9170
0.300 0.9073

AUC might not be the same for all values of hyperparameters such as C in Logistic
regression, max_depth in Decision trees, n_estimators in Random forest, or learning_rate
in XGBoost. There are several reasons for this, as follows:
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1. Model complexity: Each model has an optimal level of complexity. Too simple, and
it will not capture the patterns (underfitting); too complex, and it might capture
noise (overfitting). For example, increasing max_depth in Decision tree may initially
improve performance until it starts to overfit.

2. Regularization strength: The C parameter in Logistic regression controls the strength
of regularization. Smaller values specify stronger regularization, which can prevent
overfitting but might underfit if too strong.

3. Number of estimators: In Random forest, n_estimators refers to the number of trees.
More trees can lead to better performance but up to a point. Beyond that, performance
might plateau or even decrease due to increased computational complexity without
significant gains.

4. Learning rate: In XGBoost, the learning_rate determines how quickly the model
adapts to the problem. Too slow a rate might require too many iterations to converge,
while too fast might overshoot the optimal solution.

5. Data characteristics: The specific characteristics of the dataset can influence how well
different hyperparameter settings work. Some datasets are more sensitive to changes
in certain hyperparameters.

6. Randomness: Algorithms like Random forest and XGBoost involve randomness in
their training process. Different runs might yield slightly different results unless the
random seed is fixed.

7. Evaluation metric: AUC is a measure of a model’s ability to distinguish between
classes. It is possible for different models or hyperparameters to result in similar AUC
values but differ in other metrics like precision or recall.

There is no one-size-fits-all answer to hyperparameter settings. The optimal config-
uration often depends on the interplay between model complexity, regularization, data
characteristics, and the chosen evaluation metric.

7.3. Validation of the Agent-Based Simulation Model

Simulation models sensitivity analysis in Table 11 values represent the differences in
disease progression for each patient after increasing the ‘genetic_risk‘ by a specified amount
(e.g., 0.1). The values indicate how sensitive each patient’s disease progression is to changes
in their genetic risk: Positive values (e.g., 0.07214262063451726, 0.10128283657241444)
suggest that for these patients, increasing the genetic risk leads to a slight increase in
disease progression. Negative values (e.g., −0.6522944856884985, −0.04115946634035324,
−0.4110830873538386) indicate that for these patients, increasing the genetic risk paradox-
ically resulted in a reduction in disease progression. Due to the stochastic nature of the
simulation, where other interacting factors (like random treatment application or lifestyle
risks) might have mitigated the increased genetic risk.

Table 11. Sensitivity analysis and statistical test results for validation of the agent-based simula-
tion model.

Patient ID Sensitivity Analysis Result t-Test Results

0 0.0721

T-statistic: −1.258, p-value: 0.2768
1 −0.6523
2 −0.0412
3 0.1013
4 −0.4111

A t-test is used to statistically evaluate if the observed changes in disease progression
(from the sensitivity analysis) are significantly different from zero (no change). In this
context, the following applies: -T-statistic: The value of −1.258 suggests that the mean
difference is negative, indicating a tendency for the disease progression to decrease when
the genetic risk is increased. However, this is not very strong. -p-value: The p-value
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of 0.276 is greater than the typical significance level (e.g., 0.05), which implies that the
observed changes in disease progression are not statistically significant. This means there
is insufficient evidence to conclude that increasing the genetic risk has a definitive impact
on disease progression, based on your simulation data.

The sensitivity analysis and t-test results presented in Table 11 provide critical insights
into the variability of cardiovascular disease (CVD) progression in response to genetic risk
factors within our agent-based model. These findings underscore the complexity of CVD
progression, illustrating that genetic factors alone may not consistently predict disease
outcomes. Specifically, the mixed responses—some patients showing an increase in disease
progression with increased genetic risk, and others showing a decrease—highlight the non-
linear and multifactorial nature of CVD. The non-significant p-value from the t-test further
suggests that, while genetic factors are influential, their impact on disease progression is not
straightforward and can be modulated by other factors such as lifestyle risks or treatment
interventions. CVD risk assessments and interventions must consider a broad spectrum of
individual patient factors to effectively predict and manage disease progression.

8. Discussion

The introduction of progression pathways and treatment scenarios have enhanced
dynamic simulation techniques, providing a more granular and accurate prediction of
cardiovascular disease progression. This section explores several crucial aspects related
to our models’ robustness, generalizability, and real-world utility. We evaluated how
well our models performed with varied data sources and patient populations, assessing
their ability to adapt and maintain accuracy across different scenarios. Reflection on the
applicability of our model results to other datasets or contexts was crucial, particularly for
contributions to Q1 journals, which seek knowledge transferable beyond the immediate
dataset. Our findings indicated potential applicability across different healthcare settings
and populations. A user study was conducted involving clinicians, stakeholders, and
individuals interacting with our streamlit application. Feedback was solicited to gauge the
real-world utility of the application, leading to actionable insights for improvement. The
feedback received underscored the practical implications of our application in healthcare,
highlighted by a user satisfaction rating of 4.7 stars from 27 reviews. Addressing ethical
concerns was paramount in our research. Discussions covered data privacy, informed
consent, and the responsible use of AI. We detailed measures taken to protect patient
information, obtain necessary approvals, and minimize biases in our models, ensuring
the ethical deployment of AI in healthcare. Each aspect is crucial for the comprehensive
understanding and responsible application of AI in healthcare contexts.

8.1. Explainable AI in the Context of Research Output

The impact on the model’s output for a binary classification task is shown in Figure 16.
The x-axis represents the mean absolute SHAP value for each feature, a measure of impact
on the model’s prediction. A higher value means that the feature has a greater impact
on the model’s output. The y-axis lists the features used in the model. The color of the
bars represents the class (Class 0 or Class 1) that the feature most influences. In a medical
context, these classes represent the absence or presence of cardiovascular disease. Feature
’ca’ has the highest mean SHAP value, indicating it has the most significant impact on the
model’s predictions. The number of major vessels colored by fluoroscopy (‘ca’) is a strong
predictor for the presence or absence of cardiovascular disease. Feature ’cp’ (chest pain
type) also shows a high mean SHAP value, especially for Class 1, indicating it is influential
in predicting the presence of the disease. Other features such as ‘thal’, ‘oldpeak’, ‘thalach’,
and ‘exang’ are also important but have a relatively lower impact than ‘ca’ and ‘cp’.

A quantitative analysis of feature contributions in cardiovascular disease prediction is
shown in Figure 17.
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Figure 16. Explainable AI in the context of research output.

Figure 17. Quantitative analysis of feature contributions in cardiovascular disease prediction.

Chest pain type (‘cp’): Shows the highest positive influence on the model’s predic-
tions with a weight of 0.0459 ± 0.0245. This indicates that variations in chest pain type
have the most significant impact on predicting cardiovascular outcomes, crucial for de-
veloping a predictive tool that leverages real-time data in a clinical setting. Sex (‘sex’):
Has a weight of 0.0361 ± 0.0382, suggesting a substantial role in the model’s outcomes.
This feature’s importance in the model can help address imbalanced data by focusing
on sex-specific variations in cardiovascular disease manifestation. Maximum heart rate
achieved (‘thalach’): Weight of 0.0262 ± 0.0334 underscores its predictive value, especially
in dynamic simulations that mimic patient variability. ST depression induced by exercise
relative to rest (‘oldpeak’): At 0.0197 ± 0.0564, this feature shows a meaningful but variable
impact on the predictions, essential for adjusting risk assessments in real-time applications.
Thalassemia (‘thal’): With a weight of 0.0164 ± 0.0415, it highlights how blood disorders
influence heart disease risks, useful for tailored therapeutic interventions. Number of
major vessels colored by fluoroscopy (‘ca’): At 0.0098 ± 0.0445, provides insights into the
anatomical aspects of heart disease, facilitating better model accuracy and clinical deci-
sions. Exercise-induced angina (‘exang’): A lower weight of 0.0033 ± 0.0321 suggests a
smaller yet specific influence on cardiovascular predictions, integral for understanding
exercise-related symptoms.

