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Abstract: We investigated whether radiomics of computed tomography (CT) image data enables the
differentiation of bone metastases not visible on CT from unaffected bone, using pathologically con-
firmed bone metastasis as the reference standard, in patients with gastric cancer. In this retrospective
study, 96 patients (mean age, 58.4 ± 13.3 years; range, 28–85 years) with pathologically confirmed
bone metastasis in iliac bones were included. The dataset was categorized into three feature sets:
(1) mean and standard deviation values of attenuation in the region of interest (ROI), (2) radiomic
features extracted from the same ROI, and (3) combined features of (1) and (2). Five machine learning
models were developed and evaluated using these feature sets, and their predictive performance was
assessed. The predictive performance of the best-performing model in the test set (based on the area
under the curve [AUC] value) was validated in the external validation group. A Random Forest clas-
sifier applied to the combined radiomics and attenuation dataset achieved the highest performance in
predicting bone marrow metastasis in patients with gastric cancer (AUC, 0.96), outperforming models
using only radiomics or attenuation datasets. Even in the pathology-positive CT-negative group, the
model demonstrated the best performance (AUC, 0.93). The model’s performance was validated both
internally and with an external validation cohort, consistently demonstrating excellent predictive
accuracy. Radiomic features derived from CT images can serve as effective imaging biomarkers for
predicting bone marrow metastasis in patients with gastric cancer. These findings indicate promising
potential for their clinical utility in diagnosing and predicting bone marrow metastasis through
routine evaluation of abdominopelvic CT images during follow-up.

Keywords: gastric cancer; computed tomography; radiomics; machine learning; bone marrow
metastasis; micrometastasis

1. Introduction

Gastric cancer is a significant contributor to cancer-related mortality worldwide [1].
The incidence of gastric cancer is influenced by the complex interplay between genetics,
environment, lifestyle, and dietary habits [2]. Clinically, gastric cancer often presents as a
silent and asymptomatic disease in its early stages, contributing to late-stage diagnosis and
poor prognosis.

Gastric cancer can metastasize to distant sites, mainly the liver and lungs [3,4]. The
skeletal system is also commonly affected. Although some studies report the incidence of
bone metastasis in gastric cancer to be approximately only 0.9–2.1% [5], the clinical diagno-
sis of metastasis may be underdiagnosed, as autopsy findings reveal a higher frequency
in the range of 13.4–15.9% [6]. This suggests that bone metastasis may be more common
than clinically diagnosed. Furthermore, bone metastases in gastric cancer are associated
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with poor prognosis [7,8]. The median survival time of patients with gastric cancer and
bone metastasis is 3–4 months after the detection of bone metastasis [9]. Consequently,
metastatic gastric cancer, particularly in patients with advanced bone marrow metastases,
remains a significant therapeutic challenge for medical oncologists because of its association
with advanced disease progression [10]. From the perspective of the patient’s quality of
life, bone metastasis can cause intractable pain, making early diagnosis and appropriate
treatment essential for patients with bone metastases [5]. Therefore, an accurate and timely
diagnosis is crucial for guiding treatment decisions and implementing interventions to
alleviate symptoms and improve the patient’s overall life quality.

The diagnosis of bone metastasis in gastric cancer typically involves imaging studies
such as computed tomography (CT), magnetic resonance imaging (MRI), whole-body
bone scans (WBBS), positron emission tomography (PET)-CT, and PET-MRI. Bone-specific
markers, such as alkaline phosphatase, may also be elevated in the presence of bone
metastases [11]. Among these, abdominopelvic CT (APCT) has been the most commonly
used imaging technique since the initial diagnostic workup stage of gastric cancer [12] and
can serve as a valuable and widely accessible imaging modality for screening the axial
skeleton in these patients [13]. However, CT imaging frequently detects bone metastases
in late stages, which are associated with poor outcomes. Furthermore, CT has limitations
in identifying small bone metastases in the absence of obvious pathological alterations in
the osseous structure; if detected, the imaging findings may be extremely subtle, limiting
the certainty of a diagnosis [14]. Owing to these occult initial clinical manifestations, bone
metastases can easily be missed or misdiagnosed, potentially increasing the mortality
rate [15]. In some advanced cancers, advanced bone metastases reportedly appear before
the primary tumor site [16]. The various presentations of bone metastases often fail to reflect
the diversity of tumor biology, resulting in a delay in identifying treatment resistance and
the chance to make therapeutic modifications [17]. Although advanced imaging methods,
including PET-CT and PET-MRI, generally show improvements in diagnostic accuracy for
the detection of metastases over conventional CT [18], with the ability to quantify biological
processes related to the bone microenvironment and tumor cellularity [19], they are not
feasible for continuous regular follow-up examinations from early to late stages in patients
with gastric cancer.

