Cardiovascular Risk in Patients with Inflammatory Bowel Diseases—The Role of Endothelial Dysfunction
Abstract
:1. Introduction
2. How Often Do Cardiovascular Diseases Occur in Patients with IBD?
3. The Endothelium Is the Structural Basis of the Circulatory System
4. Gut–Vascular Barrier
5. Endothelial Dysfunction and Changes in the Permeability of the Gut–Vascular Barrier—The Pathogenetic Link between IBD and CVD
6. Future Research Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feinstein, A.R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 1970, 23, 455–468. [Google Scholar] [CrossRef]
- Skou, S.T.; Mair, F.S.; Fortin, M.; Guthrie, B.; Nunes, B.P.; Miranda, J.J.; Boyd, C.M.; Pati, S.; Mtenga, S.; Smith, S.M. Multimorbidity. Nat. Rev. Dis. Primers. 2022, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- du Vaure, C.B.; Ravaud, P.; Baron, G.; Barnes, C.; Gilberg, S.; Boutron, I. Potential workload in applying clinical practice guidelines for patients with chronic conditions and multimorbidity: A systematic analysis. BMJ Open 2016, 6, e010119. [Google Scholar] [CrossRef] [PubMed]
- Prados-Torres, A.; Calderón-Larrañaga, A.; Hancco-Saavedra, J.; Poblador-Plou, B.; van den Akker, M. Multimorbidity patterns: A systematic review. J. Clin. Epidemiol. 2014, 67, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- M’Koma, A.E. The Multifactorial Etiopathogeneses Interplay of Inflammatory Bowel Disease: An Overview. Gastrointest. Disord 2018, 1, 75–105. [Google Scholar] [CrossRef]
- M’Koma, A.E. Inflammatory bowel disease: Clinical diagnosis and surgical treatment-overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef] [PubMed]
- Windsor, J.W.; Buie, M.; Coward, S.; Gearry, R.; Hansen, T.; King, J.A.; Kotze, P.; Ma, C.; Ng, S.; Panaccione, N.; et al. A28 relative rates of ulcerative colitis to Crohn’s disease: Parallel epidemiologies in newly vs. highly industrialized countries. J. Can. Assoc. Gastroenterol. 2020, 3 (Suppl. S1), 34–35. [Google Scholar] [CrossRef]
- Knickman, J.R.; Snell, E.K. The 2030 problem: Caring for aging baby boomers. Health Serv. Res. 2002, 37, 849–884. [Google Scholar] [CrossRef]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef]
- Argollo, M.; Gilardi, D.; Peyrin-Biroulet, C.; Chabot, J.-F.; Peyrin-Biroulet, L.; Danese, S. Comorbidities in inflammatory bowel disease: A call for action. Lancet Gastroenterol. Hepatol. 2019, 4, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Mulinacci, G.; Gallo, C.; Viganò, C.; Fichera, M.; Villatore, A.; Peretto, G.; Danese, S. The oft-overlooked cardiovascular complications of inflammatory bowel disease. Exp. Rev. Clin. Immunol. 2023, 19, 375–391. [Google Scholar] [CrossRef] [PubMed]
- 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Russ. J. Cardiol. 2022, 27, 191–288. (In Russian) [CrossRef]
- Rungoe, C.; Andersen, N.N.; Jess, T. Inflammatory bowel disease and risk of coronary heart disease. Trends Cardiovasc. Med. 2015, 25, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Yarur, A.J.; Deshpande, A.R.; Pechman, D.M.; Tamariz, L.; Abreu, M.T.; Sussman, D.A. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am. J. Gastroenterol. 2011, 106, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Jucan, A.E.; Gavrilescu, O.; Dranga, M.; Popa, I.V.; Mihai, B.M.; Prelipcean, C.C.; Mihai, C. Ischemic Heart Disease in Patients with Inflammatory Bowel Disease: Risk Factors, Mechanisms and Prevention. Life 2022, 12, 1113. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2020, 10, 1568. [Google Scholar] [CrossRef]