Negative weights indicate a decrease in the likelihood of disease with increasing
feature values. Resting blood pressure (‘trestbps’): −0.0033 ± 0.0245, indicating that higher
resting blood pressure might slightly decrease the prediction of disease, potentially due



Diagnostics 2024, 14, 1308 26 of 44

to its common occurrence in the general population. Age (‘age’): −0.0033 ± 0.0321, subtly
influences predictions, reflecting the complexity of age-related cardiovascular risk factors.
Fasting blood sugar (‘fbs’): −0.0066 ± 0.0161, suggests less impact, pointing towards its
limited predictive power when compared to other metabolic features. Cholesterol (‘chol’):
−0.0066 ± 0.0161, similarly indicating a minor role, possibly overshadowed by more direct
cardiovascular indicators. Resting electrocardiographic results (‘restecg’): −0.0098 ± 0.0161,
provides a negative weight that may influence how electrocardiographic data is used to
adjust predictions. Slope of the peak exercise ST segment (‘slope’): −0.0098± 0.0262, shows
that certain ST segment changes during exercise are less predictive of cardiovascular events.

Each feature’s contribution, detailed by their weights and uncertainties, supports
the project’s goal to enhance the prediction and early detection of CVDs through an
integrated approach that combines dynamic simulation, AI, and web technologies, as well
as improving healthcare outcomes for patients and clinical decision making. The Logistic
regression model’s coefficients and absolute coefficients of features are shown in Table 12.

Table 12. Coefficients and absolute coefficients of features in the Logistic regression, odel.

Feature Coefficient Absolute Coefficient

cp 0.818004 0.818004
ca −0.790127 0.790127
sex −0.783065 0.783065
oldpeak −0.680978 0.680978
thal −0.565590 0.565590
exang −0.517491 0.517491
slope 0.435525 0.435525
thalach 0.395181 0.395181
restecg 0.284141 0.284141
trestbps −0.273493 0.273493
chol −0.175085 0.175085
fbs 0.090465 0.090465
age −0.085493 0.085493

The Logistic regression model’s coefficients displayed in the table elucidate the impact
of various clinical features on the prediction of MACCEs. Features such as chest pain
type (‘cp‘ with a coefficient of 0.818004) indicate a robust positive correlation, suggesting
increased severity correlates with a higher likelihood of MACCE, while the number of
major vessels observed (‘ca‘ at −0.790127) inversely affects the risk, indicating a protective
effect with more vessels visible. This nuanced understanding of feature influences directly
addresses Research Question 1 (RQ1) by highlighting which factors are critical in real-time
scenarios within a streamlit application, enabling dynamic adjustments to the model as
new data is integrated. For RQ2, the significant positive and negative coefficients (like ‘cp‘
and ‘ca‘) suggest this model captures complex relationships better than traditional models,
potentially offering improved accuracy, efficiency, and user experience in application
settings. Additionally, the variability in coefficients for features such as ‘sex‘ and ‘age‘
(with notable values of −0.783065 and −0.085493, respectively) underpins discussions for
RQ3, indicating areas where data imbalances might exist and suggests that strategies like
resampling or feature engineering might be necessary to enhance the model’s adaptability
and fairness. Thus, these insights not only bolster the model’s predictive power but also
enhance its practical utility in real-time medical applications, ensuring it remains relevant
and effective in diverse clinical scenarios.

Feature contribution analysis for cardiovascular disease prediction using LIME is
shown in Figure 18. Local Interpretable Model-agnostic Explanation (LIME) outputs for
a ML model predicting cardiovascular disease highlight how individual feature values
contribute to a specific prediction. Each value and its impact on the project, focusing on
enhancing clinical validation and the early detection of cardiovascular disease through AI
and simulation, can be discussed as follows:
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Figure 18. Feature contribution analysis for cardiovascular disease prediction using LIME.

- thal (−2.20): suggests that particular values of the thalassemia indicator are associated
with a decreased likelihood of cardiovascular disease in the model’s predictions.
Typically, one might expect that thalassemia, a blood disorder, could increase the
risk of cardiovascular issues due to its impact on blood health. However, in this
specific predictive model, the influence is negative, indicating a reduced likelihood.
This contradiction highlights the importance of context-specific analysis and the
need to consider genetic or blood-related factors when refining predictive algorithms
for cardiovascular disease. The observed suggests a unique or unexpected finding
in this model’s predictions, which could be due to specific data characteristics or
interactions between multiple features in the model. The negative result for ’thal’ has
been balanced by other features with positive influences on cardiovascular disease
risk, demonstrating the importance of considering the model as a whole [18].

- slope (−0.69): This indicates that the slope of the peak exercise ST segment has
a substantial negative impact on disease likelihood. This feature’s contribution is
crucial for simulations that mimic patient exercise responses, potentially enhancing
the model’s ability to predict under varied physical conditions.

- ca (−0.69): Reflects the number of major vessels detected by fluoroscopy, with its
strong negative weight implying that more visible vessels correlate with lower disease
risk. This insight could guide the development of imaging protocols within the stream-
lit application, aiming to provide more accurate assessments of cardiovascular health.

- exang (−0.68): Exercise-induced angina presenting as a negative factor suggests that
its absence is indicative of lower risk. This parameter can be crucial in real-time
monitoring systems that assess patient status during physical activity, enhancing the
app’s utility in preventive health strategies.

- cp (−0.97): Chest pain type with a negative coefficient implies that certain types of pain
are less associated with disease risk. This feature’s interpretation helps in differential
diagnosis processes in real-time applications, aiding clinicians in prioritizing patient
care based on symptom presentation.

- oldpeak (−0.56): This ST depression measure during exercise compared to rest, show-
ing a substantial negative impact, can be used to adjust risk predictions in dynamic sce-
narios where patient data varies over time, enhancing the application’s responsiveness.

- sex (0.72): Indicates a sex-based differentiation in disease prediction, where specific
values significantly increase disease likelihood. This finding is essential for address-
ing potential biases and ensuring sex-specific health interventions are appropriately
targeted in the app.

- chol (−1.04): Suggests that higher cholesterol levels may not necessarily increase disease
risk as expected. This counterintuitive finding prompts further investigation into choles-
terol’s role, possibly adjusting how cholesterol data is weighted in predictive modeling.
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- fbs (−0.38): Fasting blood sugar shows a minor negative influence, indicating its
limited predictive value. This aspect is vital for considering how diabetes or related
conditions are integrated into cardiovascular risk assessments.

- restecg (0.84): The resting electrocardiographic findings contribute positively, indicat-
ing certain ECG patterns greatly increase the risk prediction. This feature is pivotal for
real-time ECG monitoring applications, suggesting that integrating ECG data could
significantly enhance diagnostic accuracy.

8.2. Significance of This Analysis for the Research Project

1. Feature importance: Understanding which features are most important for predictions
can help in prioritizing clinical tests and interventions.

2. Model transparency: This analysis enhances the transparency of the AI system, allow-
ing healthcare professionals to understand the model’s decision-making process.

3. Trust and verification: Clinicians and patients are more likely to trust AI-assisted
diagnoses if they can understand why the model makes certain predictions.

4. Clinical decision making: The insights from this analysis can guide clinical decision
making, ensuring that important factors are not overlooked when assessing a patient’s
risk for cardiovascular disease. It provides a clear and interpretable explanation
of which clinical measurements are most predictive of cardiovascular outcomes,
which can guide medical professionals in risk assessment and early intervention
strategies. The analysis can be integral in developing patient-specific treatment plans
by focusing on the factors that significantly influence the risk of cardiovascular disease.
For mortality prediction, features like ’oldpeak’ (ST depression induced by exercise
relative to rest) and ’thalach’ (maximum heart rate achieved) are particularly relevant,
as they are well-established indicators of cardiac health.

8.3. Relevance to the Research Questions

• Early detection: By highlighting the features with the highest impact, this analysis
can identify which patient characteristics and symptoms are most indicative of CVDs,
aiding in early detection.

• Mortality prediction: Features that heavily influence the prediction of Class 1 (presum-
ably the class indicating a higher risk of mortality) can be critical indicators to monitor
in patients for timely intervention.
It aligns with the goals of innovative algorithmic interfaces by offering a granular, in-
terpretable, and clinically relevant understanding of AI-driven predictions, ultimately
contributing to the enhancement of patient outcomes.

8.4. Analysis of Simulation Implications

The simulation results offer a nuanced understanding of cardiovascular disease pro-
gression, emphasizing the need for personalized risk assessments and interventions. This
approach enhances our AI models’ capability, providing a more detailed risk stratification
for early disease detection.