For the early diagnosis of bone marrow metastasis prior to gross detection on imaging,
clinicians have alternatively performed bone marrow studies on both iliac bones. This has
been applied mostly to patients with gastric cancer who have not been previously diagnosed
with bone metastasis but present with signs of thrombocytopenia during follow-up, based
on the fact that bone marrow infiltration of cancer cells leads to bone marrow structural
destruction and hematopoietic dysfunction [20]. However, bone marrow studies are highly
invasive compared with imaging techniques and can cause considerable discomfort to the
patient. Given that bone metastasis can affect the hematopoietic system before significant
changes appear on imaging, this study focused on developing a more sensitive and effective
method for diagnosing bone metastasis using APCT, which is the most widely used imaging
modality for patients with gastric cancer.

Recent studies have investigated CT radiomics by leveraging texture features [21–23].
CT texture analysis provides an objective evaluation by quantifying data that capture infor-
mation related to lesion attenuation and texture in images, representing tissue heterogeneity,
which is often not visible to the naked eye [21]. This has prompted efforts to improve
reproducibility, driven by advancements in machine learning and a substantial increase in
computational power [22], which have propelled the clinical field of radiomics in recent
years [23]. The principle of radiomics involves extracting high-dimensional data from radi-
ological images and analyzing various classes of radiomic features to aid clinical decision
making and overcome the constraints of visual interpretation. This approach has the po-
tential to detect pathological findings even in the absence of visible abnormalities [24–27],
maximizing the information obtained from clinical images. By analyzing quantitative
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information that cannot be visually assessed, radiomics enhances diagnosis and prognostic
prediction without the need for further image acquisition [28,29].

To the best of our knowledge, no previous study has evaluated bone metastases and
micrometastases using CT-based radiomics in patients with gastric cancer. We hypothesized
that the application of CT-based radiomics to bone metastases from gastric cancer may
reveal important imaging information that cannot be visually detected by the human
eye. Therefore, this study aimed to evaluate the possibility of using CT radiomics as a
quantitative imaging biomarker to detect the presence or absence of bone metastasis in
patients with gastric cancer.

2. Materials and Methods
2.1. Patient Selection

This retrospective study was approved by the Institutional Review Board of our
hospital, which waived the requirement for informed consent. We searched our picture
archiving and communication system-electronic medical record (PACS-EMR) hospital
information system to identify patients who met the following inclusion criteria: (1) patients
aged ≥ 18 years who had pathologically confirmed gastric cancer at our cancer center from
June 2005 to July 2022; (2) patients not diagnosed with bone metastasis by bone biopsy prior
to bone marrow studies; (3) patients with thrombocytopenia (cutoff, <150,000/µL) during
the follow-up period for gastric cancer who had a pathological diagnostic record of bone
metastasis based on blind bone marrow aspiration/biopsy of the iliac bones; and (4) patients
with contrast-enhanced APCT image acquisition prior to bone marrow aspiration/biopsy.
A total of 173 patients were included in this study. We refined the patient population
according to the following exclusion criteria: (1) patients with double primary cancer
(n = 4; with renal cell carcinoma, hepatocellular carcinoma, small cell lung cancer, and
esophageal cancer, respectively); (2) patients whose gastric lesion was not adenocarcinoma
(n = 25; gastrointestinal stromal tumor, neuroendocrine tumor, or hematologic malignancy);
(3) patients pathologically diagnosed with bone metastasis before performing a bone
marrow study owing to thrombocytopenia (n = 20); (4) patients who did not meet the
criteria for thrombocytopenia at the time of bone marrow aspiration (n = 25); (5) patient
without valid bone marrow aspiration/biopsy results (n = 1); (6) patients with only non-
contrast CT (n = 1); and (7) patients without possible CT segmentation due to severe artifacts
(n = 1). Finally, 96 patients were included. We collected clinical information, including age
at the time of gastric cancer diagnosis, platelet count and date, date of CT scan prior to the
bone marrow study, date of the bone marrow study, and corresponding pathologic results.