- United Nation Department of Economic and Social Affairs. Leaving no one behind in an ageing world. In World Social Report; United Nation Department of Economic and Social Affairs: New York, NY, USA, 2023; 161p. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef]
- Coward, S.; Clement, F.; Benchimol, E.I.; Bernstein, C.N.; Avina-Zubieta, J.A.; Bitton, A.; Carroll, M.W.; Hazlewood, G.; Jacobson, K.; Jelinski, S.; et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 2019, 156, 1345–1353.e4. [Google Scholar] [CrossRef]
- Vieujean, S.; Caron, B.; Jairath, V.; Benetos, A.; Danese, S.; Louis, E.; Peyrin-Biroulet, L. Is it time to include older adults in inflammatory bowel disease trials? A call for action. Lancet Healthy Longev. 2022, 3, e356–e366. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Bruno, F.; Iannaccone, M.; Testa, G.; De Filippo, O.; Giannino, G.; Caviglia, G.P.; Bernstein, C.N.; De Ferrari, G.M.; Bugianesi, E.; et al. Patients with inflammatory bowel disease are at increased risk of atherothrombotic disease: A systematic review with meta-analysis. Int. J. Cardiol. 2023, 378, 96–104. [Google Scholar] [CrossRef]
- Jaiswal, V.; Batra, N.; Dagar, M.; Butey, S.; Huang, H.; Chia, J.E.; Naz, S.; Endurance, E.O.; Raj, N.; Patel, S.; et al. Inflammatory bowel disease and associated cardiovascular disease outcomes: A systematic review. Medicine 2023, 102, 32775. [Google Scholar] [CrossRef]
- Olivera, P.A.; Zuily, S.; Kotze, P.G.; Regnault, V.; Al Awadhi, S.; Bossuyt, P.; Gearry, R.B.; Ghosh, S.; Kobayashi, T.; Lacolley, P.; et al. International consensus on the prevention of venous and arterial thrombotic events in patients with inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 857–873. [Google Scholar] [CrossRef]
- Bernstein, C.N.; Wajda, A.; Blanchard, J.F. The incidence of arterial thromboembolic diseases in inflammatory bowel disease: A population-based study. Clin. Gastroenterol. Hepatol. 2008, 6, 41–45. [Google Scholar] [CrossRef]
- Li, Z.; Qiao, L.; Yun, X.; Du, F.; Xing, S.; Yang, M. Increased risk of ischemic heart disease and diabetes in inflammatory bowel disease. Z. Gastroenterol. 2021, 59, 117–124. [Google Scholar] [CrossRef]
- Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; Barreiro de Acosta, M.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis 2023, 18, jjad108. [Google Scholar] [CrossRef]
- Sun, H.H.; Tian, F. Inflammatory bowel disease and cardiovascular disease incidence and mortality: A meta-analysis. Eur. J. Prev. Cardiol. 2018, 25, 1623–1631. [Google Scholar] [CrossRef]
- Bitton, A.; Vutcovici, M.; Sewitch, M.; Suissa, S.; Brassard, P. Mortality Trends in Crohn’s Disease and Ulcerative Colitis: A Population-based Study in Québec, Canada. Inflamm. Bowel Dis. 2016, 22, 416–423. [Google Scholar] [CrossRef]
- Manninen, P.; Karvonen, A.-L.; Huhtala, H.; Rasmussen, M.; Salo, M.; Mustaniemi, L.; Pirttiniemi, I.; Collin, P. Mortality in ulcerative colitis and Crohn’s disease. A population-based study in Finland. J. Crohns Colitis 2012, 6, 524–538. [Google Scholar] [CrossRef]
- Dregan, A. Cardiovascular disease risk and mortality within inflammatory bowel disorders: Opposing or congruent effects? Eur. J. Prev. Cardiol. 2018, 25, 1621–1622. [Google Scholar] [CrossRef]