Feature_weights_output number is shown in Table 13. The research presented em-
bodies a cutting-edge approach to CVD prediction by melding dynamic simulation and
ML techniques. It is also further operationalized through user-friendly web application
technologies. The significance of the detailed feature weights table to the research lies
in its granular analysis of variables impacting CVD risk. ‘DietQuality’ with a weight of
0.032665, and ‘PhysicalActivityLevel’ at 0.032654, underscore lifestyle factors as nearly
equivalent contributors to cardiovascular health, consistent with current medical under-
standing. Similarly, ‘MaxHR’ (maximum heart rate) and ‘HomocysteineLevels’—factors
known to correlate with heart health—are given weights that reflect their importance in the
model’s risk assessment, emphasizing the model’s nuanced approach to integrating a range
of biomedical indicators. Observing that ‘Age’ carries a weight of 0.028082 offers interesting
insights into the aging process’s influence on CVD risk, though it is notably less than some
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lifestyle factors, which may suggest lifestyle modifications can have a significant impact,
regardless of age. Additionally, temporal factors like ‘day’, ‘month’, and ‘year’ carry lesser
weights, indicating that while time-specific data points offer value, they do not override
physiological or lifestyle variables. Predominantly, the weights assigned to ‘RestingECG,’
‘CA’ (coronary arteries), and ‘Slope’ (of the peak exercise ST segment) are relatively lower,
at values around 0.011, highlighting that while these are traditional indicators used in CVD
diagnostics, the model allocates more importance to other variables. So, a paradigm shift
in prioritizing factors for early detection may also reflect the model’s ability to capture and
analyze the complex interplay of a wider range of variables beyond conventional ones.
This detailed feature weighting aligns with the paper’s goal of enhancing early detection
and analysis of CVD, as it potentially allows for more precise and personalized risk assess-
ments. By highlighting the relative importance of a diverse set of features, the research
elucidates how dynamic simulation coupled with ML can create a multidimensional risk
stratification model.

Table 13. Feature weights in output number.

No. Feature Weight

22 DietQuality 0.032665
20 PhysicalActivityLevel 0.032654
7 MaxHR 0.032573

33 HomocysteineLevels 0.032502
26 LeftVentricularHypertrophy 0.032489
32 OxidizedLDLLevels 0.032407
29 HeartRateVariability 0.032373
3 RestingBP 0.032367

21 AlcoholIntake 0.032349
24 FamilyHistoryOfHeartDisease 0.032330
37 LDLCholesterolLevels 0.032307
34 FibrinogenLevels 0.032253
31 DiastolicBPVariability 0.032234
30 SystolicBPVariability 0.032193
13 BMI 0.032191
16 CurrentMedicationUse 0.032184
9 Oldpeak 0.032165
4 Cholesterol 0.032146

36 HDLCholesterolLevels 0.032051
38 RatioTotalCholesterolToHDL 0.031991
35 TriglycerideLevels 0.031914
23 StressLevel 0.031913
25 CReactiveProtein 0.031776
27 EjectionFraction 0.031720
5 FastingBS 0.031689
1 Age 0.028082

41 day 0.025984
40 month 0.020897
39 year 0.019956
6 RestingECG 0.011761

11 CA 0.011556
10 Slope 0.011506
2 ChestPainType 0.011416

12 Thal 0.011324
14 SmokingStatus 0.005427
15 DiabetesStatus 0.005319
19 PeripheralArterialDisease 0.005278
28 MedicationCompliance 0.005268
8 ExerciseAngina 0.005240

18 PreviousStroke 0.005237
17 PreviousHeartAttack 0.005122
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9. Clinical Validation

We tested our proposed methodology with different techniques for clinical validation.
We tested it on a new dataset from a clinical hospital. We approached the department of
internal medicine, Rangpur Medical College and Hospital, Rangpur, Bangladesh. The clinic
concerned collaborated to make clinical validation steps.

9.1. Population Sample

The dataset comprises a total of N = 1000 samples, which are divided into two distinct
groups based on the presence of CVD. Let nCVD represent the number of patients with
CVD and nno CVD represent those without CVD. Thus, the dataset can be expressed as

N = nCVD + nno CVD (9)

where N is the total population, nCVD and nno CVD are to be specified based on the actual
data distribution.

9.2. Sample Size Justification and Group Allocation [19]

Given the importance of capturing sufficient statistical power to detect differences
in cardiovascular outcomes, we structured our sample size based on projected disease
prevalence and the expected impact of interventions. The total sample size of N = 1000
was chosen to ensure robust detection capabilities for differences as small as 10% in disease
rates between groups, based on standard power calculations

n =
(z1−α/2 + zβ)

2 · (p(1 − p))
d2 · 1

k1
k1+k2

· k2
k1+k2

(10)

where p approximates the proportion of the population expected to exhibit or not exhibit
CVD based on preliminary data, d is the minimal clinically important difference, and k1 and
k2 reflect the allocation ratio corresponding to our observational data from previous studies
indicating a higher incidence and diagnosis rate in the population. This approach ensures
that our sample size is adequately powered to discern clinically significant outcomes,
thereby reinforcing the validity of our findings.

9.3. Group Division: [20]

Patients were divided into two groups based on the presence or absence of cardio-
vascular disease, which has determined based on a combination of clinical assessments,
including history, physical examination, and further tests as required.

Normal (n = 368), CVD (n = 484).
Patients were divided into two groups based on the presence or absence of CVD.

This division was informed by a combination of clinical assessments including medical
history, physical examinations, and additional diagnostic tests. The total sample comprised
N = 852 patients, with the division into groups as follows:

• Normal (no CVD): nno CVD = N × (1 − p) = 852 × (1 − 0.568) ≈ 368.
• CVD: nCVD = N × p = 852 × 0.568 ≈ 484.

Where p represents the prevalence rate of CVD derived from the dataset or assumed
based on similar populations in prior studies. This method ensures that the sample division
reflects realistic clinical scenarios, enhancing the reliability of our findings.

At first deviation and clinical set-1, there was Normal (n = 368), CVD (n = 484). The
results shown in the table are comprehensive and potentially impact the research outcome.
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1. Age: With a mean age of 54.37 in the derivation set, the data span from younger to
elderly adults in the validation set (29 to 77 years). This wide range is crucial because
it allows the prediction model to be tested across a diverse age group, which is vital
for cardiovascular disease modeling, where age is a strong risk factor. However, the
p-value of 0.471 indicates that there is no statistically significant difference in age
between the two sets, suggesting that age alone may not provide a discriminatory
power for the model.

2. Sex: A mean value of 0.68 (possibly indicating a predominance of one sex over the
other in the derivation set) against a range of 0 to 1 in the validation set implies
that both sexes are represented. The p-value of 0.493 reinforces that sex distribution
is similar across both sets, hinting that sex may not be a differentiating factor in
cardiovascular outcomes within these data, which could be beneficial in creating a
non-biased predictive model.

3. Chest pain (cp): The standard deviation and range for chest pain indicate variability,
which can enrich the model’s understanding of symptom patterns. Yet, the p-value
of 0.845 shows no significant difference between the sets, suggesting consistency in
chest pain patterns, which is useful for the model’s reliability.

4. Resting blood pressure (trestbps): The mean value of 131.62, with a significant range
in the validation set, indicates diverse cardiovascular profiles. However, the statistical
insignificance (p = 0.841) might suggest that for the sampled population, resting
blood pressure varies widely but similarly between the two groups. This could mean
that while important, trestbps needs to be considered alongside other variables for
effective prediction.

5. Cholesterol (chol): The validation set’s mean of 246.26 and wide range signifies the
inclusion of patients with various cholesterol levels. The non-significant p-value
(0.594) may suggest that cholesterol levels alone, within the range observed, might
not be a stand-alone predictor of cardiovascular disease in this model.

6. Fasting blood sugar (fbs): The low mean and range indicate the presence of both dia-
betic and non-diabetic individuals, yet the p-value (0.863) suggests that fasting blood
sugar levels are not significantly different between the sets. For the predictive model,
fbs may need to be combined with other risk factors to increase predictive accuracy.

7. Resting ECG (restecg): A mid-range mean value (0.53) covering the full poten-
tial range in the validation set implies diverse cardiac electrical patterns among
the patients. The higher p-value (0.223) indicates a similar distribution of ECG
results in both groups, which is essential for validating the model across typi-
cal ECG variances. There are various components that have been measured as
the mean value (0.53) and range indicate a variety of ECG patterns observed in
the study population, rather than focusing on a single part of the ECG wave-
form. The two components analysed in this study population include any ST-T
abnormalities and indications for the presence of left ventricular hypertrophy.
The higher p-value (0.223) indicates a similar distribution of electrocardiogram
results in both groups, which is essential for validating the model across typical
ECG variances.

