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Abstract: Background: Acute myocardial infarctions are deadly to patients and burdensome to
healthcare systems. Most recorded infarctions are patients’ first, occur out of the hospital, and
often are not accompanied by cardiac comorbidities. The clinical manifestations of the underlying
pathophysiology leading to an infarction are not fully understood and little effort exists to use
explainable machine learning to learn predictive clinical phenotypes before hospitalization is needed.
Methods: We extracted outpatient electronic health record data for 2641 case and 5287 matched-
control patients, all without pre-existing cardiac diagnoses, from the Michigan Medicine Health
System. We compare six different interpretable, feature extraction approaches, including temporal
computational phenotyping, and train seven interpretable machine learning models to predict the
onset of first acute myocardial infarction within six months. Results: Using temporal computational
phenotypes significantly improved the model performance compared to alternative approaches. The
mean cross-validation test set performance exhibited area under the receiver operating characteristic
curve values as high as 0.674. The most consistently predictive phenotypes of a future infarction
include back pain, cardiometabolic syndrome, family history of cardiovascular diseases, and high
blood pressure. Conclusions: Computational phenotyping of longitudinal health records can improve
classifier performance and identify predictive clinical concepts. State-of-the-art interpretable machine
learning approaches can augment acute myocardial infarction risk assessment and prioritize potential
risk factors for further investigation and validation.

Keywords: artificial intelligence; acute myocardial infarction; computational phenotypes; interpretable
machine learning

1. Introduction

An acute myocardial infarction (AMI), or “heart attack”, is myocardial necrosis due
to sudden ischemia caused by blood clotting around ruptured or exposed plaque in the
coronary arteries [1,2]. Globally, more than 3 million people have an AMI each year [3].
Fortunately, AMI incidence rates have declined as researchers and clinicians have identified
and managed risk factors [4]. The vast majority of AMIs occur out of the hospital, where
patients have limited monitoring [5]. Additionally, most reported AMIs are the patients’
first and are often unaccompanied by comorbidities [1,6]. These observations highlight the
inherent difficulty in predicting AMI events.
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There have been significant efforts to predict a variety of severe adverse cardiovascular
events, including AMIs. Many studies predict AMI onset in patients while they are in
the hospital [7–10]. However, ideally, prediction occurs earlier so clinicians can intervene
to avoid hospitalization. Using electronic health record (EHR) data for over 20,000 AMI
cases in a cohort of 2.27 million patients from the UCHealth hospital system, Mandair et
al. predicted the 6 month risk of a first AMI using several machine learning models [11].
The best-performing model achieved an AUROC of 0.835 and F1 of 0.092. Unfortunately,
their model exhibited poor calibration, ignored timing, and did not utilize laboratory
values, nor did they provide any insight into how their model made predictions. Moore
and Bell used XGBoost on data from over 500,000 patients in the UK Biobank to predict
self-reported “heart attack” (11,849 cases) [12]. They interpreted their models using SHAP
values. However, they did not give any information regarding the timing of recorded
features or heart attack. Wang et al. predicted AMI within 10 years in 11,635 patients but did
not provide any model interpretability [13]. Tsarapatsani et al. predicted 10 year AMI onset
in a cohort of 3267 patients that had electrocardiogram and angiography data available,
and used SHAP values for model explainability [14]. Sievering et al. predicted 5 year AMI
onset in 500 patients with coronary artery disease using angiography images and 11 clinical
features [15]. While significant effort has been put into predicting AMIs, the resulting
models often focus on patients who already have cardiovascular comorbidities, ignore
temporal relationships in the data, and lack sufficient interpretability and explainability.

