Exploring the Prevalence of Functional Gastrointestinal Diseases and the Accompanied Differences in Dietary and Lifestyle Patterns: A Two-Generational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Sampling
2.3. Data Collection and Study Tool
2.4. Statistical Analysis
2.5. Ethical Approval and Consent to Participate
3. Results
3.1. Prevalence of Functional Gastrointestinal Disorders
3.2. Relationship Between FGIDs and Lifestyle Habits and COVID-19
3.3. Practice of Complementary and Alternative Medicine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mearin, F.; Malfertheiner, P. Functional Gastrointestinal Disorders: Complex Treatments for Complex Pathophysiological Mechanisms. Dig. Dis. 2018, 35, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 2020, 396, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A.; Thompson, W.G.; Talley, N.J.; Funch-Jensen, P.; Janssens, J.; Whitehead, W.E. Identification of sub-groups of functional gastrointestinal disorders. Gastroenterol. Int. 1990, 3, 159–172. [Google Scholar]
- Kundur, R.; Lingala, K.V.R.; Alrshedi, A.R.M. A study on the effect of dietary factors on functional gastrointestinal disorders in women of Ha’il region in Saudi Arabia. Asian J. Pharm. Clin. Res. 2018, 11, 202–207. [Google Scholar] [CrossRef]
- Alshehri, D.B.; Sindi, H.H.; AlMusalami, I.M.; Rozi, I.H.; Shagrani, M.; Kamal, N.M.; Alahmadi, N.S.; Alfuraikh, S.S.; Vandenplas, Y. Saudi Experts Consensus on Diagnosis and Management of Pediatric Functional Constipation. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Khayat, A.; Aldharman, S.S.; Alharbi, N.N.; Alayyaf, A.S.; Abdulmuttalib, J.A.; Altalhi, E.R. Regional and seasonal variations in functional abdominal pain and functional constipation prevalence among Saudi children. SAGE Open Med. 2023, 11, 20503121231163519. [Google Scholar] [CrossRef]
- Khayat, A.; Algethami, G.; Baik, S.; Alhajori, M.; Banjar, D. The Effect of Using Rome IV Criteria on the Prevalence of Functional Abdominal Pain Disorders and Functional Constipation among Children of the Western Region of Saudi Arabia. Glob. Pediatr. Health 2021, 8, 2333794x211022265. [Google Scholar] [CrossRef] [PubMed]
- Khatib, M.A.; Aljaaly, E.A. Testing the Arabic-Saudi Arabia version of the Rome IV Diagnostic Questionnaire for functional gastrointestinal disorders for Children living in Saudi Arabia. Front. Pediatr. 2023, 10, 1055513. [Google Scholar] [CrossRef]
- Wani, F.; Almaeen, A.; Bandy, A.; Thirunavukkarsu, A.; Al-Sayer, T.; Flah, A.; Fayed, K.; Albalawi, M. Prevalence and risk factors of ibs among medical and nonmedical students in the jouf university. Niger. J. Clin. Pract. 2020, 23, 555–560. [Google Scholar] [CrossRef]
- Wang, M.-K.; Yue, H.-Y.; Cai, J.; Zhai, Y.-J.; Peng, J.-H.; Hui, J.-F.; Hou, D.-Y.; Li, W.-P.; Yang, J.-S. COVID-19 and the digestive system: A comprehensive review. World J. Clin. Cases 2021, 9, 3796–3813. [Google Scholar] [CrossRef]
- Farello, G.; Di Lucia, A.; Fioravanti, B.; Tambucci, R.; Stagi, S.; Gaudino, R. Analysis of the impact of COVID-19 pandemic on functional gastrointestinal disorders among paediatric population. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5836–5842. [Google Scholar] [CrossRef]
- Cole, G.; Lucas, L. The Debut of Generation y in the American Workforce. 2002. Available online: https://www.atu.edu/business/jbao/fall2002/cole_smith_lucas.pdf (accessed on 30 January 2023).