In addition to this study population, this study also included 14 patients who met
the inclusion criteria between September 2022 and August 2023 as the temporal external
validation group. A summary of the patient selection process is shown in Figure 1.

2.2. Tissue Sampling and Pathologic Confirmation

The indication for a bone marrow study was thrombocytopenia in patients with
gastric cancer with a decrease in platelet count to <150,000/µL following gastrectomy and
chemotherapy. Bone marrow aspiration/biopsy was performed with a single-use bone
marrow aspiration needle (Allegiance Healthcare Corporation, Naperville, IL, USA) under
local anesthesia. A single bone marrow aspirate was obtained from the posterior iliac
crest before tumor manipulation. Ten milliliters of bone marrow were aspirated into a
syringe containing 2500 IU of heparin and added to 10 mL of phosphate-buffered saline to
prepare the cytospins. Hematoxylin-eosin, Giemsa, and reticulin staining were routinely
performed on each slide in the pathology department. To verify the presence of tumor
cells, immunohistochemical staining was performed when it was difficult to differentiate
atypical cells from reactive cells.
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Figure 1. Flowchart for patient selection and development of datasets. Abbreviations: BMS, bone
marrow study; CT, computed tomography.

2.3. Assessment of APCT Images

The APCTs of these patients were reviewed by two fellowship-trained board-certified
radiologists with 6–18 years of experience. On APCT, if at least one suspicious oste-
olytic or sclerotic lesion was identified when two or three planes were reviewed, it was
marked as suspicious; otherwise, it was considered negative. In the assessment of APCTs,
two radiologists independently assessed the skeletal system. In cases where they provided
discordant evaluations, lesions were reviewed through additional consensus processes.

Resulting from this process, 28 patients with both suspicious features on CT and
biopsy-confirmed metastases, 12 with no suspicious features on CT but biopsy-confirmed
metastasis, 13 with suspicious features on CT but normal bone marrow on biopsy, and 43
with no suspicious features on CT and normal bone marrow on biopsy were identified.

2.4. Region of Interest (ROI) Segmentation, Preprocessing, and Radiomic Feature Extraction

ROI segmentation was performed in a manual drawing with an area of 100 mm2

within the right iliac bone on contrast-enhanced axial APCT scans, corresponding to the
same location where the bone marrow aspiration/biopsy was performed (Figure 2).

All images were preprocessed with normalization and resampling to prepare the
images for radiomic analysis: (1) For the segmented ROIs, attenuation normalization was
performed in a nonlinear manner into standardized intensity ranges for all subjects. (2) CT
images were resampled with 1 mm pixel resampling.

The image dataset was read and transferred into MATLAB (MathWorks, Natick, MA,
USA) format using in-house codes. For radiomic feature extraction, radiomic features
were extracted from all of the CT images using MATLAB radiomics (https://github.com/
mvallieres/radiomics accessed on 11 June 2024) [30]. All available first order features,
shape features, gray-level co-occurrence matrix (GLCM) features, gray-level size zone
matrix (GLSZM) features, gray-level run length matrix (GLRLM) features, neighborhood
gray-tone difference matrix (NGTDM) features, and gray-level dependence matrix (GLDM)
features were calculated.

https://github.com/mvallieres/radiomics
https://github.com/mvallieres/radiomics
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Regions of interest were drawn in the right iliac bone on axial CT images (blue lines). Abbreviation:
CT, computed tomography.

2.5. Feature Categorization and Dimension Reduction

As mentioned previously, ROIs were drawn with a constant size in the posterior iliac
spine, where bone marrow studies are typically performed. Therefore, diagnostic and
shape features were excluded from the radiomic texture features. Accordingly, 43 radiomic
texture features were extracted from each ROI. Additionally, the mean and standard
deviation of the CT attenuation values (HU) within the ROI, which are conventionally
obtained from CT scans, were selected as another set of variables. Finally, the overall CT
features were divided into three feature sets: (1) mean and standard deviation values of
attenuation in the ROI, (2) radiomic features extracted from the same ROI, and (3) combined
features, which considered both CT features from the (1) mean and standard deviation, and
(2) radiomic features.