Interpretability and explainability in machine learning models generally derive from
two approaches: model structure and post hoc analyses. Common post hoc methods
for quantifying feature importance include SHAP [16] and LIME [17] values, albeit with
potentially questionable reliability [18]. Many canonical models incorporate inherent
interpretability into their structure. Logistic regression models provide variable coefficients
that indicate the effect of features on the outcome. Tree-based models like random forest [19]
and Extreme Gradient Boosting (XGBoost) [20] compute feature importance based on
location in trees and metrics like impurity and gain, respectively. Generalized additive
models, such as the Explainable Boosting Machine (EBM) [21], learn a nonlinear function
for each variable, or interaction of variables, which describes their impact on the model.
Attention mechanisms embedded in deep learning models can explain what data heavily
weighs the outcome and relationships between data. For example, TabNet provides global
and local feature importance scores [22]. However, the interpretability and reliability of
attention is disputed [23]. Matrix and tensor factorizations methods learn interpretable
factors that provide a low-rank approximation of the data and can be used for clustering,
phenotyping, dimensionality reduction, and feature engineering. Applied to EHR data,
tensor factorization can automatically discover patterns of co-occurring medical variables
across patients and their evolution across time [24]. This has proven useful as the irregular
temporal nature of EHR data is a primary challenge. Fuzzy neural networks are models
that use fuzzy logic within a neural network structure to map features to interpretable
concepts and learn logical rules for prediction. Specifically, the tropical geometry fuzzy
neural network (TGFNN) developed by Yao et al. has shown recent promise [25]. We
employ several of these interpretable methods in this work.

In this work, we assess whether state-of-the-art interpretable machine learning ap-
proaches can learn clinical profiles that predict a patient’s first AMI, before hospitalization
is required. We extract five years of longitudinal outpatient EHR data for patients without
cardiovascular diagnoses before AMI onset, from the University of Michigan Health System
(2698 positive and 5396 matched negative samples). Using tensor factorization, we reduce
the dimensionality of the longitudinal health history while preserving interpretability and
temporal relationships. Using the EHR phenotypes and other patient data, we train seven
state-of-the-art interpretable machine learning models, including TGFNN, to predict AMI
onset within six months. We evaluate whether incorporating temporal information via
computational phenotyping improves model performance, overall model performance,
and the consistency of important features. We present and clinically validate the learned
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phenotypes, rules, and relationships that explain the models’ predicted outcomes. We
anticipate that these findings can assist researchers and clinicians in better understanding
the risk factors of AMI, identifying at-risk patients, and providing preventative care.

2. Materials and Methods
2.1. Dataset

In this study, we used outpatient data collected from adult patients of the University
of Michigan Health System (UMHS) from 1 January 2012 to 1 May 2023.

To define our cohort, we retrieved data from adult patients (23–89 years) who had
at least three outpatient visits within the five years before their latest visit or their first
cardiac diagnosis. We defined cardiac diagnoses as ICD9 codes 410.*–429.* and 785.0–785.1,
and ICD10 codes I20.*–I52.* and R00.*. Cases, or positive samples, were defined as those
patients in the cohort whose first cardiac diagnosis was an AMI (ICD9: 410.*; ICD10: I21.*).
Controls, or negative samples, were any other UMHS patient who met the above criteria
but did not have a cardiac diagnosis. We matched two negative patients to each positive
patient based on sex, ±2 years in age (at time of AMI or last encounter), and ±2 points in
the hospital frailty risk score [26]. We computed each patient’s hospital frailty risk score
using all diagnoses on their EHR in the five-year period. Positive patients without control
matches were excluded. This resulted in a cohort of 2641 positive patients (those who
develop an AMI) and 5287 negative patients (those who do not develop an AMI). We split
the patients into training and testing sets with a 70–30 split. For demographic information
on the cohort, see Table 1.

Table 1. Overview of cohort. Age and hospital frailty risk score are presented as mean±standard
deviation. All percentages are of the patients within the column subset, besides the “Number of
patients” which is the percentage of positive/negative patients within in the train/test set.