- Djafarova, E.; Foots, S. Exploring ethical consumption of generation Z: Theory of planned behaviour. Young Consum. 2022, 23, 413–431. [Google Scholar] [CrossRef]
- Banjar, O.; Ford-Gilboe, M.; Wong, C.; Befus, D.; Alilyyani, B. The Association between Intimate Partner Violence and Functional Gastrointestinal Disorders and Symptoms among Adult Women: Systematic Review. J. Fam. Violence 2022, 37, 337–353. [Google Scholar] [CrossRef]
- Ministry of Education, Educational Offices in Jeddah Province [Internet]. 2022. Available online: https://sites.moe.gov.sa/Jeddah/workplace/ (accessed on 27 October 2022).
- Al-Jaaly, E.A. Factors Affecting Nutritional Status and Eating Behaviours of Adolescent Girls in Saudi Arabia. 2012. Available online: https://discovery.ucl.ac.uk/id/eprint/1370576/2/AL-Jaaly.1370576.Redacted__PhD_thesis.pdf (accessed on 30 January 2023).
- Ministry of Education, Statistics of Governmental Education. [Internet]. 2022. Available online: https://departments.moe.gov.sa/Statistics/Educationstatistics/Pages/GEStats.aspx (accessed on 27 October 2022).
- Bakhsh, M.A.; Khawandanah, J.; Naaman, R.K.; Alashmali, S. The impact of COVID-19 quarantine on dietary habits and physical activity in Saudi Arabia: A cross-sectional study. BMC Public Health 2021, 21, 1487. [Google Scholar] [CrossRef] [PubMed]
- Aljaaly, E.A.; Alhijri, R.; Al Nasser, L. COVID-19 Effect on Dietary Supplements’ Consumption, Prophetic Medicine Practices and Herbs Use in Saudi Arabia. World Fam. Med. J. Middle East J. Fam. Med. 2022, 20, 37–49. [Google Scholar] [CrossRef]
- Khatib, M.A. The impact of Ramadan during COVID-19 confinement on weight, dietary, and lifestyle habits in the Kingdom of Saudi Arabia: A cross-sectional study. BMC Public Health 2022, 22, 1649. [Google Scholar] [CrossRef]
- The Rome Foundation, Welcome to The Rome Foundation—Start Here. Available online: https://theromefoundation.org/#0 (accessed on 2 August 2022).
- Lachat, C.; Hawwash, D.; Ocké, M.C.; Berg, C.; Forsum, E.; Hörnell, A.; Larsson, C.L.; Sonestedt, E.; Wirfält, E.; Åkesson, A.; et al. Strengthening the Reporting of Observational Studies in Epidemiology—nutritional epidemiology (STROBE-nut): An extension of the STROBE statement. Nutr. Bull. 2016, 41, 240–251. [Google Scholar] [CrossRef]
- El-Fetoh, N.M.A.; El-Mawgod, M.M.A.; Mohammed, N.A.; Alruwaili, H.S.A.; Alanazi, E.O.M. Irritable Bowel Syndrome among Medical and Non-Medical Northern Border University Students, Kingdom of Saudi Arabia: Across Sectional Study. Open J. Gastroenterol. 2016, 6, 188–195. [Google Scholar] [CrossRef]
- Ibrahim, N.K.R.; Battarjee, W.F.; Almehmadi, S.A. Prevalence and predictors of irritable bowel syndrome among medical students and interns in King Abdulaziz University, Jeddah. Libyan J. Med. 2013, 8, 21287. [Google Scholar] [CrossRef]
- Murphy, S.A.; Weippert, M.V.; Dickinson, K.M.; Scourboutakos, M.J.; L’Abbé, M.R. Cross-Sectional Analysis of Calories and Nutrients of Concern in Canadian Chain Restaurant Menu Items in 2016. Am. J. Prev. Med. 2020, 59, e149–e159. [Google Scholar] [CrossRef]
- Du, Y.; Rong, S.; Sun, Y.; Liu, B.; Wu, Y.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association between Frequency of Eating Away-from-Home Meals and Risk of All-Cause and Cause-Specific Mortality. J. Acad. Nutr. Diet. 2021, 121, 1741–1749.e1. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Li, Y.; Pan, A.; De Koning, L.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Mameghani, M.; Sabour, S.; Khoshbaten, M.; Arefhosseini, S.R.; Saghafi-Asl, M. Total diet, individual meals, and their association with gastroesophageal reflux disease. Health Promot. Perspect. 2017, 7, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.N.; Singh, A. Dietary fiber content of indian diets. Asian J. Pharm. Clin. Res. 2015, 8, 58–61. Available online: https://www.researchgate.net/publication/281645459 (accessed on 2 August 2022).