The scikit-learn library in Python 3.11 (Python Software Foundation, Wilmington, DE,
USA) was used for data handling, including the key feature selection process for radiomic
features. To accurately assess the predictive power of each feature set while addressing
potential issues from high-dimensional data, three different model types were developed
based on the number of features selected using the Random Forest (RF) algorithm, including
the top 10, 20, and 30 features. In addition, a fourth model type was developed that included
all of the available features without any feature selection process. This approach resulted in
12 model types (three feature sets × four feature selection variations) that were compared
to evaluate the impact of feature set composition on model performance. By systematically
comparing models with varying numbers of selected features, we aimed to identify the
most informative feature sets and the optimal number of features required for the accurate
prediction of bone marrow metastasis in a clinical setting.

2.6. Development of Bone Marrow Metastasis Prediction Model

Based on the selected key features, five machine learning algorithms were developed:
the K-Nearest Neighbor model, Decision Tree classifier, AdaBoost classifier, RF classifier,
and Gradient-Boosting Machine. These algorithms were selected to represent a diverse
range of machine learning techniques, each with its own strengths and weaknesses in
capturing different aspects of the data. By employing multiple algorithms, we aimed to
assess the overall performance of each feature set combination, rather than relying on the
potential biases or limitations of a single algorithm.
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The dataset was split into training and test sets, with 60% of the data used for training
and the remaining 40% used for testing. This split was performed using stratified sampling
based on the presence of bone metastasis in pathology and the presence of suspicious
features on CT. During training, a stratified fivefold cross-validation approach was applied,
maintaining the same stratification strategy. This process involved partitioning the training
data into five equal-sized folds, with each fold serving as a validation set once while the
model was trained on the remaining four folds. The optimal model and its hyperparam-
eters were selected based on the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve, representing the true positive rate (sensitivity) plotted against
the false positive rate (1—specificity) [31], which measured the model’s ability to predict
bone marrow metastasis in patients with gastric cancer.

The performance of each trained model was evaluated on an independent test set
using metrics such as the accuracy, precision, recall (sensitivity), F1-score, specificity, and
AUC value, using a standard threshold of 0.5 for consistency and simplicity [32]. Accuracy
indicates the overall correctness, precision (positive predictive value) is the ratio of true
positives to total positive predictions, and recall is the ratio of true positives to actual
positives. The F1-score, which is the harmonic mean of precision and recall, provides a
balanced performance measure. Specificity is the ratio of true negatives to actual negatives,
and AUC values provide discriminative power (range, 0.5–1.0). These metrics allowed for a
comprehensive comparison of the predictive performance across different feature sets and
model types, providing valuable insight into their potential for predicting bone marrow
metastasis in patients with gastric cancer. The best-performing model in the test set was
selected based on its AUC value.

2.7. Assessment of Bone Marrow Metastasis Prediction Model Performance with the External
Validation Group

We validated the predictive performance of the best-performing model developed
for the external validation group. Similarly, after calculating the accuracy, precision, recall
(sensitivity), F1-score, specificity, and AUC, the predictive performance of the model was
evaluated using the AUC of the ROC curve.

2.8. Statistical Analysis

Statistical analyses of clinical factors, including patient age at the time of gastric cancer
diagnosis, platelet count, interval from diagnosis to bone marrow study, interval from CT
scan to bone marrow study, and interval from platelet counting to bone marrow study,
which are continuous variables, are expressed as means and standard deviations. Statistical
significance was accepted when p-values were <0.05.

3. Results
3.1. Patient Characteristics

This study was conducted with contrast-enhanced APCT images taken prior to a
bone marrow study in 96 patients (mean age, 58.4 ± 13.3 years; range, 28–85 years) with
gastric cancer whose bone marrow pathology was confirmed through bone marrow aspira-
tion/biopsy. Based on the pathologic results, which were the ground truth of the study, and
APCT bone metastasis readings, which were assessed by two musculoskeletal radiologists,
the patients were divided into four groups. Among the patients, 28 (29.2%) were pathology-
positive (pathologically confirmed bone metastases) and CT-positive (presence of suspicious
bone metastases on CT), 12 (12.5%) were pathology-positive and CT-negative (absence of
suspicious bone metastases on CT), 13 (13.5%) were pathology-negative (absence of bone
metastases confirmed by biopsy) and CT-positive, and 43 (44.8%) were pathology-negative
and CT-negative. Table 1 presents the characteristics of the study population.
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Table 1. The characteristics of the study population.