Train Test

Control Cases Controls Cases

Number of patients 3705 (66.5%) 1865 (33.5%) 1582 (67.1%) 776 (32.9%)
Age, years 63.5 ± 13.0 63.6 ± 2.9 63.5 ± 2.9 63.8 ± 12.9
Hospital frailty risk score 4.6 ± 6.1 4.9 ± 6.2 4.7 ± 6.0 4.9 ± 6.4
Sex, male 2093 (56.5%) 1092 (58.6%) 918 (58.0%) 433 (55.8%)
Cardiac family history 1524 (41.1%) 971 (52.1%) 644 (40.7%) 378 (48.7%)

Ethnicity
White or Caucasian 3154 (85.1%) 1553 (83.3%) 1347 (85.1%) 671 (86.5%)
Black or African American 248 (6.7%) 164 (8.8%) 111 (7.0%) 61 (7.9%)
Asian 133 (3.6%) 54 (2.9%) 68 (4.3%) 16 (2.1%)
Other 97 (2.6%) 49 (2.6%) 32 (2.0%) 13 (1.7%)
Unknown 33 (0.9%) 21 (1.1%) 14 (0.9%) 8 (1.0%)
American Native 11 (0.3%) 12 (0.6%) 2 (0.1%) 5 (0.6%)
Native Pacific Islander 3 (0.1%) 2 (0.1%) 1 (0.1%) 0 (0.0%)

2.2. Data Preprocessing

We extracted each patient’s data within the five years before their AMI or last recorded
encounter. These data included time-dependent data like diagnoses, medications, vitals,
laboratory results, and substance use. Time-independent data were also extracted, includ-
ing demographics and family health history. We cleaned the data to remove erroneous and
ambiguous values (e.g., text entry in numeric variable column, values outside of possible
range, etc.). We converted all temperature values to Fahrenheit. Continuous variables like
laboratory values and vitals were only included if >60% of patients in the training set had
at least one measurement. We arbitrarily selected 60% as a missingness cutoff to prioritize
the most common and accessible clinical variables as well as limit errors in downstream
imputation. Removing rare variables reduces the need for data imputation and priori-
tizes results based off common, accessible variables. Categorical variables, like race, were
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one-hot encoded. We excluded patients missing information on their sex. We determined
whether patients had a family history of cardiovascular diseases by whether they had at
least one familial occurrence of heart disease, heart attack, coronary artery disease, heart
failure, heart defect, aortic disease, sudden cardiac death, cardiomyopathy, cardiovascular
disease, or rheumatic heart disease. We excluded procedure data. Diagnosis features were
originally recorded as codes from the International Statistical Classification of Diseases
(ICD) version 9 or 10 [27] and we converted all ICD9 codes to ICD10 via a conversion table
provided at https://github.com/bhanratt/ICD9CMtoICD10CM, accessed on 3 March 2024.
We removed all “Z” chapter ICD10 codes. Diagnoses were encoded as binary variables
to indicate the presence of the ICD10 code, regardless of how often it was recorded. To
condense the diagnosis data, we added the higher-level IDC10 categories as features if one
of their children diagnoses was present, e.g., if a patient had ICD10 code E11.0 present, they
would also have E11 marked as present. Medication information was also encoded as bi-
nary variables indicating its prescription at every encounter between its start and stop dates.
Medication feature names were taken directly as recorded in the EHR. For both diagnosis
and medication data, we employed carry forward imputation followed by zero imputation.
We removed variables present in less than 1% of both case and control patients in the train-
ing set. All data preprocessing was completed in Python (Version 3.9) and all code used
in the study is available at https://github.com/kayvanlabs/interpretable-ami-prediction,
accessed on 3 March 2024.

We extracted three different sets of features from the data: (1) the demographics, or
time-independent data, and latest recorded values within six months of AMI onset or the
last encounter, (2) summary statistics of the entire five-year history, and (3) computational
phenotypes of five-year health history using unsupervised tensor factorization. We se-
lected these approaches for condensing patients EHR history because they are common,
interpretable, easy to compute, and have been shown to be effective in other studies. Addi-
tionally, we evaluated the combination of the feature sets. In total, we tested six distinct
feature sets:

• Latest data and demographics;
• Summary statistics;
• Computational phenotypes;
• Latest data, demographics, and summary statistics;
• Latest data, demographics, and computational phenotypes;
• Latest data, demographics, summary statistics, and computational phenotypes.

2.3. Latest Recorded Data of Health History

For each patient in the dataset, we extracted the most recent measurement of each variable
before AMI onset or the last recorded visit, for positive and negative samples, respectively.