- Panina, I.Y.; Rumyantsev, A.S.; Menshutina, M.A.; Achkasova, V.V.; Degtereva, O.A.; Tugusheva, F.A.; Zubina, I.M. Specific functions of the endothelium in chronic kidney disease. Literature review and personal data. Nephrology 2007, 11, 28–46. (In Russian) [Google Scholar]
- Hennigs, J.K.; Matuszcak, C.; Trepel, M.; Körbelin, J. Vascular endothelial cells: Heterogeneity and targeting approaches. Cells 2021, 10, 2712. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Vlasov, T.D.; Lazovskaya, O.A.; Shimanski, D.A.; Nesterovich, I.I.; Shaporova, N.L. The endothelial glycocalyx: Research methods and prospects for their use in endothelial dysfunction assessment. Reg. Blood Circ. Microcirc. 2020, 19, 5–16. (In Russian) [Google Scholar] [CrossRef]
- Kolářová, H.; Ambrůzová, B.; Šindlerová, L.Š.; Klinke, A.; Kubala, L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediatorsinflamm 2014, 2014, 694312. [Google Scholar] [CrossRef]
- Tarbell, J.M.; Cancel, L.M. The glycocalyx and its significance in human medicine. J. Intern. Med. 2016, 280, 97–113. [Google Scholar] [CrossRef]
- Moore, K.H.; Murphy, H.A.; George, E.M. The glycocalyx: A central regulator of vascular function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R508–R518. [Google Scholar] [CrossRef]
- Suzuki, A.; Tomita, H.; Okada, H. Form follows function: The endothelial glycocalyx. Trans. Res. 2022, 247, 158–167. [Google Scholar] [CrossRef]
- Scheiffele, P.; Verkade, P.; Fra, A.M.; Virta, H.; Simons, K.; Ikonen, E. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 1998, 140, 795–806. [Google Scholar] [CrossRef]
- Naß, J.; Terglane, J.; Gerke, V. Weibel Palade bodies: Unique secretory organelles of endothelial cells that control blood vessel homeostasis. Front. Cell Dev. Biol. 2021, 9, 813995. [Google Scholar] [CrossRef]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [CrossRef]
- Kalucka, J.; Bierhansl, L.; Vasconcelos Conchinha, N.; Missiaen, R.; Elia, I.; Brüning, U.; Scheinok, S.; Treps, L.; Cantelmo, A.R.; Dubois, C.; et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell metab. 2018, 28, 881–894.e13. [Google Scholar] [CrossRef]
- Cardner, M.; Yalcinkaya, M.; Goetze, S.; Luca, E.; Balaz, M.; Hunjadi, M.; Hartung, J.; Shemet, A.; Kränkel, N.; Radosavljevic, S.; et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020, 5, e131491. [Google Scholar] [CrossRef]
- Danese, S. Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: ‘brothers in arms’. Gut 2011, 60, 998–1008. [Google Scholar] [CrossRef]
- Drexler, H. Factors involved in the maintenance of endothelial function. Am. J. Cardiol. 1998, 82, 3–4. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 2019, 3, 414–433. [Google Scholar] [CrossRef]
- Dikalov, S.; Itani, H.; Richmond, B.; Vergeade, A.; Rahman, S.M.J.; Boutaud, O.; Blackwell, T.; Massion, P.P.; Harrison, D.G.; Dikalova, A. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H639–H646. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Zha, D.; Wang, S.; Monaghan-Nichols, P.; Qian, Y.; Sampath, V.; Fu, M. Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives. Cells 2023, 12, 2648. [Google Scholar] [CrossRef]
- Zhang, X.; Sessa, W.C.; Fernández-Hernando, C. Endothelial transcytosis of lipoproteins in atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 130. [Google Scholar] [CrossRef]