Pathology Bone Mets + No Pathology Bone Mets −
All Patients CT (+) CT (−) CT (+) CT (−)

Variables (n = 96) (n = 28, 29.2%) (n = 12, 12.5%) (n = 13, 13.5%) (n = 43, 44.8%)
Age, y 58.4 ± 13.4 51.4 ± 12.9 57.4 ± 9.7 65.6 ± 11.6 61.3 ± 13.5

Gender M:F 53:43 11:17 10:2 9:4 23:20
PLT, k 48.1 ± 37.0 32.5 ± 20.9 27.4 ± 19.6 63.3 ± 46.1 60.4 ± 40.4

Patho-Dx, d 1060.0 ± 1351.2 1099.7 ± 1778.7 889.0 ± 973.2 904.2 ± 1284.2 1129.3 ± 1170.9
Patho-CT, d 34.6 ± 70.4 8.7 ± 9.0 46.5 ± 60.1 87.8 ± 161.6 33.0 ± 44.7
Patho-PLT, d 22.3 ± 99.1 2.3 ± 2.4 3.8 ± 6.7 9.6 ± 25.5 44.4 ± 145.3

Values are mean ± SD or n (%). Abbreviations: Mets, metastasis; CT, computed tomography; PLT, platelet;
Patho-Dx, the interval from gastric cancer diagnosis to bone marrow study; Patho-CT, the interval from CT scan
to bone marrow study; Patho-PLT, the interval from platelet counting to bone marrow study.

3.2. Diagnostic Performance of the Bone Marrow Metastasis Prediction Models
3.2.1. In the Entire Patient Population

Table S1 shows the diagnostic performance of bone marrow metastasis prediction for
the five machine learning models in the entire patient population across the radiomics,
attenuation, and radiomics + attenuation datasets with four key feature selection levels.
The overall performance of the models showed a clear trend in the order: radiomics +
attenuation > attenuation > radiomics datasets. The best-performing model for bone
marrow metastasis prediction was the RF classifier applied to the radiomics (including
all 43 features) + attenuation model, achieving the highest performance, with an AUC
of 0.96. The performance of the optimal models using the attenuation model and the
radiomics model alone were not comparable to that of the radiomics + attenuation model,
with AUC values of 0.91 and 0.78, respectively. The AUC, accuracy, sensitivity, specificity,
precision, and F1-score values for each optimal model are presented in Table 2, and the
ROC curves and AUC values are presented in Figure 3. Representative cases with CT
images are presented in Figure 4.

Table 2. Diagnostic performance of optimal bone marrow metastasis prediction models in the entire
patient population.

Dataset Type Model AUC Accuracy Sensitivity Specificity Precision F1-Score
Radiomics + attenuation RandomForest 0.959 0.846 0.813 0.870 0.813 0.846

Attenuation KNeighbors 0.913 0.821 0.813 0.826 0.765 0.821
Radiomics KNeighbors 0.788 0.667 0.438 0.826 0.636 0.652

Abbreviation: AUC, area under the curve.
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Figure 4. Representative cases. (A) CT image of a 67-year-old female patient shows heterogeneous
densities in the sacrum and iliac bone, strongly suggesting bone metastasis. The bone marrow
metastasis prediction model predicted bone metastasis based on the radiomic features. Patholog-
ical examination of the bone marrow confirmed bone metastasis. (B) CT image of a 55-year-old
male patient shows no definite gross marrow changes; however, bone metastasis was pathologi-
cally confirmed. The prediction model predicted bone metastasis based on the radiomic features.
(C) CT image of a 57-year-old male patient shows suspicious marrow inhomogeneity, but pathological
examination confirmed no bone metastasis. The prediction model predicted no metastasis based
on the radiomic features. (D) CT image of a 68-year-old male patient shows no marrow changes,
and pathological examination confirmed no bone metastasis. The prediction model predicted no
metastasis based on the radiomic features.