2.4. Summary Statistics of Health History

Summary statistics of clinical variables are fast to compute, easily understandable,
and can be predictive of important outcomes [28]. We summarized laboratory and vital
data over the five-year observation window by computing the mean, standard deviation,
minimum, and maximum of each variable, for each patient. Categorical variables were
aggregated by taking the maximum value, indicating whether a patient ever had the
feature present in the five-year window. These statistics reduced the multiple, longitudinal
measurements of each variable to a single, interpretable value.

2.5. Computational Phenotypes of Health History

Computational phenotyping of high-dimensional EHR data via tensor decomposition
enables automated, low-dimensional representation of co-occurring medical events across
patients, different types of variables, and time [24]. In this work, we use tensor decom-
position to discover temporal, clinical phenotypes that act as interpretable features for
downstream classification. While various tensor factorization approaches exist, we used the

https://github.com/bhanratt/ICD9CMtoICD10CM
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unsupervised, non-negative PARAFAC decomposition, with the hierarchical alternating
least squares algorithm, implemented in TensorLy (Version 0.8.1) because of its simplicity,
wide use, and ease of use [29]. Non-negative PARAFAC decomposition approximates the
original data with the sum of rank-one component tensors. Each component tensor is
defined by the outer product of vectors, one for each mode of the original data. The values
in these vectors are learned via alternating least squares and describe the components. In
this work, we decompose three-dimensional tensors with the modes: patients, time, and
features. Thus, after applying non-negative PARAFAC decomposition, each component of
the factorization can be interpreted as a phenotype defined by three vectors that encode the
membership, weight, or importance of patients, time points, and features.

We learned temporal phenotypes for laboratory values and vitals separately from
diagnoses and medication. All laboratory values and vitals for the five years preceding AMI
onset or the patient’s last encounter were separated into ten, six-month segments. Only the
last recorded value of each feature was kept per segment. To simplify computation and
interpretation, each feature was discretized into quintiles based on the feature distributions
in the training set. The resulting three-dimensional tensor representation of the data
consisted of modes: patient × time × feature and size 7928 × 10 × 320.

We used diagnosis and medication data over the 5 observation years to generate tempo-
ral phenotypes. First, we split the 5 years into ten, six-month intervals. Within each interval,
we recorded the diagnoses documented at encounters with a “1” and undocumented diag-
noses as “0”. If there was no encounter in the six-month interval, diagnosis variables were
left as null. We then performed carry forward imputation of all diagnosis codes until the
next interval with an encounter. All remaining null values were imputed with zero. For
medication data, we marked a “1” if the medication was prescribed during a given interval;
otherwise a “0” was inserted. We formatted these data into a three-dimensional tensor of
modes: patient × time × feature of size 7928 × 10 × 734.

Determining the optimal number of phenotypes, or rank, of a tensor decomposition
is an open problem [24]. One common approach is to evaluate and plot the predictive
performance of various ranks and choose the rank at the “elbow” of the curve—effectively
identifying the rank after which performance increases are marginal. We carried this out
by first factoring the training set using ranks at increments of two, between one and 50,
running three replicates at each rank. Next, using the normalized patient membership
to the phenotypes as features, we removed 30% of the training set for a validation set,
trained a random forest model to discriminate between positive and negative samples, and
visualized the performance according to common machine learning metrics, against the
rank. For both the lab/vital and diagnoses/medications (Dx/Rx) phenotypes, the F1 score
plateaued by a rank of ten. However, both AUROC and AUPRC gradually increased till
approximately 30 for lab/vital phenotypes and continued to increase to a rank of 50 for
Dx/Rx phenotypes (see Figure A1). We decided to use those ranks for each decomposition.
While the predictive performance of the Dx/Rx phenotypes may continue to increase
beyond rank 50, in practice, more phenotypes may become increasingly redundant or
less interpretable.