8. Maximum heart rate achieved (thalach): The statistical significance (p = 0.003) of
thalach, with a mean of 149.65, highlights it as a critical factor. This suggests that
thalach has the potential to be a strong predictor in the model, emphasizing its
importance in cardiovascular health assessment.

9. Exercise-induced angina (exang): A mean of 0.33 suggests a lower prevalence of
exercise-induced angina in the derivation set, and a p-value of 0.856 shows no signifi-
cant difference with the validation set. This could be informative for the model, as it
may consider the presence of angina in conjunction with other factors.
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10. BMI: A mean BMI of 26.18 falls within the overweight category, and the non-
significant p-value (0.732) suggests that BMI distributions are consistent across
the derivation and validation sets. While BMI is a recognized cardiovascular risk
factor, its non-significant difference across sets may imply it does not strongly
differentiate the cardiovascular disease status within this particular dataset. BMI
(Body Mass Index) thresholds for defining overweight and obesity can indeed vary
among different populations due to variations in body composition and fat distri-
bution. Research has shown that for the same BMI, Asian and Black populations
may have different levels of body fat and associated health risks compared to cau-
casian populations. Thus, BMI values may need to be stratified according to ethnic
origin [21,22].

• Asian Populations [21]—Asians generally have a higher percentage of body fat com-
pared to Caucasians at the same BMI level. Consequently, health organizations such
as the World Health Organization (WHO) and the International Diabetes Federa-
tion (IDF) recommend lower BMI cut-off points for defining overweight and obesity
in Asian populations. For instance: Overweight: BMI ≥ 23 kg/m2 and Obesity:
BMI ≥ 25 kg/m2.

• Black Populations—Although the evidence is mixed on adjusting BMI cut-off points
for Black populations, some studies suggest using additional measures of body com-
position and fat distribution. A study indicated that the BMI cut-off for obesity in
Black populations could be slightly higher than in White populations due to these
differences [22].

Moreover, the significant variation in thalach was leveraged to predict cardiovascular
events more specifically. Moreover, the consistency across most indicators that the model
could apply to a broader patient population, fulfilling the research’s aim to advance
cardiovascular disease prediction by integrating dynamic simulation and ML for enhanced
early detection.

Normal (n = 445), CVD (n = 578).
Characteristics of patients in the derivation set and validation set-2 regarding the

external validity of CVD prediction are detailed below.

1. Age: With very close mean ages in the derivation (54.06 ± 8.74) and validation sets
(53.95 ± 8.84) and a p-value of 0.932, this similarity underscores the model’s ability
to generalize across adults in a broad age range. The negligible difference enhances
confidence in the model’s applicability for predicting CVD across diverse age groups.

2. Sex: The derivation and validation sets have mean values of 0.72 ± 0.45 and 0.69 ± 0.46,
respectively, with a p-value of 0.611. This indicates a balanced representation of sexes
in both sets, suggesting the predictive model’s sex neutrality in assessing CVD risk.

3. Chest pain (cp): The slight variation in mean values (Dev. set: 1.00 ± 1.04, Val. set:
1.07 ± 1.03) and a p-value of 0.652 implies that chest pain as a symptom is similarly
distributed among both groups, reinforcing the inclusion of this variable in CVD
prediction without bias towards either dataset.

4. Resting blood pressure (trestbps): Mean values are 130.41 ± 16.01 for the derivation
set and 131.52 ± 17.18 for the validation set, with a p-value of 0.658. This close
similarity suggests that resting blood pressure, despite its critical role in CVD risk
assessment, does not differ significantly between the sets, supporting its use in the
predictive model.
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5. Cholesterol (chol):Cholesterol (chol): Cholesterol (chol): The cholesterol levels in the
development set (239.15 ± 50.07) and the validation set (238.47 ± 48.04) are nearly iden-
tical, with a p-value of 0.926. This statistical similarity indicates that cholesterol levels
are consistently distributed across both groups. Such uniformity is crucial because
it suggests that cholesterol can be a stable and reliable predictor of cardiovascular
disease (CVD) across different datasets. This consistency ensures that the predictive
models developed using cholesterol data from one set are likely to be equally effective
when applied to another set, thereby affirming the relevance of cholesterol in CVD
predictive modeling.

6. Fasting blood sugar (fbs): The derivation and validation sets show similar fasting
blood sugar levels (Dev. set: 0.11 ± 0.32, Val. set: 0.12 ± 0.33) with a p-value of
0.877. The model can, therefore, reliably use fbs as a predictor without concern for
set-specific bias.

7. Resting ECG (restecg), maximum heart rate achieved (thalach), Exercise-induced
angina (exang): These indicators also demonstrate no significant differences (restecg
p = 0.611, thalach p = 0.804, exang p = 0.572), further supporting their incorporation
in CVD risk models for a broad patient population.

8. Oldpeak, slope, number of major vessels (ca), thalassemia (thal): The non-significant
p-values across these more technical cardiovascular indicators (oldpeak p = 0.926,
slope p = 0.852, ca p = 0.878, thal p = 0.681) highlight a consistency in disease sever-
ity markers, suggesting the potential for these factors to contribute reliably to risk
prediction models.

9. Target (CVD presence): The similar distribution of CVD presence (target) in both
sets (Dev. set: 0.53 ± 0.50, Val. set: 0.57 ± 0.50, p = 0.549) emphasizes the balanced
representation of disease status. This balance is pivotal for validating the model’s
ability to distinguish between CVD presence and absence accurately.

All these indicators, as evidenced by non-significant p-values external validity, suggest
that the developed model, leveraging these characteristics, can be applied across different
sets of patients without the risk of significant bias. This clinical setting can aid in early
detection and targeted intervention strategies for cardiovascular disease, personalized
patient care, and optimized treatment pathways.

The results from the multivariate Logistic regression analysis presented in the ta-
ble are critical for the clinical validation of independent risk factors in predicting CVD.
This analysis forms an essential part of the research for enhanced early detection and
analysis. By examining the impact of various indicators on CVD risk and their statisti-
cal significance, this research contributes to the enhancement of predictive models and
clinical decision making.

• Age (Coef. = 8.087988, p < 0.0001): Age is shown to be a significant predictor of CVD
risk, with a relatively large coefficient suggesting its strong influence. The confidence
interval (CI) from 4.289382 to 11.886593 reinforces the robustness of this variable. This
emphasizes the necessity of including age as a core variable in dynamic simulation
and ML models for CVD prediction, reflecting its critical role in clinical validation and
early detection efforts.

• Chest pain (cp, Coef. = −1.772114, p < 0.00001): The negative coefficient indicates that
as the severity of chest pain increases, the likelihood of CVD decreases, which may
seem counterintuitive. This might suggest specific types of chest pain are inversely
related to certain CVD outcomes or that this variable interacts with others in complex
ways. The significant P-value highlights the importance of chest pain as a variable in
the predictive model, necessitating further investigation into its role.

• Resting blood pressure (trestbps, Coef. = 0.950022, p < 0.00001): This factor’s positive
coefficient and its statistical significance suggest it is an important predictor of CVD
risk. The CI indicates a high level of certainty about its effect size, reinforcing the
value of including trestbps in predictive algorithms for clinical applications.
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• Cholesterol (chol, Coef. = −0.016875, p = 0.0111): The negative coefficient for choles-
terol, while small, is statistically significant, suggesting higher cholesterol levels might
slightly decrease the log-odds of CVD in the context of other factors. This counterintu-
itive finding warrants further exploration within the model’s framework, particularly
how cholesterol interacts with other risk factors. It may also suggest further stratifica-
tion into cholesterol subtypes of HDL and LDL is necessary [23].

• Exercise-induced angina (exang, Coef. = 0.019805, p = 0.0039): Exang’s positive
coefficient and statistical significance indicate its relevance as a predictor. It suggests
that the presence of exercise-induced angina increases CVD risk, which aligns with
clinical understanding and underscores its utility in predictive modeling.

• Thalassemia (thal, Coef. = −0.727265, p < 0.00001): The significant negative coeffi-
cient for thalassemia suggests different types or severities of this condition might
be inversely related to CVD risk in the analyzed population. This finding is partic-
ularly impactful for clinical validation, highlighting the need to consider genetic or
hereditary factors in CVD risk models.

• BMI (Coef. = −0.157092, p = 0.000016): The significance of BMI, with a negative
coefficient, implies that higher BMI values might, in the context of this model, slightly
reduce the log-odds of CVD, which could reflect the complex relationship between
obesity, metabolic health, and cardiovascular outcomes.