- Fung, K.Y.; Fairn, G.D.; Lee, W.L. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2018, 19, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Hernando, C.; Yu, J.; Suárez, Y.; Rahner, C.; Dávalos, A.; Lasunción, M.A.; Sessa, W.C. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009, 10, 48–54. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Kho, Z.Y.; Lal, S.K. The human gut microbiome–a potential controller of wellness and disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [PubMed]
- Simanenkov, V.I.; Maev, I.V.; Tkacheva, O.N.; Alekseenko, S.A.; Andreev, D.N.; Bordin, D.S.; Vlasov, T.D.; Vorobyeva, N.M.; Grinevich, V.B.; Gubonina, I.V.; et al. Syndrome of Increased Epithelial Permeability in Clinical Practice. Multidisciplinary National Consensus. Cardiovasc. Ther. Prev. 2021, 20, 121–278. (In Russian) [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signaltransduc. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Birchenough, G.M.H.; Johanss, M.E.V.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New developments in goblet cell mucus secretion and function. MucosalImmunol. 2015, 8, 712–719. [Google Scholar] [CrossRef]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal barrier in human health and disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissuebarriers 2016, 4, e1251384. [Google Scholar] [CrossRef]
- Sinha, T.; Zain, Z.; Bokhari, S.F.H.; Waheed, S.; Reza, T.; Eze-Odurukwe, A.; Patel, M.; Almadhoun, M.K.I.K.; Hussain, A.; Reyaz, I. Navigating the Gut-Cardiac Axis: Understanding Cardiovascular Complications in Inflammatory Bowel Disease. Cureus 2024, 16, e55268. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ke, B.; Du, J. TMAO: How gut microbiota contributes to heart failure. Transl. Res. 2021, 228, 109–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Huang, X.; Eaves-Pyles, T.D.; Golovko, G.; et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018, 11, 752–762. [Google Scholar] [CrossRef]
- Jin, M.; Qian, Z.; Yin, J.; Xu, W.; Zhou, X. The role of intestinal microbiota in cardiovascular disease. J. Cell Mol. Med. 2019, 23, 2343–2350. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Zhou, Z.; He, M.; Han, H.X.; Lv, E.H.; Wen, P.B.; Liu, X.; Wang, Y.T.; Cai, X.C.; Tian, J.Q.; et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front. Endocrinol. 2023, 14, 1085041. [Google Scholar] [CrossRef]
- Bielinska, K.; Radkowski, M.; Grochowska, M.; Perlejewski, K.; Huc, T.; Jaworska, K.; Motooka, D.; Nakamura, S.; Ufnal, M. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition. 2018, 54, 33–39. [Google Scholar] [CrossRef] [PubMed]
- El Hage, R.; Al-Arawe, N.; Hinterseher, I. The role of the gut microbiome and trimethylamine oxide in atherosclerosis and age-related disease. Int. J. Mol. Sci. 2023, 24, 2399. [Google Scholar] [CrossRef]
- Rath, S.; Rox, K.; Kleine Bardenhorst, S.; Schminke, U.; Dörr, M.; Mayerle, J.; Frost, F.; Lerch, M.M.; Karch, A.; Brönstrup, M.; et al. Higher Trimethylamine-N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021, 6, e0094521. [Google Scholar] [CrossRef]
- Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex Differ. 2019, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Chen, X.; Tang, X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin. Sci. 2020, 134, 657–676. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Hasibeder, W. Gastrointestinal microcirculation: Still a mystery? Br. J. Anaesth. 2010, 105, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Britzen-Laurent, N.; Weidinger, C.; Stürzl, M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2023, 24, 5517. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, I.; Fornasa, G.; Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat. Rev. Immunol. 2017, 17, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Brescia, P.; Rescigno, M. The gut vascular barrier: A new player in the gut–liver–brain axis. Trends Mol. Med. 2021, 27, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Scalise, A.A.; Kakogiannos, N.; Zanardi, F.; Iannelli, F.; Giannotta, M. The blood–brain and gut–vascular barriers: From the perspective of claudins. Barriers Tissue 2021, 9, 1926190. [Google Scholar] [CrossRef] [PubMed]
- Sukriti, S.; Tauseef, M.; Yazbeck, P.; Mehta, D. Mechanisms Regulating Endothelial Permeability. Pulm. Circ. 2014, 4, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, T.E.; Mihailova, E.A.; Dudaeva, N.G. Cardiovascular risk factors and arterial stiffness in patients with ulcerative colitis. Saratov J. Med. Sci. Res. 2019, 15, 753–757. (In Russian) [Google Scholar]
- Patel, P.; Sinh, P. Unravelling the mechanistic link between atherosclerosis and inflammatory bowel disease. Can we find a target? Trends Cardiovasc. Med. 2023, 34, 212–213. [Google Scholar] [CrossRef]
- Wu, H.; Xu, M.; Hao, H.; Hill, M.A.; Xu, C.; Liu, Z. Endothelial Dysfunction and Arterial Stiffness in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3179. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Hu, J.; Xu, F.; Lu, Y.; Zhu, L.; Shen, H. Association of serum lipids with inflammatory bowel disease: A systematic review and meta-analysis. Front. Med. 2023, 10, 1198988. [Google Scholar] [CrossRef]
- Romanato, G.; Scarpa, M.; Angriman, I.; Faggian, D.; Ruffolo, C.; Marin, R.; Zambon, S.; Basato, S.; Zanoni, S.; Filosa, T.; et al. Plasma lipids and inflammation in active inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2009, 29, 298–307. [Google Scholar] [CrossRef]
- Gao, X.; Belmadani, S.; Picchi, A.; Xu, X.; Potter, B.J.; Tewari-Singh, N.; Capobianco, S.; Chilian, W.M.; Zhang, C. Tumor necrosis factor-α induces endothelial dysfunction in Leprdbmice. Circulation 2007, 115, 245–254. [Google Scholar] [CrossRef]
- Esteve, E.; Castro, A.; Lopez-Bermejo, A.; Vendrell, J.; Ricart, W.; Fernandez-Real, J.M. Serum interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin sensitivity. Diabetes Care 2007, 30, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, J.; Jess, T.; Kobylecki, C.J.; Nordestgaard, B.G.; Allin, K.H. Cardiovascular risk profile among patients with inflammatory bowel disease: A population-based study of more than 100,000 individuals. J. Crohns Colitis 2019, 13, 319–323. [Google Scholar] [CrossRef]
- Zanoli, L.; Ozturk, K.; Cappello, M.; Inserra, G.; Geraci, G.; Tuttolomondo, A.; Torres, D.; Pinto, A.; Duminuco, A.; Riguccio, G.; et al. Inflammation and aortic pulse wave velocity: A multicenter longitudinal study in patients with inflammatory bowel disease. J. Am. Heart Assoc. 2019, 8, e010942. [Google Scholar] [CrossRef] [PubMed]
- Javot, L.; Pere, P.; Got, I.; Petitpain, N.; Peyrin-Biroulet, L.; Gillet, P. Hypertrigyceridemia during infliximab therapy. Joint Bone Spine 2014, 81, 94–96. [Google Scholar] [CrossRef]
- Soubrierm, M.; Jouanel, P.; Sylvain, M.; Poujol, D.; Claus, D.; Dubost, J.J.; Ristori, J.M. Effects of anti-tumor necrosis factor therapy on lipid profile in patients with rheumatoid arthritis. Joint Bone Spine 2008, 75, 22–24. [Google Scholar] [CrossRef]