Using the ranks of 30 and 50, we decomposed the training set tensors and extracted
the learned lab/vital and Dx/Rx phenotypes, respectively. To determine the test set
patients’ membership of these phenotypes, we fixed the feature and time dimensions of
the phenotypes to those of the training set and then set the decomposition to fit only
the patient membership mode. This projects the phenotypes onto the test set patients to
determine their membership of each, without changing the phenotypes themselves. Lastly,
we concatenated the lab/vital phenotype features with the Dx/Rx phenotype features into
a single patient × feature table with 80 temporal phenotypes as features to describe each
patient’s EHR history.
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2.6. Feature Selection

We used the Minimum Redundancy and Maximum Relevance (mRMR) [30] approach
to select the most relevant and least redundant subset of features from each feature set:
latest/demographics, summary statistics, and computational phenotypes. We opted to use
this feature selection approach because it not only identifies the most relevant features but
also limits collinearity between the selected features, unlike other feature selection methods.
Using mRMR can improve model performance, speed, and interpretability [31]. Feature
relevance is determined by random forest feature importance and feature redundancy by
Pearson’s correlation. To assess the optimal number of features for each feature set, we
incrementally increased the number of features to use when running mRMR and then
assessed their performance in three random forest models. By looking at the results, for
each feature set, we determined a reasonably small number of features with near-optimal
performance. We selected 20 features for the latest and demographic feature set, 30 for
the summary statistics feature set, and 30 for the phenotypes feature set. After feature
selection, if any variables had missing values, we imputed them using k-nearest neighbors,
as implemented in Scikit-learn (Version 1.2.2) [32], fit on the training set only, and applied to
both training and testing sets. Next, we performed the same experiment using combinations
of the three feature sets and opted to use 20 features in the latest/demographic/summary
statistics feature set, 30 in the latest/demographic/phenotypes feature set, and 60 in the
“All” feature set (latest/demographic/summary statistics/phenotypes).

2.7. Model Training and Cross-Validation

We selected a set of machine learning models to evaluate in this work based on
their interpretability and accessibility, including decision tree (DT), logistic regression
with L2 penalty (LR), random forest (RF), EBM, XGBoost (XGB), TabNet (TNET), and
TGFNN. We used the decision tree, logistic regression, and random forest implementations
from scikit-learn (Version 1.2.2), the EBM implementation from InterpretML (Version
0.3.2) [16], and XGBoost (Version 1.7.5) [20], TabNet (Version 4.1.0) [22], and the TGFNN as
described in [25] and implemented in Pytorch (Version 2.1.0). To compensate for dataset
imbalance, we up-weighted the minority class (positive) and down-weighted the majority
class (negative). In models not allowing class weights (EBM, XGBoost, and TabNet), we
randomly downsampled the majority class (negative) to a 1:1 ratio with the minority class
(positive).

We performed three-fold cross-validation on the 90% of the training set (10% withheld
as a validation set) to determine the optimal hyperparameters for each model. We randomly
sampled 500 combinations of hyperparameters for each model, except TGFNN. Because of
the longer runtime of TGFNN, we evaluated 300 combinations for all feature sets besides
evaluating 200 on the “All” feature set, due to slower training from the additional features.
After evaluating their performance, the combination of hyperparameters with the highest
F1 score was selected. Next, we performed five-fold cross-validation to evaluate the
performance of the models and datasets on the training and test sets. This trains five
instances of each model on a different subset of data, providing information on the variance
in performance. To evaluate model calibration, we calibrated the best-performing replicate
according to F1 score on the “All” feature set. Each model was calibrated on the training
set according to Platt’s method and plotted with the mean probability of ten uniform bins.

2.8. Tropical Geometry Fuzzy Neural Network

Due to its lesser-known architecture, we briefly describe the TGFNN, though a full
description can be found in [25]. The TGFNN is fuzzy logic classifier built in a neural
network architecture that allows flexible and interpretable variable concept encoding,
logical rule learning, and inference for a classification task. TGFNN consists of three
modules: the encoding module, the rule module, and the inference module.

The encoding module “fuzzifies” continuous input variables into their membership to
the concepts “low”, “medium”, and “high”. This encoding is performed via parameterized
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membership functions that map each variable to three values in the range [0, 1] that
represent how much it belongs to each concept. Categorical variables are one-hot encoded.
Membership functions are learned during training and help model the intuition and
uncertainty in clinician decision making. For example, TGFNN can learn the concept of
“low blood pressure” and use that concept in the decision-making rules.