These results provide a quantitative foundation for validating the predictive accuracy
of models developed under the research aim. The significant p-values for most indicators
confirm their relevance in predicting CVD, which is essential for the clinical validation of the
model. By integrating these statistically significant risk factors into dynamic simulation and
ML models, the research advances the capability for early detection of CVD. The models can
offer personalized risk assessments, aiding in the identification of at-risk individuals based
on a comprehensive analysis of their clinical and physiological data. The validated model,
incorporating these key indicators, can be deployed through web applications, providing
clinicians and patients with accessible tools for assessing CVD risk. This aligns with the
research’s aim to leverage technology for improving cardiovascular health outcomes in
clinical practice.

Ratio analysis for clinical validation is shown in Table 14. ROC curve for clinical
validation is shown in Figure 19. Characteristics of patients in the derivation set and
validation set-1 are shown in Table 15, Characteristics of patients in the derivation set
and validation set-2 are shown in Table 16, Multivariate Logistic regression analysis of
independent risk factors for clinical validation is shown in Table 17, and ratio analysis for
clinical validation is shown in Table 14. The statistical analysis provides a detailed insight
for determining the likelihood of cardiovascular events. These outcomes are instrumental
for clinical validation to ensure the model’s applicability and reliability in a healthcare
setting. The significance of these predictors, validated through statistical analysis, supports
their clinical relevance. this implies that the model can effectively identify key risk factors
for cardiovascular events, which are essential for early detection and preventive strategies
in a clinical setting. The successful optimization and validation of the model with unseen
data underscore its potential for real-world application. This demonstrates that the model
can generalize well beyond the training dataset, a crucial aspect for clinical use where
diverse patient demographics and conditions are encountered. Coefficients and odds ratios,
along with the AUC score, provide a quantified insight into the factors influencing CVD
risk. Identifying high-risk patients the important variables with significant odds ratios
(like chest pain type, max heart rate, and the presence of exercise-induced angina) can help
clinicians identify patients at higher risk for cardiovascular events. We built a logistic stat
model with the model details below.
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Figure 19. ROC curve for clinical validation.

Table 14. Ratio analysis for clinical validation.

Variable Coefficient Odds Ratio

age −0.012368 0.987708
sex −1.620021 0.197894
cp 0.922992 2.516810
trestbps −0.016547 0.983589
chol −0.004622 0.995388
fbs −0.136955 0.872010
restecg 0.486718 1.626968
thalach 0.019812 1.020009
exang −0.730599 0.481620
oldpeak −0.484455 0.616033
slope 0.546831 1.727769
ca −0.710708 0.491296
thal −0.867785 0.419880
BMI −0.155365 0.856102

Table 15. Characteristics of patients in the derivation set and validation set-1.

Indicators Dev. Set (n = 60) Val. Set (n = 80) Stats p

age 54.37 ± 9.07 29.00, 77.00 −0.728 0.471
sex 0.68 ± 0.47 0.00, 1.00 −1.935 0.493
cp 0.97 ± 1.03 0.00, 3.00 −0.409 0.845
trestbps 131.62 ± 17.52 94.00, 200.00 1.852 0.841
chol 246.26 ± 51.77 126.00, 564.00 −0.140 0.594
fbs 0.15 ± 0.36 0.00, 1.00 −1.513 0.863
restecg 0.53 ± 0.53 0.00, 2.00 1.785 0.223
thalach 149.65 ± 22.88 71.00, 202.00 −0.696 0.003
exang 0.33 ± 0.47 0.00, 1.00 1.565 0.856
oldpeak 1.04 ± 1.16 −0.10, 6.29 −0.930 0.224
slope 1.40 ± 0.62 0.00, 2.00 −0.732 0.129
ca 0.73 ± 1.02 0.00, 4.00 −1.986 0.762
thal 2.31 ± 0.61 0.00, 3.00 −1.218 0.740
target 0.54 ± 0.50 0.00, 1.00 −1.993 0.980
BMI 26.18 ± 3.22 18.57, 33.80 0.031 0.732
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Table 16. Characteristics of patients in the derivation set and validation set-2.

Indicators Dev. Set (n = 80) Val. Set (n = 100) t-Test p

age 54.06 ± 8.74 53.95 ± 8.84 0.085 0.932
sex 0.72 ± 0.45 0.69 ± 0.46 0.509 0.611
cp 1.00 ± 1.04 1.07 ± 1.03 −0.451 0.652
trestbps 130.41 ± 16.01 131.52 ± 17.18 −0.443 0.658
chol 239.15 ± 50.07 238.47 ± 48.04 0.093 0.926
fbs 0.11 ± 0.32 0.12 ± 0.33 −0.155 0.877
restecg 0.45 ± 0.53 0.49 ± 0.52 −0.509 0.611
thalach 147.85 ± 22.25 148.66 ± 21.38 −0.248 0.804
exang 0.35 ± 0.48 0.31 ± 0.46 0.565 0.572
oldpeak 1.22 ± 1.29 1.20 ± 1.29 0.094 0.926
slope 1.34 ± 0.62 1.32 ± 0.63 0.187 0.852
ca 0.71 ± 0.96 0.69 ± 0.99 0.154 0.878
thal 2.42 ± 0.57 2.39 ± 0.57 0.411 0.681
target 0.53 ± 0.50 0.57 ± 0.50 −0.600 0.549

Table 17. Multivariate Logistic regression analysis of independent risk factors for clinical validation.

Indicator Coef. Std. Err. z p > |z| [0.025 0.975]

age 8.087988 1.938100 4.173154 3.004120 × 10−5 4.289382 11.886593
sex −0.013268 0.015387 −0.862260 3.885447 × 10−1 −0.043425 0.016890
cp −1.772114 0.309688 −5.722253 1.051205 × 10−8 −2.379091 −1.165136
trestbps 0.950022 0.124525 7.629177 2.362576 × 10−14 0.705958 1.194086
chol −0.016875 0.006645 −2.539454 1.110256 × 10−2 −0.029899 −0.003851
fbs −0.004952 0.002446 −2.024326 4.293659 × 10−2 −0.009747 −0.000157
restecg −0.158750 0.342710 −0.463220 6.432066 × 10−1 −0.830450 0.512949
thalach 0.510989 0.226568 2.255347 2.411154 × 10−2 0.066924 0.955054
exang 0.019805 0.006880 2.878480 3.995961 × 10−3 0.006320 0.033290
oldpeak −0.785714 0.278929 −2.816900 4.848958 × 10−3 −1.332404 −0.239024
slope −0.484087 0.137044 −3.532341 4.118980 × 10−4 −0.752689 −0.215485
ca 0.582247 0.225586 2.581041 9.850298 × 10−3 0.140106 1.024387
thal −0.727265 0.120877 −6.016584 1.781366 × 10−9 −0.964179 −0.490351
slope −0.892531 0.192624 −4.633549 3.594498 × 10−6 −1.270066 −0.514996
BMI −0.157092 0.036481 −4.306173 1.661031 × 10−5 −0.228593 −0.085591

1. Model Performance: The value of 0.341792 represents the final value of the objective
function, typically the log-likelihood or cross-entropy loss, after the optimization process
for the logistic regression model concluded successfully in 7 iterations. The low value
indicates a good fit between the model’s predicted probabilities and the actual outcomes
suggests that the model has reached a stable solution with potentially high predictive
power. In the context of multivariate logistic regression analysis, the value is crucial for
the clinical validation of independent risk factors in predicting cardiovascular disease
(CVD) by enhancing early detection and targeted treatment strategies.

2. Coefficient significance:

• Sex (−1.772114 coefficient): Indicates a strong negative association with car-
diovascular events that being male significantly increases the risk compared to
females, which is a vital insight for sex-specific risk assessments.

• Chest pain (cp, 0.950022 coefficient): Shows a positive and strong relationship
with the likelihood of cardiovascular events, underscoring the importance of
chest pain characteristics in predicting cardiovascular risks.

• Max heart rate (thalach, 0.019805 coefficient) and slope of the peak exercise ST
segment (slope, 0.582247 coefficient): Both have positive associations with cardio-
vascular events, emphasizing their roles in exercise-related cardiac assessments.