- Surdea-Blaga, T.; Negrutiu, D.E.; Palage, M.; Dumitrascu, D.L. Food and Gastroesophageal Reflux Disease. Curr. Med. Chem. 2019, 26, 3497–3511. [Google Scholar] [CrossRef] [PubMed]
- Khodarahmi, M.; Azadbakht, L.; Daghaghzadeh, H.; Feinle-Bisset, C.; Keshteli, A.H.; Afshar, H.; Feizi, A.; Esmaillzadeh, A.; Adibi, P. Evaluation of the relationship between major dietary patterns and uninvestigated reflux among Iranian adults. Nutrition 2016, 32, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Kaltenbach, T.; Crockett, S.; Gerson, L.B. Are lifestyle measures effective in patients with gastroesophageal reflux disease? An evidence-based approach. Arch. Intern. Med. 2006, 166, 965–9716. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Kavelock, R.; Beaty, J.; Ackerson, K.; Stumbo, P. Effects of fat and carbohydrate meals on colonic motor response. Gut 2000, 46, 205–211. [Google Scholar] [CrossRef]
- von Schönfeld, J.; Evans, D.F.; Renzing, K.; Castillo, F.D.; Wingate, D.L. Human small bowel motor activity in response to liquid meals of different caloric value and different chemical composition. Dig. Dis. Sci. 1998, 43, 265–269. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Azadbakht, L.; Daghaghzadeh, H.; Feinle-Bisset, C.; Keshteli, A.H.; Afshar, H.; Feizi, A.; Esmaillzadeh, A.; Adibi, P. Obesity is associated with increased risk of gastrointestinal symptoms: A population-based study. Am. J. Gastroenterol. 2004, 99, 1801–1806. [Google Scholar] [CrossRef]
- Gupta, S.; Hawk, T.; Aggarwal, A.; Drewnowski, A. Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front. Nutr. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Alasqah, I.; Mahmud, I.; East, L.; Usher, K. Patterns of physical activity and dietary habits among adolescents in Saudi Arabia: A systematic review. Int. J. Health Sci. 2021, 15, 39–48. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33708043 (accessed on 2 September 2022).
- Almadi, M.; Almousa, M.; Althwainy, A.F.; Altamimi, A.M.; Alamoudi, H.; Alshamrani, H.S.; Alharbi, O.R.; Azzam, N.; Sadaf, N.; Aljebreen, A.M. Prevalence of symptoms of gastroesopahgeal reflux in a cohort of Saudi Arabians: A study of 1265 subjects. Saudi J. Gastroenterol. 2014, 20, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yönem, Ö.; SIiłvrił, B.; ÖzdemiIłr, L.; NadiIłr, I.; Yüksel, S.; Uygun, Y. Gastroesophageal reflux disease prevalence in the city of Sivas. Turk. J. Gastroenterol. 2013, 24, 303–310. [Google Scholar] [CrossRef]
- Fikree, A.; Byrne, P. Management of functional gastrointestinal disorders. Clin. Med. J. R. Coll. Physicians Lond. 2021, 21, 44–52. [Google Scholar] [CrossRef]
- Wilson, K.; Hill, R.J. The role of food intolerance in functional gastrointestinal disorders in children. Aust. Fam. Physician 2014, 43, 686–689. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25286424 (accessed on 2 August 2022). [PubMed]
- Pasqui, F.; Poli, C.; Colecchia, A.; Marasco, G.; Festi, D. Adverse food reaction and functional gastrointestinal disorders: Role of the dietetic approach. J. Gastrointest. Liver Dis. 2015, 24, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D. The Role of Food in the Functional Gastrointestinal Disorders: Introduction to a Manuscript Series. Am. J. Gastroenterol. 2013, 108, 694–697. [Google Scholar] [CrossRef]