The rule module learns combinations of variable concepts that are predictive of an
outcome. The first layer of the rule module learns which concepts are important for each
variable within each rule. The second layer learns the importance of each variable within
each rule. The more important the variable, the greater the weight within the network, and
thus the more it will contribute to inference when activated. Rule activation strength is
calculated via a parameterized T-norm which models an AND operation in fuzzy logic via
either a product or minimum function. This enables the easily interpretable and logical
structure of the decision rules, for example, “if x1 is low and x2 is high”.

The final layer of the TGFNN is the inference layer, which learns the importance of
each rule in determining the model output. The importances, or contributions, of the rules
are aggregated in a T-conorm function, followed by softmax activation. This calculates
the probability of each output class, given the activation of the rules by the input sample.
Implementation of tropical geometry allows the OR operation to be changed between an
addition or maximum function.

2.9. Statistical Analysis

To evaluate whether differences in model performance across feature sets were sig-
nificant, we performed Friedman’s tests with the Bonferroni corrected alpha of 0.01 (0.05
divided by the number of tests run, five, one for each metric). For significant Friedman test
results, we performed pairwise post hoc Nemenyi tests. We selected these tests because
they are non-parametric and recommended when comparing machine learning model
cross-validation performance [33].

3. Results

We find that, by applying straightforward, interpretable machine learning approaches
to EHR data, we are able to predict the onset of first-AMI events in patients without
pre-existing cardiovascular conditions, within six months, with moderately good accu-
racy. Upon comparing different explainable feature engineering approaches (the feature
sets), we report that they can have significantly different performance, depending on the
model. Overall, the best-performing feature sets were those that included computational
phenotypes. Additionally, we compared seven machine and deep learning models, each
with a different level of interpretability, and found them to exhibit significantly different
performance. We present these results in detail in the following.

3.1. Feature Set Performance

Feature sets including computational phenotypes significantly outperform those with-
out. Overall, the “All” feature set performs best, though only slightly (see Table 2). This
is likely because of the large number of diverse features included, the efficacy of compu-
tational phenotyping for feature extraction, and the relevance of historical information.
Incorporating computational phenotypes as features resulted in performance gains in
AUROC as much as 0.05 (see Table A3 and Figure A4a). We evaluated whether the differ-
ences in overall model performance between feature sets were significant by performing
Friedman’s test followed by pairwise Nemenyi tests. Across every pairwise comparison,
all feature sets containing phenotypes had significantly higher performance than feature
sets without phenotypes, according to AUROC. Under AUPRC and F1 score, most of these
comparisons were also statistically significant. In no pairwise comparison, regardless of
metric, do any of the feature sets containing phenotypes exhibit significantly different
performance from each other, save the “All” feature set outperforming the “Phenotypes”
feature set according to AUPRC.
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Table 2. Mean ± standard deviation scores for each feature set across all models, sorted by F1 score.

Feature Set AUROC AUPRC F1 Precision Recall

All 0.63 ± 0.03 0.45 ± 0.03 0.41 ± 0.10 0.46 ± 0.06 0.43 ± 0.17
Latest, demo., phenotypes 0.62 ± 0.04 0.43 ± 0.04 0.4 ± 0.13 0.45 ± 0.08 0.47 ± 0.22

Phenotypes 0.62 ± 0.02 0.43 ± 0.02 0.39 ± 0.17 0.4 ± 0.11 0.46 ± 0.25
Latest, demo., statistics 0.61 ± 0.02 0.43 ± 0.03 0.39 ± 0.14 0.43 ± 0.08 0.48 ± 0.28

Summary statistics 0.59 ± 0.03 0.42 ± 0.03 0.36 ± 0.15 0.44 ± 0.1 0.42 ± 0.26
Latest, demographics 0.6 ± 0.02 0.42 ± 0.03 0.35 ± 0.18 0.46 ± 0.16 0.39 ± 0.24

