EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods
Abstract
:1. Introduction
- Introducing efficient DWT-based feature extraction methods to generate reliable biomarkers for MCI detection. In these methods, only one of the adopted non-linear measures follows the DWT decomposition and reconstruction processes.
- Enhancing the detection accuracy by utilizing multi-objective optimization techniques to identify the most effective channel subsets. In addition to NSGA-II examined in [40], the present study explores NSGA-III as well as a particle swarm optimization (PSO)-based approach. We designed these three multi-objective optimization methods to solve a two-objective function problem: optimizing MCI detection accuracy and, simultaneously, decreasing the number of EEG channels.
- Additionally, greedy algorithms, including back-elimination (BE) and forward-addition (FA), are also explored for EEG channel selection.
- Investigating different machine learning algorithms and optimizing their parameters using multi-objective optimization methods.
2. Materials and Methods
2.1. Datasets and Pre-Processing
2.2. DWT-Based Features
2.2.1. Decomposition and Reconstructing
2.2.2. Computing Features
2.3. Classification
2.4. Performance Evaluation
2.5. EEG Channel Selection
2.5.1. Greedy Algorithms
Back-Elimination Algorithm
Forward-Addition Algorithm
2.5.2. Multi-Objective Optimization Algorithms
NSGA-II and NSGA-III
Multi-Objective Particle Swarm Optimization (MOPSO)
The Optimization Problem and Variables
- Initially, all channels’ signals are subjected to the preprocessing stage. Following this, the signals are decomposed and subsequently reconstructed using DWT (refer to Figure 3).
- Features are then calculated using a non-linear measure. In this study, we compared several non-linear measures given by Equations (1)–(7).
- From this point on, NSGA-based or PSO-based algorithms handle the main process of optimizing the selected channels as well as the classifier’s parameters. The process begins with creating an initial population representing possible solutions (chromosomes or particles). The values in each possible solution represent a set of selected EEG channels (which channels are included or excluded) and the value of the classifier’s parameter.
- The features that belong to the selected channels (channels with a value of 1 in the generated solution) are fed as inputs for the adopted classifier, while the other features are not.
- For each solution in the population (each chromosome in NGSA or each particle in PSO), the classification accuracy () is evaluated with 10-fold cross-validation. In addition, the number of channels () is evaluated in this step. NGSA or PSO then use these values to evolve the population. To compare the effectiveness of various classification techniques, we considered using RF, DA, SVM, or KNN classifiers.
- The processes in the third to fifth steps are repeated, generating a progressively evolving population until the termination criterion has been reached.
3. Results and Discussion
3.1. Full-Channel-Based Results
3.2. Selected-Channel-Based Results
3.2.1. Greedy-Algorithm-Based Channel Selection Results
3.2.2. Results Using Multi-Objective Optimization Methods
NSGA-Based Results
PSO-Based Results
3.2.3. Evaluation of EEG Channel Selection Approaches
3.2.4. Performances of Classifiers
3.3. Discussion with the Literature
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Dementia; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Burns, A.; Iliffe, S. Alzheimer’s disease. BMJ 2009, 338, b158. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Albanese, E.; Guerchet, M.; Prina, A.M. World Alzheimer Report Dementia and Risk Reduction: An Analysis of Protective and Modifiable Factors; Alzheimer’s Disease International: London, UK, 2014. [Google Scholar]
- Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2015, 11, 332–384. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. Treatments and Research. In Alzheimer’s Disease and Dementia; Alzheimer’s Association: Chicago, IL, USA, 2019. [Google Scholar]
- U.S. Food and Drug Administration (FDA). FDA Grants Accelerated Approval for Alzheimer’s Disease Treatment. 6 January 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment (accessed on 7 January 2023).