- Sridhar, A.R.M.; Parasa, S.; Navaneethan, U.; Crowell, M.D.; Olden, K. Comprehensive study of cardiovascular morbidity in hospitalized inflammatory bowel disease patients. J. Crohns Colitis 2011, 5, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.; Matta, F.; Yaekoub, A.Y.; Danescu, S.; Stein, P.D. Risk of venous thromboembolism with inflammatory bowel disease. Clin. Appl. Thromb. Hemost. 2011, 17, 254–258. [Google Scholar] [CrossRef]
- Miehsler, W.; Reinisch, W.; Valic, E.; Osterode, W.; Tillinger, W.; Feichtenschlager, T.; Grisar, J.; Machold, K.; Scholz, S.; Vogelsang, H.; et al. Is inflammatory bowel disease an independent and disease specific risk factor for thromboembolism? Gut 2004, 53, 542–548. [Google Scholar] [CrossRef]
- Tan, V.P.; Chung, A.; Yan, B.P.; Gibson, P.R. Venous and arterial disease in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2013, 28, 1095–1113. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, M.M.; Principi, M.; Ierardi, E.; Di Leo, A.; Ricci, G.; Carbonara, S.; Gesualdo, M.; Devito, F.; Zito, A.; Cortese, F.; et al. Inflammatory bowel disease, liver diseases and endothelial function: Is there a linkage? J. Cardiovasc. Med. 2015, 16, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Fruchart, J.C.; Nierman, M.C.; Stroes, E.S.; Kastelein, J.J.; Duriez, P. New risk factors for atherosclerosis and patient risk assessment. Circulation 2004, 109 (Suppl. S1), III15–III19. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Feelisch, M.; Faber, K.N.; Pasch, A.; Dijkstra, G.; van Goor, H. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol. Med. 2020, 26, 1034–1046. [Google Scholar] [CrossRef]
- Lugonja, S.I.; Pantic, I.L.; Milovanovic, T.M.; Grbovic, V.M.; Djokovic, B.M.; Todorovic, Ž.D.; Simovic, S.M.; Medovic, R.H.; Zdravkovic, N.D. Atherosclerotic Cardiovascular Disease in Inflammatory Bowel Disease: The Role of Chronic Inflammation and Platelet Aggregation. Medicina 2023, 59, 554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.; Wang, H.; Wu, J.; Tan, Q. Serum homocysteine level was elevated in ulcerative colitis and can be applied as diagnostic biomarker. Pteridines 2022, 33, 87–93. [Google Scholar] [CrossRef]
- Ratajczak, A.E.; Szymczak-Tomczak, A.; Rychter, A.M.; Zawada, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Does folic acid protect patients with inflammatory bowel disease from complications? Nutrients 2021, 13, 4036. [Google Scholar] [CrossRef]
- Gliozzi, M.; Scicchitano, M.; Bosco, F.; Musolino, V.; Carresi, C.; Scarano, F.; Maiuolo, J.; Maretta, A.; Paone, S.; Mollace, S.; et al. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int. J. Mol. Sci. 2019, 20, 3294. [Google Scholar] [CrossRef] [PubMed]
- Calver, A.; Collier, J.; Vallance, P. Nitric oxide and cardiovascular control. Exp. Physiol. 1993, 78, 303–326. [Google Scholar] [CrossRef]
- Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology 2004, 113, 427–437. [Google Scholar] [CrossRef]
- Horowitz, S.; Binion, D.G.; Nelson, V.M.; Kanaa, Y.; Javadi, P.; Lazarova, Z.; Andrekopoulos, C.; Kalyanaraman, B.; Otterson, M.F.; Rafieeet, P. Increased arginase activity and endothelial dysfunction in human inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1323–G1336. [Google Scholar] [CrossRef]
- Gravina, A.G.; Dallio, M.; Masarone, M.; Rosato, V.; Aglitti, A.; Persico, M.; Loguercio, C.; Federico, A. Vascular endothelial dysfunction in inflammatory bowel diseases: Pharmacological and nonpharmacological targets. Oxid Med. Cell Longev. 2018, 2018, 2568569. [Google Scholar] [CrossRef]