3.2.2. In the Pathology-Positive CT-Negative Group

In clinical practice, when patients with gastric cancer show equivocal signs of bone
metastasis but recent CT scans do not reveal any suspicious features, the decision-making
process to perform a bone marrow study becomes challenging, especially if the patient’s
general condition has significantly deteriorated. In this light, we checked the performance
of the bone marrow metastasis model, paying special attention to the pathology-positive CT-
negative group, and the overall values are presented in Table S2. In the pathology-positive
CT-negative group, the same trend appeared in the order of the radiomics + attenuation
dataset, attenuation dataset, and radiomics dataset as the model performance in the entire
patient group. For the optimal models, the performance differences between the radiomics
+ attenuation, attenuation, and radiomics datasets were more significant, with AUC values
of 0.93, 0.80, and 0.66, respectively. The AUC, accuracy, sensitivity, specificity, precision,
and F1-score values for each optimal model in the pathology-positive CT-negative group
are presented in Table 3, and the ROC curves and AUC values are shown in Figure 5.

Table 3. Diagnostic performance of optimal bone marrow metastasis prediction models in the
pathology-positive CT-negative group.

Dataset Type Model AUC Accuracy Sensitivity Specificity Precision F1-Score
Radiomics + Attenuation RandomForest 0.933 0.826 0.800 0.833 0.571 0.835

Attenuation KNeighbors 0.800 0.783 0.800 0.778 0.500 0.798
Radiomics KNeighbors 0.661 0.609 0.000 0.778 0.000 0.592

Abbreviation: AUC, area under the curve.
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3.2.3. In the External Validation Cohort

External validation was performed to ensure that the results obtained from the test set
after training were applicable to other cohorts. As previously mentioned, we evaluated the
performance of our proposed best-performing model in an additional group of 14 patients
who met the inclusion criteria. The AUC, accuracy, sensitivity, specificity, precision, and
F1-score values are presented in Table 4, along with a comparison with the internal valida-
tion cohort. The ROC curves and AUC values are shown in Figure 6. Here, we were able to
confirm the excellent performance of our proposed best-performing model, with an AUC
value of 0.96, which was consistent with the results from the internal validation cohort.

Table 4. Diagnostic performance of the best-performing bone marrow metastasis prediction model in
the external validation cohort compared to the internal validation cohort.

Dataset Type Model AUC Accuracy Sensitivity Specificity Precision
Internal validation 0.959 0.846 0.813 0.870 0.813 0.846
External validation 0.958 0.857 0.875 0.833 0.875 0.857

Abbreviation: AUC, area under the curve.
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4. Discussion

Gastric cancer is a common cancer, predominantly in Asia. In Korea and Japan, it
ranks fourth in overall cancer incidence and mortality rates. As mentioned previously, bone
metastasis is one of the most common metastatic sites in patients with gastric cancer and can
appear as metastatic lesions years after cancer treatment, making it a challenging issue in
terms of treatment and prognosis. Therefore, several studies have been conducted to detect
bone metastases in patients with gastric cancer during follow-up screening periods before
symptoms such as severe pain caused by multiple bone metastases become evident. One
such method in clinical practice is to perform a blind bone marrow study on the iliac bone
when thrombocytopenia is observed during complete blood count follow-up. However,
despite the rationale that cancer cell infiltration into the bone marrow can disrupt the
marrow structure and cause hematological changes, the true predictive power of invasive
bone marrow studies has been relatively low. In the approximately 17 years of patient data
included in this study, it was found that out of 96 patients, 41 (42.7%) had bone metastases
at the time of the bone marrow study. This indicated that the probability of detecting bone
metastasis was less than half. Given this clinical background, this study focused on bone
marrow metastasis in patients with gastric cancer.

For patients with gastric cancer, routine follow-up often involves APCT as a standard
imaging modality. CT is a cost-effective, readily available, and time-efficient imaging
modality. In addition to evaluating the operative site and lymph nodes, it can also be
used to assess bone metastasis. However, its sensitivity and specificity for detecting
bone metastases are not as high as in identifying marrow lesions. Therefore, alternative
imaging modalities, such as PET-CT or MRI, are required. Nevertheless, the implementation
of CT-based radiomics demonstrates overall high diagnostic accuracy, revealing image
information that may not be discernible through visual readings by radiologists. Therefore,
we aimed to effectively diagnose bone metastases in patients with gastric cancer using
APCT. Specifically, we sought to devise a method for detecting invisible micrometastases,
not only when suspicious osteolytic or sclerotic bone lesions are visible but also when they
are not. Accordingly, this study was conducted by leveraging the potential of CT radiomics
to analyze invisible texture features in imaging examinations.