- Hasosah, M.; Alsahafi, A.; Alghiribi, A.; Alqarni, N.; Babatin, A.; Matrafi, A.; Alamri, A.; Qurashi, M.; Atiah, N.; Sarkhy, A.A. Prevalence, characterization and risk factors of chronic constipation among saudi children: A cross-sectional study. Int. J. Adv. Res. 2018, 6, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, M.; Alhassan, A.; Alfarhood, A.; Alotaibi, K.; Alrashidy, N.; Alshalhoub, K.; Almeshal, M. Prevalence of constipation among central region population, Riyadh and Qassim provinces, Saudi Arabia, 2018–2019. J. Fam. Med. Prim. Care 2019, 8, 673–676. [Google Scholar] [CrossRef]
- Ali, M.; Almuqati, B.; Alhasnani, H.; Alfahmi, T.; Mandili, A.; Shatla, M. The prevalence and risk factors of constipation among the general population in Makkah, Saudi Arabia. Int. J. Med. Dev. Ctries. 2021, 8, 2108–2114. [Google Scholar] [CrossRef]
- Kruis, W.; Forstmaier, G.; Scheurlen, C.; Stellaard, F.; Kruis, W. Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation. Gut 1991, 32, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Rollet, M.; Bohn, T.; Vahid, F. Association between Dietary Factors and Constipation in Adults Living in Luxembourg and Taking Part in the ORISCAV-LUX 2 Survey. Nutrients 2022, 14, 122. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Popov, J.; Ratcliffe, E.M.; Monjaraz, E.M.T. Functional Constipation and the Gut Microbiome in Children: Preclinical and Clinical Evidence. Front. Pediatr. 2021, 8, 595531. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, J.G.; Motta, M.E.F.D.A.; Beltrão, M.F.D.S.; Salviano, T.L.; da Silva, G.A.P. Fecal Microbiota and Diet of Children with Chronic Constipation. Int. J. Pediatr. 2016, 2016, 6787269. [Google Scholar] [CrossRef] [PubMed]
- de Meij, T.G.J.; de Groot, E.F.J.; Eck, A.; Budding, A.E.; Kneepkens, C.M.F.; Benninga, M.A.; van Bodegraven, A.A.; Savelkoul, P.H.M. Characterization of microbiota in children with chronic functional constipation. PLoS ONE 2016, 11, e0164731. [Google Scholar] [CrossRef]
- Bhattarai, Y.; Williams, B.B.; Battaglioli, E.J.; Whitaker, W.R.; Till, L.; Grover, M.; Linden, D.R.; Akiba, Y.; Kandimalla, K.K.; Zachos, N.C.; et al. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host Microbe 2018, 23, 775–785.e5. [Google Scholar] [CrossRef]
- Dass, N.B.; John, A.K.; Bassil, A.K.; Crumbley, C.W.; Shehee, W.R.; Maurio, F.P.; Moore, G.B.T.; Taylor, C.M.; Sanger, G.J. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol. Motil. 2007, 19, 66–74. [Google Scholar] [CrossRef]
- Vincent, A.D.; Wang, X.-Y.; Parsons, S.P.; Khan, W.I.; Huizinga, J.D. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am. J. Physiol. Liver Physiol. 2018, 315, G896–G907. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, C.; Xie, Y.; Zeng, F.; Chen, S.; Chen, R.; Zhang, X.; Huang, S.; Li, D.; Bai, F. Post-infection functional gastrointestinal disorders following coronavirus disease-19: A prospective follow-up cohort study. BMC Infect. Dis. 2023, 23, 422. [Google Scholar] [CrossRef]
- Nazarewska, A.; Lewandowski, K.; Kaniewska, M.; Tulewicz-Marti, E.; Więcek, M.; Szwarc, P.; Rosołowski, M.; Marlicz, W.; Rydzewska, G. Long-lasting dyspeptic symptoms—Another consequence of the COVID-19 pandemic? Gastroenterol. Rev. 2023, 18, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Al Akeel, M.; Al Ghamdi, W.; Al Habib, S.; Koshm, M.; Al Otaibi, F. Herbal medicines: Saudi population knowledge, attitude, and practice at a glance. J. Fam. Med. Prim. Care 2018, 7, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, G.; Talley, N.J. Herbal Medicines for the Treatment of Functional and Inflammatory Bowel Disorders. Clin. Gastroenterol. Hepatol. 2015, 13, 422–432. [Google Scholar] [CrossRef]