- Kim, D.-H.; Oh, M.; Kim, J.S. Prediction of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Using Amyloid PET and Brain MR Imaging Data: A 48-Month Follow-Up Analysis of the Alzheimer’s Disease Neuroimaging Initiative Cohort. Diagnostics 2023, 13, 3375. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Li, Y.; Zhao, Y.; Hu, T.; Zhang, Z.; Yao, Z.; Hu, B.; Alzheimer’ s Disease Neuroimaging Initiative (ADNI). Predicting MCI progression with FDG-PET and cognitive scores: A longitudinal study. BMC Neurol. 2020, 20, 148. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lei, Z.; Ou, Y.; Shi, X.; Xu, Q.; Shi, K.; Ding, J.; Zhao, Q.; Wang, X.; Cai, X.; et al. Computed Tomography Density and β-Amyloid Deposition of Intraorbital Optic Nerve May Assist in Diagnosing Mild Cognitive Impairment and Alzheimer’s Disease: A 18F-Flutemetamol Positron Emission Tomography/Computed Tomography Study. Front. Aging Neurosci. 2022, 14, 836568. [Google Scholar] [CrossRef] [PubMed]
- Aljalal, M.; Ibrahim, S.; Djemal, R.; Ko, W. Comprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signals. Intell. Serv. Robot. 2020, 13, 539–563. [Google Scholar] [CrossRef]
- Alturki, F.A.; Aljalal, M.; Abdurraqeeb, A.M.; Alsharabi, K.; Al-Shamma’A, A.A. Common Spatial Pattern Technique With EEG Signals for Diagnosis of Autism and Epilepsy Disorders. IEEE Access 2021, 9, 24334–24349. [Google Scholar] [CrossRef]
- Alalayah, K.M.; Senan, E.M.; Atlam, H.F.; Ahmed, I.A.; Shatnawi, H.S.A. Effective Early Detection of Epileptic Seizures through EEG Signals Using Classification Algorithms Based on t-Distributed Stochastic Neighbor Embedding and K-Means. Diagnostics 2023, 13, 1957. [Google Scholar] [CrossRef]
- Alturki, F.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Aljalal, M. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Sensors 2020, 20, 2505. [Google Scholar] [CrossRef]
- Moctezuma, L.A.; Molinas, M. EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization. Front Neurosci. 2020, 14, 593. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, S.-A.; Fakhri, E.; Bahrami, M.; Bagheri, E.; Khamsehashari, R.; Noroozian, M.; Hajiyavand, A.M. An Approach toward Artificial Intelligence Alzheimer’s Disease Diagnosis Using Brain Signals. Diagnostics 2023, 13, 477. [Google Scholar] [CrossRef]
- AlSharabi, K.; Salamah, Y.B.; Abdurraqeeb, A.M.; Aljalal, M.; Alturki, F.A. EEG Signal Processing for Alzheimer’s Disorders Using Discrete Wavelet Transform and Machine Learning Approaches. IEEE Access 2022, 10, 89781–89797. [Google Scholar] [CrossRef]
- Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Acharya, U.R. Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 2019, 100, 101698. [Google Scholar] [CrossRef]
- Aljalal, M.; Aldosari, S.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Alturki, F.A. Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques. Diagnostics 2022, 12, 1033. [Google Scholar] [CrossRef]
- Aljalal, M.; Aldosari, S.A.; Molinas, M.; AlSharabi, K.; Alturki, F.A. Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques. Sci. Rep. 2022, 12, 22547. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, C.; Hao, H.; Guo, Y.; Xu, S.; Zhang, Y.; Yin, G.; Cao, X.; Yang, A.; Meng, F.; et al. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma, L.A.; Abe, T.; Molinas, M. Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm. Sci. Rep. 2022, 12, 3523. [Google Scholar] [CrossRef] [PubMed]
- Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment. Dis Markers. 2018, 2018, 5174815. [Google Scholar] [CrossRef] [PubMed]
- Dauwels, J.; Vialatte, F.; Musha, T.; Cichocki, A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage 2010, 49, 668–693. [Google Scholar] [CrossRef] [PubMed]