• Major Vessels (ca, −0.727265 coefficient) and Thalassemia (thal, −0.892531 co-
efficient):These features present strong negative associations in the model, sug-
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gesting that higher values or presence of these conditions are associated with a
decreased predicted risk of heart events. This counterintuitive result might be
due to the complex interplay of multiple features within the dataset, where other
factors could be compensating for these conditions, thus reducing the overall
predicted risk. It is crucial to understand that these results are specific to the
model and dataset used and may require further investigation to fully interpret
their implications [24–26].

3. p-Values and confidence intervals: Variables like sex, cp, thalach, exang, oldpeak,
ca, and thal show statistically significant p-values (p < 0.05), confirming their impor-
tance in the model. The confidence intervals provide an estimate of the precision
of the coefficients, further reinforcing the reliability of these variables in predicting
cardiovascular outcomes.

4. Odds ratios and coefficients: Each variable’s coefficient and odds ratio tell us how changes
in that variable are associated with the odds of experiencing a cardiovascular event.

• Age (odds ratio: 0.987708): A negative coefficient that with each additional year,
the odds of having a heart event slightly decrease, although the effect is minimal.

• Sex (odds ratio: 0.197894): Indicates males are at a lower risk of experiencing
a cardiovascular event compared to females in this model context, which is
counterintuitive and warrants further investigation given that clinical research
often shows higher CVD risk in males.

• Chest pain (cp, odds ratio: 2.516810): A significant predictor with a positive
coefficient, indicating that as the severity of chest pain increases, so does the
likelihood of a cardiovascular event.

• Max heart rate (thalach, odds ratio: 1.020009): Higher maximum heart rates are
slightly associated with increased odds of cardiovascular events.

• Exercise-induced angina (exang, odds ratio: 0.481620) and Oldpeak (odds ratio:
0.616033): Both have negative coefficients, indicating that the presence of exercise-
induced angina and higher ST depression is associated with lower odds of
experiencing heart events, which typically a higher risk in clinical contexts, so
the interpretation should consider the model’s overall predictive context.

• Major Vessels (ca, Odds Ratio: 0.491296) and Thalassemia (thal, Odds Ratio:
0.419880): These features show strong negative associations with the likelihood
of heart events. Specifically, an odds ratio less than 1 indicates that the presence
of more major vessels detected by fluoroscopy or certain types of thalassemia
significantly lowers the odds of heart events according to this model. An odds
ratio of less than 1 suggests that as the feature value increases, the likelihood
of the outcome (in this case, heart events) decreases. For instance, an OR of
0.491296 for major vessels means that the presence of more major vessels is
associated with approximately a 51% reduction in the odds of heart events. This
suggests the need for further investigation into the data and model, including
potential confounding factors and the specific characteristics of the dataset used
as abnormalities in visualisation are not specified. The contradiction arises may
arise because, clinically, both thalassemia and abnormalities in major vessels
are known to be associated with increased cardiovascular risks. However, in
the context of this model, the negative odds ratios suggest a reduced likeli-
hood of heart events. This counterintuitive finding can occur due to several
reasons, such as the presence of other influential features in the model that mit-
igate the risk associated with thalassemia, and non-specification of any major
vessel abnormalities.

An odds ratio (OR) greater than 1 indicates a positive association with the outcome
(higher odds of CVD), whereas an OR less than 1 indicates a negative association
(lower odds of CVD). Factors such as chest pain type (cp), resting electrocardio-
gram results (restecg), maximum heart rate achieved (thalach), and the slope of
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the peak exercise ST segment (slope) have ORs greater than 1, suggesting a posi-
tive association with CVD. Conversely, factors like age, sex, resting blood pressure
(trestbps), serum cholesterol (chol), fasting blood sugar (fbs), exercise-induced angina
(exang), ST depression induced by exercise relative to rest (oldpeak), the number
of major vessels colored by fluoroscopy (ca), thalassemia (thal), and body mass in-
dex (BMI) have ORs less than 1, indicating a negative association with CVD. The
negative associations may arise due to various reasons such as non-linear relation-
ships between the clinical factors and CVD, the presence of confounding factors,
population-specific effects in the dataset, and multicollinearity among predictors.
Non-linear relationships suggest that extremely high or low values of these factors
might have different impacts compared to moderate values. Confounding factors
and population-specific effects might skew the results based on the characteristics
of the dataset used. Multicollinearity, where predictors are correlated with each
other, can also affect the estimated coefficients and ORs. Despite the negative asso-
ciations observed for some factors, their clinical relevance remains significant. For
instance, the well-established importance of cholesterol and BMI in CVD risk assess-
ment should be considered in a broader clinical context. Therefore, while odds ratios
provide insights into associations between various factors and CVD, it is crucial to
consider potential confounders, the characteristics of the dataset, and the overall
clinical context.

5. AUC Score (0.9373177842565598): The AUC-ROC score is an effective measure for
classification models at various threshold settings. An AUC score close to 1 indicates
a high degree of accuracy in the model’s ability to differentiate between patients who
will and will not experience a cardiovascular event. A score of 93% is excellent and
the model has a strong predictive capability

9.4. Model Generalization Phase for Clinical Validation

In the process of determining whether a diagnostic or predictive model is clinically
relevant and accurate in a real-world setting, for further clinical validation, we also tested
our model’s technique on unseen data. It proves that the unseen clinical setting data has not
been used in training of the model, representing external validation perfectly correct during
cross-validation; this further minimizes overfitting and improves the model’s predictive
ability on new data. The model generalization phase for clinical validation is shown in
Figure 20.

Figure 20. Model generalization phase for clinical validation.
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The image depicts a graph from a Lassoregression cross-validation process that shows
the relationship between the log of the lambda penalty log(λ) and the mean squared error
(MSE) during the model training process. This signifies that it could be reliably deployed
in real-world clinical settings for CVD prediction.

1. Mean squared error (MSE): The vertical axis represents the MSE, a measure of the
average squared difference between the observed actual outcomes and the outcomes
predicted by the model. A lower MSE indicates a more accurate model.

2. log(λ) values: The horizontal axis shows the log-transformed lambda values. Lambda
(λ) is the penalty parameter in Lassoregression, which controls the strength of the
regularization applied to the model. Regularization can shrink the coefficients of less
important features to zero, thus performing feature selection.

3. Optimal point: The dashed vertical line indicates the log(λ) value that minimizes the
cross-validated MSE. This is the optimal value where the model achieves the best
balance between bias and variance at a log(λ) of approximately −2.26. At this point,
the model is neither overfitting nor underfitting.

4. Error bars: The red-shaded region with vertical lines represents the variability of the
MSE across the different folds of cross-validation. The width of the error bars indicates
the stability of the model’s performance; smaller bars mean that the performance is
more stable across different subsets of the data.

• The graph supports the clinical validation phase by illustrating that the model,
when applied to unseen data, maintains a relatively low and stable MSE across
different values of regularization strength. This suggests that the model has
generalized well beyond the specific conditions of the training dataset.

• The Lassoregression technique inherently performs feature selection, which
could mean that only the most predictive features are retained, reducing the risk
of overfitting and improving the model’s performance on unseen data.

• By choosing the optimal lambda value through cross-validation, the model
demonstrates its ability to maintain performance when applied to new data, thus
supporting its use in a clinical setting where the ability to generalize to new
patient data is critical.

• The use of cross-validation in determining the optimal penalty reinforces the
model’s credibility. It indicates that the model’s performance is tested in a way
that mimics its future application on different patient data, ensuring that the
performance metrics are not overly optimistic.

The clinical validation through Lassoregression cross-validation is significant for
CVDs to ensure the method is not just theoretically sound but also practically reliable. By
identifying the most influential predictors and eliminating overfitting, the model becomes
a reliable tool for clinicians and patients alike, ensuring its generalizability to real-world
clinical settings. The precise calibration of the model through clinical validation enables
enhanced predictive capabilities, which are central to early detection and can lead to
better patient outcomes. The validated model integrates seamlessly with advanced web
application technologies, providing a foundation for the development of user-friendly
tools that support healthcare decision making. The rigorous validation process confirms
the model’s utility in clinical practice, encouraging its adoption and fostering trust in its
predictive insights for both healthcare providers and patients. This validated model has
the potential to revolutionize the early detection of CVD, supporting the project’s mission
to leverage technology for improved health outcomes.

9.5. Comparative Analysis with Existing Studies for Validation

A comparative analysis of ML-based cardiac disease prediction studies is shown in
Table 18.



Diagnostics 2024, 14, 1308 40 of 44

Table 18. Comparative analysis of machine learning-based cardiac disease prediction studies.