- Madisch, A.; Holtmann, G.; Mayr, G.; Vinson, B.; Hotz, J. Treatment of Functional Dyspepsia with a Herbal Preparation. Digestion 2004, 69, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rich, G.; Shah, A.; Koloski, N.; Funk, P.; Stracke, B.; Köhler, S.; Holtmann, G. A randomized placebo-controlled trial on the effects of Menthacarin, a proprietary peppermint- and caraway-oil-preparation, on symptoms and quality of life in patients with functional dyspepsia. Neurogastroenterol. Motil. 2017, 29, e13132. [Google Scholar] [CrossRef] [PubMed]
- von Arnim, U.; Peitz, U.; Vinson, B.; Gundermann, K.-J.; Malfertheiner, P. STW 5, a Phytopharmacon for Patients with Functional Dyspepsia: Results of a Multicenter, Placebo-Controlled Double-Blind Study. Am. J. Gastroenterol. 2007, 102, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, G.; Schrenk, D.; Madisch, A.; Allescher, H.D.; Ulrich-Merzenich, G.; Mearin, F.; Larrey, D.; Malfertheiner, P. Use of Evidence-Based Herbal Medicines for Patients with Functional Gastrointestinal Disorders: A Conceptional Framework for Risk-Benefit Assessment and Regulatory Approaches. Dig. Dis. 2020, 38, 269–279. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.W.; Ha, N.Y.; Kim, J.; Ryu, H.S. Herbal Therapies in Functional Gastrointestinal Disorders: A Narrative Review and Clinical Implication. Front. Psychiatry 2020, 11, 601. [Google Scholar] [CrossRef]
Total Population | Calculated Sample Size | Actual Sample Size | |
---|---|---|---|
No. of eligible students | 153,641 * | 245 † | 376 |
No. of schools | 566 | 12 | 8 |
Prevalence of FGIDs | Irritable Bowel Syndrome | Abdominal Migraine | Functional Abdominal Pain-Nos | Functional Constipation |
---|---|---|---|---|
Parents, n (%) | 0 | 0 | 1 (0.7) | 27 (19.2) |
Students, n (%) | 1 (0.2) | 2 (0.5) | 21 (5.5) | 103 (27.3) |
Variable | Cases No. (%) | Controls No. (%) | p Value |
---|---|---|---|
Infected with COVID-19 previously | |||
Yes | 7 (17.1) | 34 (82.9) | 0.57 |
No | 21 (21.2) | 78 (78.8) | |
Exercises regularly | |||
Yes | 16 (25.4) | 47 (74.6) | 0.14 |
No | 12 (15.6) | 65 (84.4) | |
Practices CAM | |||
Yes | 24 (20.9) | 91 (79.1) | 0.58 |
No | 4 (16.0) | 21 (84.0) | |
Commonly consumed meals | |||
Home meals | 27 (20.9) | 102 (79.1) | 0.34 |
Ready meals | 1 (9.1) | 10 (90.9) | |
Dining out | |||
Yes | 25 (23.4) | 82 (76.6) | 0.07 |
No | 3 (9.2) | 30 (90.9) | |
Number of takeout meals per day | |||
None | 3 (9.2) | 30 (90.9) | 0.30 |
1 | 17 (25.0) | 51 (75.0) | |
2 | 7 (21.2) | 26 (78.8) | |
3 | 1 (16.7) | 5 (83.3) |
Variable | Cases No. (%) | Controls No. (%) | p Value |
---|---|---|---|
Type of restaurants | |||
Does not eat in restaurants | 3 (9.1) | 30 (90.9) | 0.17 |
Fast food | 12 (25.5) | 35 (74.5) | |
Casual dining | 13 (21.7) | 47 (78.3) | |
Type of commonly consumed beverages | |||
Water | 18 (24.7) | 55 (75.3) | 0.36 |
Hot drinks | 5 (12.8) | 34 (87.2) | |
Fresh fruit juice | 3 (27.3) | 8 (72.7) | |
Sugar-sweetened carbonated drinks | 2 (20.0) | 80 (80.0) | |