- Kashefpoor, M.; Rabbani, H.; Barekatain, M. Automatic diagnosis of mild cognitive impairment using electroenceph- alogram spectral features. J. Med. Signals Sens. 2016, 6, 25–32. [Google Scholar]
- Kashefpoor, M.; Rabbani, H.; Barekatain, M. Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis. Biomed. Signal Process. Control 2019, 53, 101559. [Google Scholar] [CrossRef]
- Hadiyoso, S.; La Febry Andira Rose Cynthia, C.; Latifah, E.M.T.; Zakaria, H. Early Detection of Mild Cognitive Impairment Using Quantitative Analysis of EEG Signals. In Proceedings of the 2019 2nd International Conference on Bioinformatics, Biotechnology and Biomedical Engineering (BioMIC)—Bioinformatics and Biomedical Engineering, Yogyakarta, Indonesia, 12–13 September 2019. [Google Scholar]
- Hsiao, Y.-T.; Tsai, C.-F.; Wu, C.-T.; Trinh, T.-T.; Lee, C.-Y.; Liu, Y.-H. MCI Detection Using Kernel Eigen-Relative-Power Features of EEG Signals. Actuators 2021, 10, 152. [Google Scholar] [CrossRef]
- Yin, J.; Cao, J.; Siuly, S.; Wang, H. An Integrated MCI Detection Framework Based on Spectral-temporal Analysis. Int. J. Autom. Comput. 2019, 16, 786–799. [Google Scholar] [CrossRef]
- Siuly, S.; Alcin, O.F.; Kabir, E.; Sengur, A.; Wang, H.; Zhang, Y.; Whittaker, F. A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1966–1976. [Google Scholar] [CrossRef]
- Alvi, A.M.; Siuly, S.; Wang, H. A Long Short-Term Memory Based Framework for Early Detection of Mild Cognitive Impairment From EEG Signals. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 7, 375–388. [Google Scholar] [CrossRef]
- Lee, K.; Choi, K.-M.; Park, S.; Lee, S.-H.; Im, C.-H. Selection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairment. Alzheimer’s Res. Ther. 2022, 14, 170. [Google Scholar] [CrossRef]
- Movahed, R.A.; Rezaeian, M. Automatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features. Comput. Math. Methods Med. 2022, 2022, 2014001. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Göker, H. Automatic Detection of Mild Cognitive Impairment from EEG Recordings Using Discrete Wavelet Transform Leader and Ensemble Learning Methods. DÜMF Mühendislik Derg. 2023, 14, 47–54. [Google Scholar] [CrossRef]
- Aljalal, M.; Aldosari, S.A.; Molinas, M.; AlSharabi, K.; Alturki, F.A. Mild Cognitive Impairment Detection from EEG Signals Using Combination of EMD Decomposition and Machine Learning. In Proceedings of the 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA), Taiz, Yemen, 10–11 October 2023; pp. 1–8. [Google Scholar]
- Sharma, N.; Kolekar, M.; Jha, K.; Kumar, Y. EEG and cognitive biomarkers based mild cognitive impairment diagnosis. IRBM 2019, 40, 113–121. [Google Scholar] [CrossRef]
- Fiscon, G.; Weitschek, E.; Cialini, A.; Felici, G.; Bertolazzi, P.; De Salvo, S.; Bramanti, A.; Bramanti, P.; De Cola, M.C. Combining EEG signal processing with supervised methods for alzheimer’s patients classifcation. BMC Med. Inf. Decis. Mak. 2018, 18, 35. [Google Scholar]
- Oltu, B.; Akşahin, M.F.; Kibaroğlu, S. A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection. Biomed. Signal Process. Control 2021, 63, 102223. [Google Scholar] [CrossRef]
- Pirrone, D.; Weitschek, E.; Di Paolo, P.; De Salvo, S.; De Cola, M.C. EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease. Appl. Sci. 2022, 12, 5413. [Google Scholar] [CrossRef]
- Alotaiby, T.; El-Samie, F.E.A.; A Alshebeili, S.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 66, 2015. [Google Scholar] [CrossRef]
- Aljalal, M.; Molinas, M.; Aldosari, S.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Alturki, F.A. Mild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learning. Biomed. Signal Process. Control 2024, 87, 105462. [Google Scholar] [CrossRef]
- EEG Signals from Normal and MCI (Mild Cognitive Impairment) Cases. Available online: https://misp.mui.ac.ir/en/eeg-data-0 (accessed on 1 April 2023).