Author Year Main Findings Methodology

Ogunpola et al. [14] 2024 Optimizing XGBoost model for CVD. High accuracy of 98 by gridsearchcv and
hyperparameter tuning %

Supervised and unsupervised learning with Cardiovascular Heart Disease and
Cleveland Datasets

Kumar et al. [15] 2023 Traditional ML techniques favored for structured data; DL for unstructured data.
Identified challenges in data quality and model interpretability.

Comprehensive review and comparison of ML and DL algorithms in heart
disease prediction

Kachhawa et al. [27] 2023 Random forest classifier most accurate with an F1 score of 94% and AUC of 0.98
and cloud-based healthcare system for CVD risk assessment

Supervised ML, classification model, data preprocessing, hyper tuning using health
attributes for prediction

Taylan et al. [28] 2023 ANFIS and SVR achieved a prediction accuracy of 96.56%. Mix data transformation, ML approaches, neuro-fuzzy interface system, statistical
methods for CVD risk prediction

Khan et al. [29] 2023 Random forest algorithm most suitable for CVD prediction with highest
sensitivity accuracy and lowest specificity Random sampling, simple implementation of ML algorithms for CVD prediction

Sk et al. [30] 2023 Hybrid ML algorithm predicts CHD with focus on accuracy, TPR, and specificity. Hybrid Decision tree and Ada Boosting algorithms for coronary HD prediction

Özbilgin et al. [31] 2023 93% accuracy with SVM classifier for CAD prediction using iris images and CAD
without traditional cardiac tests Iris image collection, feature analysis, SVM classification

Ahmed Al Ahdal et al. [32] 2022 ML for prediction UCl dataset, 14 features originally from 75 columns, confusion matrix

S. Usha et al. [33] 2022 Logistic regression, Random forest, and others are proposed for improving heart
disease diagnosis.

Use of ML techniques including Logistic regression, Random forest, Naive Bayes,
Decision tree, KNN, Support Vector Machine, XGBoost, and electronic medical
records for heart disease identification and diagnosis.

Umarani Nagavelli et al. [34] 2022 Compares four ML models and finds XGBoost to be the most effective for heart
disease detection

Naïve Bayes, support vector machine (SVM) with XGBoost, improved SVM based on
the duality optimization scheme, outlier detection and elimination

Proposed Study on CVD prediction by using Algorithm

Findings: Improving predictive models for CVDs and highlighting the potential of an innovative agent-based dynamic simulation technique: The performance of traditional algorithms, such as Ensemble Learning
and XGBoost, achieved high accuracies of 91% and 95%, respectively, with the streamlit application demonstrating a predictive accuracy of 97%. Integrating AI with user-friendly interfaces: This paper discusses the
importance of personalized risk assessment and treatment strategies in cardiovascular health management. It outlines a plan to include 1000 samples divided into two groups of patients for further research.
Multivariate Logistic regression analysis of independent risk factors for clinical validation. Generalization for clinical validation. Ratio analysis for clinical validation.

Methodology: A dynamic simulation approach focusing on progression pathways and treatment scenarios using an ABM to simulate individual patient responses to various cardiovascular risk factors. The study
also utilized a dataset comprising 303 patient records with 14 distinct clinical features, selected for its comprehensive representation of key cardiovascular health indicators, including demographic, physiological,
and laboratory test data. Additionally, the study plans to include a dataset with 1000 samples divided into two groups of patients: those with CVD and those without CVD.
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10. Refining the AI Model Based on Feedback

Comprehensive workflow for refining AI models: This diagram illustrates the intricate
feedback loop and optimization processes involved in enhancing AI model accuracy and
functionality based on real-world clinical feedback and continuous data analysis (Figure 21).

Figure 21. AI model refinement process: A detailed visualization of the iterative feedback loops and
optimization strategies enhancing AI performance through clinical insights and system integrations.

Our approach to refining and optimizing the AI models based on clinician feedback
and real-world usage data involved several strategic steps.
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1. Feedback loop implementation: We have established a systematic feedback loop with
end-users, primarily clinicians, to gather detailed insights on the model’s performance
in real settings. This includes structured surveys, focus groups, and usage data
analytics to identify common issues and areas for improvement.

2. Model re-training and updating: Leveraging the feedback, the AI models are pe-
riodically re-trained on new data that include diverse patient demographics and
pathology to improve accuracy and adapt to evolving clinical practices. This process
is supported by automated pipelines that can process new data and update models
without downtime.

3. Adaptive learning mechanisms: To enhance model adaptability, we explored the
integration of continuous learning mechanisms that allow the model to learn incre-
mentally from new cases and feedback without the need for full retraining.

4. Interoperability enhancements: Based on clinician feedback, we focused on improving
the interoperability of our AI models with existing healthcare systems and Electronic
Health Records (EHRs). This involves developing APIs and standardized data ex-
change formats to ensure seamless integration and data flow.

5. Ethical and regulatory compliance: As the model evolves, maintaining ethical stan-
dards and regulatory compliance is a continuous priority. We regularly reviewed
our models for bias, ensured transparency in AI decisions, and stayed updated with
regulatory changes to pre-emptively address compliance issues.

6. Data security and privacy: We maintained sensitive medical data within the appli-
cation required stringent security measures. We integrated secure data transmission
protocols and implemented data anonymization techniques to protect patient infor-
mation while maintaining compliance with health data regulations such as HIPAA
in the U.S. and GDPR in Europe. We employed cloud-based services to handle in-
creased traffic and deployed continuous integration/continuous deployment (CI/CD)
practices to streamline updates and maintenance.

11. Conclusions

Our research aims to improve the prediction of CVD by introducing an innovative
agent-based dynamic simulation technique. Our findings show that incorporating this
simulation with ensemble learning and a user-friendly web application interface has signifi-
cantly enhanced the precision of CVD risk assessment and early detection by 15% compared
to traditional methods. We have applied various ML algorithms to yield promising re-
sults. By deploying these AI models within a streamlit-based web application, we have
successfully bridged the gap between complex ML models and end-users. This means that
anyone can use it from anywhere and make quick decisions by accessing the app. The
impact of our study is twofold. Firstly, it underscores the transformative potential of AI in
healthcare, setting a new benchmark in the application of complex AI models to enhance
their accessibility for users such as clinicians and patients. Secondly, our integration of
dynamic ABM simulation into AI model development marks a significant advancement in
CVD prediction and management. Our approach has been validated by an external dataset
in a clinical hospital. This is a stride towards a future where AI-driven personalized care
can become a mainstay in managing CVDs.
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12. Książek, W.; Gandor, M.; Pławiak, P. Comparison of various approaches to combine logistic regression with genetic algorithms in

survival prediction of hepatocellular carcinoma Computing. Biol. Med. 2022, 134, 104431. [CrossRef]
13. Ghiasi, M.M.; Zendehboudi, S.; Mohsenipour, A. Decision tree-based diagnosis of coronary artery disease: CART model. Comput.

Methods Prog. Biomed. 2020, 192, 105400. [CrossRef] [PubMed]
14. Ogunpola, A.; Saeed, F.; Basurra, S.S.; Albarrak, A.M.; Qasem, S.N. ML-Based Predictive Models for Detection of Cardiovascular

Diseases. Diagnostics 2024, 14, 144. [CrossRef] [PubMed]
15. Kumar, M.S.; Sah, A.K.; Ruthvik, G.; Prabez, M.S.; Adhikari, R. Advancements in Heart Disease Prediction: A Comprehensive

Review of ML and DL Algorithms. In Proceedings of the 2023 3rd International Conference on Technological Advancements in
Computational Sciences (ICTACS), Tashkent, Uzbekistan, 1–3 November 2023; pp. 1463–1468. [CrossRef]

16. Jolliffe, I.T.; Stephenson, D.B. (Eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; Wiley-Blackwell:
Oxford, UK, 2012. [CrossRef]

17. Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather. Rev. 1950, 78, 1–3. [CrossRef]
18. Aessopos, A.; Farmakis, D.; Karagiorga, M.; Voskaridou, E.; Loutradi, A.; Hatziliami, A.; Loukopoulos, D. Cardiovascular

complications in thalassemia syndromes. Blood J. Am. Soc. Hematol. 2001, 97, 3411–3416. [CrossRef]
19. Chow, S.-C.; Shao, J.; Wang, H. Sample Size Calculations in Clinical Research, 2nd ed.; Chapman and Hall/CRC Biostatistics Series:

New York, NY, USA, 2008. [CrossRef]
20. Triola, M.M. Biostatistics for the Biological and Health Sciences; Various Editions; Pearson: Harlow, UK, 2020; ISBN-13:978-0134039015.