- Zanoli, L.; Rastelli, S.; Inserra, G.; Castellino, P. Arterial structure and function in inflammatory bowel disease. World J. Gastroenterol. 2015, 21, 11304. [Google Scholar] [CrossRef]
- Letizia, C.; Boirivant, M.; De Tomam, G.; Cerci, S.; Subioli, S.; Scuro, L.; Ferrari, P.; Pallone, F. Plasma levels of endothelin-1 in patients with Crohn’s disease and ulcerative colitis. Ital. J. Gastroenterol. Hepatol. 1998, 30, 266–269. [Google Scholar]
- Cross, R.K.; Wilson, K.T. Nitric oxide in inflammatory bowel disease. Inflamm. Bowel Dis. 2003, 9, 179–189. [Google Scholar] [CrossRef]
- Rachmilewitz, D.; Eliakim, R.; Ackerman, Z.; Karmeli, F. Direct determination of colonic nitric oxide level--a sensitive marker of disease activity in ulcerative colitis. Am. J. Gastroenterol. 1998, 93, 409–412. [Google Scholar] [CrossRef]
- Avdagić, N.; Zaćiragić, A.; Babić, N.; Hukić, M.; Seremet, M.; Lepara, O.; Nakaš-Ićindić, E. Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn. J. Basic Med. Sci. 2013, 13, 5–9. [Google Scholar] [CrossRef]
- Cibor, D.; Domagala-Rodacka, R.; Rodacki, T.; Jurczyszyn, A.; Mach, T.; Owczarek, D. Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications. World J. Gastroenterol. 2016, 22, 1067–1077. [Google Scholar] [CrossRef]
- Hou, F.; Bian, X.; Jing, D.; Gao, H.; Zhu, F. Hypoxia, hypoxia-inducible factors and inflammatory bowel diseases. Gastroenterol. Rep. 2024, 12, goae030. [Google Scholar] [CrossRef]
- Eder, P.; Korybalska, K.; Linke, K.; Witowski, J. Angiogenesis-related proteins--their role in the pathogenesis and treatment of inflammatory bowel disease. Curr. Protein Pept. Sci. 2015, 16, 249–258. [Google Scholar] [CrossRef]
- Koutroubakis, I.E.; Tsiolakidou, G.; Karmiris, K.; Kouroumalis, E.A. Role of angiogenesis in inflammatory bowel disease. Inflamm. Bowel Dis. 2006, 12, 515–523. [Google Scholar] [CrossRef]
- Aksoy, E.K.; Çetinkaya, H.; Savaş, B.; Ensari, A.; Torgutalp, M.; Efe, C. Vascular endothelial growth factor, endostatin levels and clinical features among patients with ulcerative colitis and irritable bowel syndrome and among healthy controls: A cross-sectional analytical study. Sao Paulo Med. J. 2018, 136, 543–550. [Google Scholar] [CrossRef]
- Berlin, C.; Berg, E.L.; Briskin, M.J.; Andrew, D.P.; Kilshaw, P.J.; Holzmann, B.; Weissman, I.L.; Hamann, A.; Butcher, E.C. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993, 74, 185–195. [Google Scholar] [CrossRef]
- Besendorf, L.; Müller, T.M.; Geppert, C.-I.; Schneider, I.; Mühl, L.; Atreya, I.; Vitali, F.; Atreya, R.; Neurath, M.; Zundler, S. Vedolizumab blocks α4β7 integrin-mediated T cell adhesion to MAdCAM-1 in microscopic colitis. Therap. Adv. Gastroenterol. 2022, 15, 17562848221098899. [Google Scholar] [CrossRef]
- Bamias, G.; Clark, D.J.; Rivera-Nieves, J. Leukocyte traffic blockade as a therapeutic strategy in inflammatory bowel disease. Curr. Drug Targets 2013, 14, 1490–1500. [Google Scholar] [CrossRef]
- Uchiyama, K.; Takagi, T.; Mizushima, K.; Hirai, Y.; Asaeda, K.; Sugaya, T.; Kajiwara-Kubota, M.; Kashiwagi, S.; Minagawa, Y.; Hotta, Y. Mucosal Addressin Cell Adhesion Molecule 1 Expression Reflects Mucosal Inflammation and Subsequent Relapse in Patients with Ulcerative Colitis. J. Crohns Colitis 2023, 17, 786–794. [Google Scholar] [CrossRef]