Sugar-free carbonated drinks | 0 (0.0) | 100 (100.0) | |
Sugar-sweetened drinks | 28 (20.0) | 112 (80.0) | |
Cups of water consumed per day | |||
Does not drink water | 0 (0.0) | 0 (0.0) | 0.15 |
1 | 1 (50.0) | 1 (50.0) | |
2–3 | 7 (15.6) | 38 (84.4) | |
4–6 | 9 (15.5) | 49 (84.5) | |
7 or more | 11 (31.4) | 24 (68.6) |
Variable | Cases No. (%) | Controls No. (%) | p Value |
---|---|---|---|
Infected with COVID-19 previously | |||
Yes | 38 (38.0) | 62 (62.0) | 0.26 |
No | 88 (31.9) | 188 (68.1) | |
Exercises regularly | |||
Yes | 36 (27.1) | 97 (72.9) | 0.05 |
No | 90 (37.0) | 153 (63.0) | |
Practices CAM | |||
Yes | 87 (34.3) | 167 (65.7) | 0.58 |
No | 38 (31.4) | 83 (68.6) | |
Commonly consumed meals | |||
Home meals | 64 (28.3) | 162 (71.7) | 0.00 † |
Ready meals | 62 (41.3) | 88 (58.7) | |
Dining out | |||
Yes | 112 (34.6) | 212 (65.4) | 0.27 |
No | 14 (26.9) | 38 (73.1) | |
Number of takeout meals per day | |||
None | 15 (28.3) | 38 (71.7) | 0.04 * |
1 | 42 (27.5) | 111 (72.5) | |
2 | 49 (38.3) | 79 (61.7) | |
3 | 20 (47.6) | 22 (52.4) |
Variable | Cases No. (%) | Controls No. (%) | p Value |
---|---|---|---|
Type of restaurants | |||
Does not eat in restaurants | 14 (26.9) | 38 (73.1) | 0.41 |
Fast food | 73 (33.2) | 147 (66.8) | |
Casual dining | 39 (37.5) | 65 (62.5) | |
Type of commonly consumed beverages | |||
Water | 50 (27.5) | 132 (72.5) | 0.03 * |
Hot drinks | 14 (34.1) | 27 (65.9) | |
Fresh fruit juice | 10 (31.3) | 22 (68.8) | |
Sugar-sweetened carbonated drinks | 29 (36.7) | 50 (63.3) | |
Sugar-free carbonated drinks | 10 (52.6) | 9 (47.4) | |
Sugar-sweetened drinks | 13 (56.5) | 10 (43.5) | |
Cups of water consumed per day | |||
Does not drink water | 1 (100.0) | 0 (0.0) | 0.07 |
1 | 16 (48.5) | 17 (51.5) | |
2–3 | 47 (34.6) | 89 (65.4) | |
4–6 | 35 (26.5) | 97 (73.5) | |
7 or more | 27 (36.5) | 47 (63.5) |
Variable | p Value | OR | 95% CI |
---|---|---|---|
Exercise | 0.12 | 1.45 | 0.90–2.35 |
Commonly consumed meals | 0.09 | 1.48 | 0.93–2.35 |
Number of takeout meals per day | 0.06 | 1.27 | 0.98–1.65 |
Types of commonly consumed beverages | 0.01 * | 1.18 | 1.03–1.35 |
Cups of water consumed per day | 0.95 | 0.99 | 0.76–1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljaaly, E.A.; Khatib, M.A. Exploring the Prevalence of Functional Gastrointestinal Diseases and the Accompanied Differences in Dietary and Lifestyle Patterns: A Two-Generational Study. Diagnostics 2024, 14, 1630. https://doi.org/10.3390/diagnostics14151630
Aljaaly EA, Khatib MA. Exploring the Prevalence of Functional Gastrointestinal Diseases and the Accompanied Differences in Dietary and Lifestyle Patterns: A Two-Generational Study. Diagnostics. 2024; 14(15):1630. https://doi.org/10.3390/diagnostics14151630
Chicago/Turabian StyleAljaaly, Elham A., and Mai A. Khatib. 2024. "Exploring the Prevalence of Functional Gastrointestinal Diseases and the Accompanied Differences in Dietary and Lifestyle Patterns: A Two-Generational Study" Diagnostics 14, no. 15: 1630. https://doi.org/10.3390/diagnostics14151630
APA StyleAljaaly, E. A., & Khatib, M. A. (2024). Exploring the Prevalence of Functional Gastrointestinal Diseases and the Accompanied Differences in Dietary and Lifestyle Patterns: A Two-Generational Study. Diagnostics, 14(15), 1630. https://doi.org/10.3390/diagnostics14151630