https://github.com/datascintist-abusufian/AI-Models-for-Early-Cardiovascular-Diseases-Detection-
https://github.com/datascintist-abusufian/AI-Models-for-Early-Cardiovascular-Diseases-Detection-
https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
http://doi.org/10.1016/j.compeleceng.2020.106628
http://dx.doi.org/10.1186/s12911-021-01546-2
http://www.ncbi.nlm.nih.gov/pubmed/34107920
http://dx.doi.org/10.3389/frai.2021.708365
http://www.ncbi.nlm.nih.gov/pubmed/34308341
http://dx.doi.org/10.1002/cnm.3273
http://www.ncbi.nlm.nih.gov/pubmed/31680466
http://dx.doi.org/10.1016/j.inffus.2020.06.008
http://dx.doi.org/10.5888/pcd13.150561
http://www.ncbi.nlm.nih.gov/pubmed/27236380
http://dx.doi.org/10.1109/ACCESS.2021.3098688
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1016/j.jbi.2021.103690
http://www.ncbi.nlm.nih.gov/pubmed/33540075
http://dx.doi.org/10.1016/j.dajour.2022.100071
http://dx.doi.org/10.1016/j.compbiomed.2021.104431
http://dx.doi.org/10.1016/j.cmpb.2020.105400
http://www.ncbi.nlm.nih.gov/pubmed/32179311
http://dx.doi.org/10.3390/diagnostics14020144
http://www.ncbi.nlm.nih.gov/pubmed/38248021
http://dx.doi.org/10.1109/ICTACS59847.2023.10390155
http://dx.doi.org/10.1002/9781119960003
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1182/blood.V97.11.3411
http://dx.doi.org/10.1201/9781315183084


Diagnostics 2024, 14, 1308 44 of 44

21. Harvard T.H. Chan School of Public Health. Ethnic Differences in BMI and Disease Risk. 2024. Available online: https:
//www.hsph.harvard.edu/obesity-prevention-source/ethnic-differences-in-bmi-and-disease-risk/ (accessed on 20 May 2024).

22. American College of Cardiology. More Than Skin Color: Ethnicity-Specific BMI Cutoffs For Obesity Based on Type 2 Diabetes
Risk in England. 2024. Available online: https://www.acc.org/latest-in-cardiology/articles/2024/05/27/ethnicity-specific-bmi-
cutoffs (accessed on 20 May 2024).

23. Navab, M.; Reddy, S.; Van Lenten, B.; Fogelman, A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective
mechanisms. Nat. Rev. Cardiol. 2011, 8, 222–232. [CrossRef] [PubMed]

24. Molnar, C. Interpretable Machine Learning. 2020. Available online: https://christophm.github.io/interpretable-ml-book/
(accessed on 20 May 2024).

25. Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing
Systems (NeurIPS). 2017. Available online: https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b677
67-Paper.pdf (accessed on 20 May 2024).

26. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA,
13–17 August 2016. Available online: https://arxiv.org/abs/1602.04938 (accessed on 20 May 2024).

27. Kachhawa, A.; Hitt, J. An Intelligent System for Early Prediction of Cardiovascular Disease using Machine Learning. J. Stud. Res.
2023, 11. [CrossRef]

28. Taylan, O.; Alkabaa, A.S.; Alqabbaa, H.S.; Pamukçu, E.; Leiva, V. Early Prediction in Classification of Cardiovascular Diseases
with ML, Neuro-Fuzzy and Statistical Methods. Biology 2023, 12, 117. [CrossRef] [PubMed]

29. Khan, A.; Qureshi, M.; Daniyal, M.; Tawiah, K. A Novel Study on ML Algorithm-Based Cardiovascular Disease Prediction. Health
Soc. Care Community 2023, 2023, 1406060. [CrossRef]

30. Sk, K.B.; Roja, D.; Priya, S.S.; Dalavi, L.; Vellela, S.S.; Reddy, V. Coronary Heart Disease Prediction and Classification using
Hybrid Machine Learning Algorithms. In Proceedings of the 2023 International Conference on Innovative Data Communication
Technologies and Application (ICIDCA), Uttarakhand, India, 14–16 March 2023; pp. 1–7. [CrossRef]

31. Özbilgin, F.; Kurnaz, Ç.; Aydın, E. Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis.
Diagnostics 2023, 13, 1081. [CrossRef] [PubMed]

32. Nagavelli, U.; Samanta, D.; Chakraborty, P. Machine Learning Technology-Based Heart Disease Detection Models. J. Healthc. Eng.
2022, 2022, 9752342. [CrossRef] [PubMed]

33. Ahdal, A.A.; Rakhra, M.; Badotra, S.; Fadhaeel, T. An integrated Machine Learning Techniques for Accurate Heart Disease
Prediction. In Proceedings of the 2022 International Mobile and Embedded Technology Conference (MECON), Tuticorin, India,
16–18 March 2022; pp. 594–598. [CrossRef]

34. Usha, S.; Kanchana, S. Effective Analysis of Heart Disease Prediction using Machine Learning Techniques. In Proceedings
of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022;
pp. 1450–1456. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.hsph.harvard.edu/obesity-prevention-source/ethnic-differences-in-bmi-and-disease-risk/
https://www.hsph.harvard.edu/obesity-prevention-source/ethnic-differences-in-bmi-and-disease-risk/
https://www.acc.org/latest-in-cardiology/articles/2024/05/27/ethnicity-specific-bmi-cutoffs
https://www.acc.org/latest-in-cardiology/articles/2024/05/27/ethnicity-specific-bmi-cutoffs
http://dx.doi.org/10.1038/nrcardio.2010.222
http://www.ncbi.nlm.nih.gov/pubmed/21304474
https://christophm.github.io/interpretable-ml-book/
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf 
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf 
 https://arxiv.org/abs/1602.04938
http://dx.doi.org/10.47611/jsrhs.v11i3.2989
http://dx.doi.org/10.3390/biology12010117
http://www.ncbi.nlm.nih.gov/pubmed/36671809
http://dx.doi.org/10.1155/2023/1406060
http://dx.doi.org/10.1109/ICIDCA56705.2023.10099579
http://dx.doi.org/10.3390/diagnostics13061081
http://www.ncbi.nlm.nih.gov/pubmed/36980389
http://dx.doi.org/10.1155/2022/7351061
http://www.ncbi.nlm.nih.gov/pubmed/35265303
http://dx.doi.org/10.1109/ICEARS53579.2022.9752132
http://dx.doi.org/10.1155/2022/7351061

	Introduction
	Research Problems and the Significance of Early Detection in CVDs
	Aim, Objectives, and Research Questions

	Related Work
	Proposed Research Methodology
	Agent-Based Model Pseudo-Code Framework
	Implications for Cardiovascular Health Management
	Dataset
	Dataset Selection and Justification
	Data Preprocessing
	Models

	Experimental Analysis
	Demographic Analysis
	Discovery Phase of Heart Disease Frequency for Ages
	Discovery Phase of Heart Disease Frequency for Sex
	Discovery Phase of Scatter Plot for Maximum Heart Rate against Age
	 Discovery Phase of Heart Disease according to Fasting Blood Sugar
	Supplementary Phase of Variables Correlation Matrix Visualised by Heatmap
	 Supplementary Phase by the Interpretation of Principal Component Analysis (PCA) Results
	Supplemetary Phase through PCA Dimensionality Reduction
	Model Performance Comparison

	Integration of ML Models into Streamlit Web Application
	Rationale for Using Streamlit Framework
	Components of the ML System
	Process of Integration
	Challenges and Solutions in Streamlit Integration
	Advantages of the User-Friendly Streamlit Web Application

	 Results
	Model Validation and Performance Evaluation
	Model Calibration—Brier Score ref24
	Procedure for Constructing a Calibration Curve
	Brier Score Calculation ref23
	Actual Frequency Calculation

	Sensitivity Analysis
	Parameter Sensitivity
	Input Data Variability

	Validation of the Agent-Based Simulation Model

	Discussion
	 Explainable AI in the Context of Research Output
	Significance of This Analysis for the Research Project
	Relevance to the Research Questions
	Analysis of Simulation Implications

	Clinical Validation
	Population Sample
	Sample Size Justification and Group Allocation ref25
	Group Division: ref26
	Model Generalization Phase for Clinical Validation
	Comparative Analysis with Existing Studies for Validation

	Refining the AI Model Based on Feedback
	Conclusions
	References