- Barekatain, M.; Askarpour, H.; Zahedian, F.; Walterfang, M.; Velakoulis, D.; Maracy, M.R.; Hashemi Jazi, M. The relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairment. J. Res. Med. Sci. 2014, 19, 739–745. [Google Scholar] [PubMed]
- Weiner, M.F.; Lipton, A.M. (Eds.) Textbook of Alzheimer Disease and Other Dementias; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2009. [Google Scholar]
- Acharya, U.R.; Tree, S.V.; Swapna, G.; Martis, R.J.; Suri, J.S. Automated EEG analysis of epilepsy: A review. Knowl. Based Syst. 2013, 45, 147–165. [Google Scholar] [CrossRef]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Kannathal, N.; Choo, M.L.; Acharya, U.R.; Sadasivan, P.K. Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 2005, 80, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Catherine Joy, R.; Thomas George, S.; Albert Rajan, A.; Subathra, M.S.P. Detection of ADHD From EEG Signals Using Different Entropy Measures and ANN. Clin. EEG Neurosci. 2022, 53, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.; Tierney, A.; Tager-Flusberg, H.; Nelson, C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9, 18. [Google Scholar] [CrossRef]
- Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database System; Springer: Cham, Switzerland, 2009; pp. 532–538. [Google Scholar]
- Swift, A.; Heale, R.; Twycross, A. What are sensitivity and specificity? Evid.-Based Nurs. 2020, 23, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Chapter 16 “Greedy Algorithms”. In Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Narendra, P.M.; Fukunaga, K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 1977, C-26, 917–922. [Google Scholar] [CrossRef]
- Foroutan, I.; Sklansky, J. Feature selection for automatic classification of non-gaussian data. IEEE Trans. Syst. Man Cybern. 1987, 17, 187–198. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 16. [Google Scholar]
- Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K. A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft Comput. 2019, 23, 3137–3166. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithm Essentials; Springer: Cham, Switzerland, 2017; Volume 679. [Google Scholar]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2013, 18, 602–622. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarms Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4. [Google Scholar]
- Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
FE Methods | Accuracy (%) | Sensitivity (%) | Specificity (%) | F-Score (%) |
---|---|---|---|---|
DWT+Eng | 93.77 ± 1.60 | 93.57 ± 2.11 | 93.97 ± 1.40 | 93.45 ± 1.66 |
DWT+LBP | 98.47 ± 0.74 | 98.90 ± 0.58 | 98.10 ± 1.08 | 98.38 ± 0.79 |
DWT+LogEn | 99.84 ± 0.26 | 99.94 ± 0.18 | 99.74 ± 0.50 | 99.83 ± 0.28 |
DWT+TShEn | 99.81 ± 0.18 | 100.0 ± 0.00 | 99.64 ± 0.35 | 99.80 ± 0.19 |
DWT+ThEn | 99.89 ± 0.19 | 100.0 ± 0.00 | 99.79 ± 0.36 | 99.88 ± 0.20 |
DWT+SuEn | 99.56 ± 0.37 | 99.60 ± 0.39 | 99.53 ± 0.45 | 99.54 ± 0.39 |
DWT+NoEn | 97.08 ± 0.73 | 97.08 ± 1.38 | 97.10 ± 0.74 | 96.92 ± 0.76 |
Study | Feature Extraction Methods | Classifiers | No. of Channels | CA (%) | Validation Type | |
---|---|---|---|---|---|---|
[24] 2016 | Power, ratio power, and relative power for different bands | Neurofuzzy +KNN | 3 | 88.89% | Hold-out | |
[25] 2019 | Correlation-based label consistent K-SVD with spectral features | 3 | 80% | Hold-out | ||
[26] 2019 | Power spectral-based features | KNN | 19 | 81.5 % | Not determined | |
[28] 2019 | SWT + statistical features | SVM | 19 | 96.94% | Based on intra-subject validation | |
[29] 2020 | Auto-regressive and permutation entropy | ELM | 19 | 98.78% | 10-fold CV | |
[30] 2022 | -- | LSTM | 19 | 96.41% | Five-fold CV | |
[32] 2022 | Spectral, functional connectivity, and nonlinear features | SVM | 19 | 99.4% | 10-fold CV | |
[33] 2023 | DWT leader | AdaBoostM1 | 19 | 93.50% | 10-fold CV | |
[34] 2023 | EMD + Log energy entropy | KNN | 19 | 97.60% | 10-fold CV | |
[40] 2024 | VMD+LogEn | KNN | 19 | 99.51% | 10-fold CV | |
11 | 99.64% | 10-fold + NSGA-II | ||||
Present study | DWT+LogEn | KNN | 19 | 99.84% | 10-fold CV | |
DWT+ThEn | 99.89% | |||||
DWT+LogEn | KNN | 7 | 99.95% | 10-fold + NSGA-II (PSO) | ||
DWT+ThEn | 5 (6) | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljalal, M.; Aldosari, S.A.; AlSharabi, K.; Alturki, F.A. EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods. Diagnostics 2024, 14, 1619. https://doi.org/10.3390/diagnostics14151619
Aljalal M, Aldosari SA, AlSharabi K, Alturki FA. EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods. Diagnostics. 2024; 14(15):1619. https://doi.org/10.3390/diagnostics14151619
Chicago/Turabian StyleAljalal, Majid, Saeed A. Aldosari, Khalil AlSharabi, and Fahd A. Alturki. 2024. "EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods" Diagnostics 14, no. 15: 1619. https://doi.org/10.3390/diagnostics14151619
APA StyleAljalal, M., Aldosari, S. A., AlSharabi, K., & Alturki, F. A. (2024). EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods. Diagnostics, 14(15), 1619. https://doi.org/10.3390/diagnostics14151619