Radiomic analysis can reflect tumor pathophysiology based on image-extracted infor-
mation [33–35]. In musculoskeletal radiology, radiomics has been applied for differentiating
benign and malignant tumors [36–38], tumor grade prediction [33,39–41], survival anal-
ysis [42], and treatment response [43]. In this study, we applied CT radiomic features,
conventional CT attenuation (HU), and datasets combining various machine learning
models. We identified an optimal model for diagnosing bone metastases using APCT. A
model with high diagnostic performance for bone metastasis in the entire study popula-
tion, achieving an AUC value of 0.96, was developed using only APCT without any other
clinical information. This model utilized a dataset that combined conventional attenuation
values and radiomic features. Additionally, we developed a sophisticated machine learning
model with high diagnostic performance, achieving an AUC value of 0.93, by separately
evaluating a group of patients with lesions that were invisible on CT but confirmed as
metastases through bone marrow pathology, which is nearly impossible to detect with the
human eye. Our proof-of-concept study shows promising results for radiomics applied to
CT images for differentiating between bone metastases and metastasis-free bone in patients
with gastric cancer. Importantly, radiomics enables this differentiation in a quantitative
manner using CT images, showing only discrete abnormalities. Future advances include
fully automatic bone segmentation frameworks for all patients with newly diagnosed
gastric cancer, followed by the use of a radiomics classifier, allowing for an opportunistic
screening-like approach for the early detection of bone metastases.

Bone marrow metastasis has a profound effect on the prognosis and treatment of
patients with advanced-stage cancer [44]. Radiological examinations using CT, MRI, and
PET-CT are the most commonly used noninvasive methods for diagnosing bone marrow
metastases in cancer; however, bone metastases from malignancy may still be missed [45].
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One of the main purposes of our study was to address the diagnostic and clinical dilemma
of frequently missing metastatic bone disease on CT, which can only be detected with
additional information from PET-CT imaging owing to the lack of morphological changes.
It can be assumed that the human eye (without metabolic information) is not able to
detect these relatively small lesions with no or subtle morphologic changes. In addition
to the early detection of metastatic bone disease, timely and accurate prediction of bone
metastases and identification of patients at high risk of bone metastases are highly desirable
and could allow for the selection of patients most likely to benefit from targeted therapy.
Recently, Wang et al. [32] developed and validated an MRI-based radiomics model for
the individualized pretreatment prediction of bone metastases in patients with prostate
cancer. We believe that the results of our study could add incremental value to diagnostic
and treatment strategies, especially in patients with a high probability of bone metastasis,
according to the aforementioned MRI-based radiomics nomogram [25] and microvessel
density correlation [46]. Our study is a pioneering one that devised a method to predict
bone metastasis on follow-up CT scans without performing additional invasive bone
marrow studies or time-consuming and costly tests such as MRI, WBBS, or PET-CT/MRI
to confirm further pathophysiology.

Our study has some limitations. First, the retrospective study design has inherent
drawbacks, as only patients having gastric cancer with pathologically confirmed bone
marrow metastasis were included. Second, it was not possible to identify an external
validation set with patients possessing similar characteristics; therefore, temporal external
validation was conducted instead. Third, although this study was conducted at a single
institution and included a relatively small number of patients, it is significant considering
that it focused on patients with gastric cancer over a period of approximately 20 years
who had no prior diagnosis of bone metastasis and had undergone bone marrow studies
for thrombocytopenia, with pathology providing the ground truth. In the future, we
look forward to further multicenter studies with larger cohorts of patients to explore the
applicability and potential expansion of this research.

5. Conclusions

Radiomic features derived from CT images serve as effective imaging biomarkers for
predicting bone marrow metastasis, including microscopic bone metastasis, in patients with
gastric cancer. These findings indicate the potential for their clinical utility in diagnosing
and predicting bone marrow metastasis through routine evaluation of APCT images during
follow-up examinations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics14151689/s1, Table S1: Diagnostic performance of the bone
marrow metastasis prediction models in the entire patient population; Table S2: Diagnostic performance
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