3.2. Model Performance

We predict the onset of AMI within six months in patients without pre-existing car-
diovascular diagnoses with good performance using several interpretable models. Model
performance varied significantly between models and feature sets, often depending on the
evaluation metric (see Figure A4). While there is no clear “best” model, random forest,
logistic regression, and TGFNN performed best overall. In interpreting model performance
on an imbalanced dataset, multiple metrics must be appropriately considered as there
is no singularly best one. Determining performance criteria is especially important in a
clinical application where false positives and negatives could lead to patient harm, either
by receiving unnecessary treatment or not receiving needed care, respectively. We note
that the models showed varying levels of minimal-to-mild overfitting according to training,
validation, and testing set performance (see Tables A1–A3). When considering all metrics,
logistic regression and random forest consistently performed near best, often followed by
TGFNN, while XGboost and decision tree were often among the worst. Depending on the
metric, TGFNN, EBM, and TabNet typically performed either best or worst (see Figure A4).
We performed Friedman tests followed by Nemenyi tests to evaluate whether, across all
models, performance differences between feature sets were statistically significant. Accord-
ing to AUROC, random forest, logistic regression, and EBM all performed significantly
better than the other models. For nearly all pairwise comparisons, random forest, logistic
regression, and TGFNN performed significantly better than XGBoost, decision tree, TabNet,
and EBM, according to F1 score. When considering F1 score, there was no significant
difference between random forest, logistic regression, and TGFNN performance.

Several models appear biased to over- or underestimating risk of AMI. Across all
feature sets, TGFNN exhibits high recall on average (0.754 ± 0.234), as it heavily predicts the
positive class. Conversely, TabNet and EBM have low average recall scores (0.159 ± 0.124,
0.095 ± 0.076) due to relatively fewer positive predictions. The accuracy of the, albeit
relatively few, positive predictions of EBM contributes to its high mean precision and
AUROC (see Table 3). These biases are also present in the model calibration plots (see
Figure 1). Both TabNet and EBM underestimate the probability of positive samples while
TGFNN slightly overestimates. Overall, the best-performing models, according to F1 score
on the “All” feature set, exhibit good calibration.

Table 3. Mean ± standard deviation scores for each model, across all feature sets, sorted by F1 score.

Model AUROC AUPRC F1 Precision Recall

RF 0.633 ± 0.02 0.448 ± 0.017 0.484 ± 0.015 0.422 ± 0.019 0.57 ± 0.026
LR 0.635 ± 0.021 0.458 ± 0.015 0.478 ± 0.02 0.431 ± 0.014 0.537 ± 0.034

TGFNN 0.599 ± 0.037 0.422 ± 0.041 0.46 ± 0.091 0.365 ± 0.085 0.701 ± 0.246
XGBoost 0.598 ± 0.019 0.41 ± 0.019 0.45 ± 0.017 0.402 ± 0.014 0.513 ± 0.034

DT 0.582 ± 0.017 0.4 ± 0.016 0.44 ± 0.043 0.399 ± 0.023 0.51 ± 0.108
TabNET 0.593 ± 0.025 0.415 ± 0.022 0.213 ± 0.111 0.488 ± 0.057 0.159 ± 0.124

EBM 0.642 ± 0.021 0.466 ± 0.016 0.15 ± 0.11 0.57 ± 0.187 0.095 ± 0.076

Several models suffered from variable performance. Model stability is an important
factor when considering implementation, especially in a healthcare setting. In contrast to
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the simpler random forest and logistic regression models, more complicated models, like
EBM, TabNetm, and TGFNN, exhibited higher standard deviations in performance (see
Figure A4d,e). This may be due to the greater number of hyperparameters that require
precise tuning in these models. This variance in performance makes the interpretation of
important features difficult as well.

(a) (b) (c)

(d) (e) (f)

(g)
Figure 1. Calibration plots of best model replicate on the “All” feature set, according to F1 score.
The diagonal dotted line indicates a classifier with perfect calibration. Samples are grouped into
10 uniformly sized bins, with empty bins excluded. Each point on the curve contrasts the mean
model-predicted probability of being a positive sample, with the actual frequency of positive samples,
within the bin. (a) Decision tree; (b) logistic regression; (c) random forest; (d) XGBoost; (e) EBM;
(f) TabNet; (g) TGFNN.