- Picardo, S.; Panaccione, R. Anti-MADCAM therapy for ulcerative colitis. Expert Opin. Biol. Ther. 2020, 20, 437–442. [Google Scholar] [CrossRef]
- Dang, A.K.; Gonzalez, D.A.; Kumar, R.; Asif, S.; Bali, A.; Anne, K.K.; Srinivasa, N.K.K. Vinculum of Cardiovascular Disease and Inflammatory Bowel Disease: A Narrative Review. Cureus 2022, 14, 26144. [Google Scholar] [CrossRef]
- Schinzari, F.; Armuzzi, A.; De Pascalis, B.; Mores, N.; Tesauro, M.; Melina, D.; Cardillo, C. Tumor necrosis factor-alpha antagonism improves endothelial dysfunction in patients with Crohn’s disease. Clin. Pharmacol. Ther. 2008, 83, 70–76. [Google Scholar] [CrossRef]
- Dheyriat, L.; Ward, D.; Beaugerie, L.; Jess, T.; Kirchgesner, J. Risk of recurrent acute arterial events associated with thiopurines and anti-tumor necrosis factor in inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2023, 21, 164–172.e11. [Google Scholar] [CrossRef]
- dos Santos, L.C.; Costa, A.V.; Lopes, L.G.; Leonel, A.J.; Aguilar, E.C.; Noviello, M.D.L.M.; de Abreu Ferrari, M.D.L.; Alvarez-Leite, J.I. Combination of azathioprine and aminosalicylate treatment prevent risk of cardiovascular disease in women with ulcerative colitis by reducing inflammation. Med. Sci. Monit. 2015, 21, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Rungoe, C.; Basit, S.; Ranthe, M.F.; Wohlfahrt, J.; Langholz, E.; Jess, T. Risk of ischaemic heart disease in patients with inflammatory bowel disease: A nationwide Danish cohort study. Gut 2013, 62, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Fumery, M.; Hedin, C.R.H. Does cardiovascular risk matter in IBD patients? J. Intern. Med. 2023, 294, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Olivera, P.A.; Dignass, A.; Dubinsky, M.C.; Peretto, G.; Kotze, P.G.; Dotan, I.; Kobayashi, T.; Ghosh, S.; Magro, F.; Faria-Neto, J.R.; et al. Preventing and managing cardiovascular events in patients with inflammatory bowel diseases treated with small-molecule drugs, an international Delphi consensus. Dig. Liver Dis. 2024, 56, 1270–1280. [Google Scholar] [CrossRef]
- Gabbiadini, R.; Dal Buono, A.; Mastrorocco, E.; Solitano, V.; Repici, A.; Spinelli, A.; Condorelli, G.; Armuzzi, A. Atherosclerotic cardiovascular diseases in inflammatory bowel diseases: To the heart of the issue. Front. Cardiovasc. Med. 2023, 10, 1143293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livzan, M.A.; Bikbavova, G.R.; Lisyutenko, N.S.; Romanyuk, A.E.; Drapkina, O.M. Cardiovascular Risk in Patients with Inflammatory Bowel Diseases—The Role of Endothelial Dysfunction. Diagnostics 2024, 14, 1722. https://doi.org/10.3390/diagnostics14161722
Livzan MA, Bikbavova GR, Lisyutenko NS, Romanyuk AE, Drapkina OM. Cardiovascular Risk in Patients with Inflammatory Bowel Diseases—The Role of Endothelial Dysfunction. Diagnostics. 2024; 14(16):1722. https://doi.org/10.3390/diagnostics14161722
Chicago/Turabian StyleLivzan, Maria A., Galiya R. Bikbavova, Natalya S. Lisyutenko, Alisa E. Romanyuk, and Oxana M. Drapkina. 2024. "Cardiovascular Risk in Patients with Inflammatory Bowel Diseases—The Role of Endothelial Dysfunction" Diagnostics 14, no. 16: 1722. https://doi.org/10.3390/diagnostics14161722
APA StyleLivzan, M. A., Bikbavova, G. R., Lisyutenko, N. S., Romanyuk, A. E., & Drapkina, O. M. (2024). Cardiovascular Risk in Patients with Inflammatory Bowel Diseases—The Role of Endothelial Dysfunction. Diagnostics, 14(16), 1722. https://doi.org/10.3390/diagnostics14161722