3.3. Model Interpretation

Each of the employed models exhibits a degree of inherent interpretability, allowing
for some explanation of how predictions were made. For brevity, we will focus our analysis
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on the “All” feature set, as it is generally the best performing and includes features from all
subsets. Additionally, we will focus our interpretability analysis on the better and more
consistently performing models: logistic regression, random forest, and XGBoost.

Across all models with global feature importance scores (logistic regression, random
forest, XGBoost, EBM, and TabNet), the computational phenotype features of longitudinal
EHR data are often the most predictive of a future AMI event. The most important
features include Dx/Rx phenotype 47, family history of cardiovascular diseases, Dx/Rx
phenotype 36, lab/vital phenotype 18, and a high max systolic blood pressure within
the five-year observation window (see Table 4). Feature coefficients in logistic regression
and SHAP values of XGBoost and random forest models indicate the direction of the
relationship between feature magnitude and future AMI prediction (see Figure 2). The
patient phenotypes most strongly indicative of a future AMI are characterized by dorsalgia,
type 2 diabetes, hypertension, high creatinine and urea nitrogen levels, cardiovascular
medications like atorvastatin, and anemia (see Table 5). The temporal factor of these
phenotypes may suggest the characteristic timing of its presentation in patients. We present
the temporal factor plots of six of the most predictive phenotypes in Figure 3. The temporal
components of the phenotypes predominantly range from immediately before AMI onset
to three years prior. Apart from phenotypes being among the most predictive features,
additional important variables include a history of smoking and high mean body mass
index over the five-year window (Table 6).

Table 4. Top 10 most important features from the “All” feature set, reported as min–max scaled
mean ± standard deviation of all LR, RF, XGB, EBM, and TNET models.

Feature Importance

Dx/Rx phenotype 47 0.533 ± 0.316
Family history of cardiovascular diseases 0.511 ± 0.324

Dx/Rx phenotype 36 0.498 ± 0.374
Lab/vital phenotype 18 0.496 ± 0.304

Max systolic blood pressure 0.44 ± 0.338
Dx/Rx phenotype 13 0.405 ± 0.216

Lab/vital phenotype 4 0.404 ± 0.256
Lab/vital phenotype 28 0.359 ± 0.252
Lab/vital phenotype 9 0.342 ± 0.195
Lab/vital phenotype 11 0.336 ± 0.245

(a) (b)

Figure 2. SHAP values of top 10 features, averaged across random forest and XGBoost model
replicates trained on the “All” feature set. Each point represents a sample (patient), positioned
relative to the impact of the feature on whether the model predicted the positive (AMI) or negative
class. The color of points reflect the feature magnitude for the sample. (a) Random forest mean SHAP
values; (b) XGBoost mean SHAP values.
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Table 5. Phenotypes most predictive of impending AMI, based on logistic regression coefficients
and SHAP values from random forest and XGBoost. The top five features of each are shown. Units:
millimoles per liter (mmol/L), milligrams per deciliter (mg/dL), grams per deciliter (g/dL), multiples
of a thousand per cubic millimeter (K/mm3), multiples of a million per cubic millimeter (M/mm3).

Dx/Rx Phenotype 47 (Back Pain) Weight

Dorsalgia (M54) 0.0252
Low back pain (M545) 0.0148
Other joint disorder, not elsewhere classified (M25) 0.0118
Pain, not elsewhere classified (G89) 0.0111
Other chronic pain (G8929) 0.0097

Dx/Rx Phenotype 36 (cardiometabolic syndrome) Weight

Type 2 diabetes mellitus (E11) 0.0463
Type 2 diabetes mellitus without complications (E119) 0.0413
Essential (primary) hypertension (I10) 0.0113
Type 2 diabetes mellitus with hyperglycemia (E1165) 0.0076
Disorders of lipoprotein metabolism and other lipidemias (E78) 0.0064

Lab/vital Phenotype 18 (ambiguous) Weight

Absolute Basophil Count, (−0.001, 0.1] K/mm3 0.0017
Absolute Early Granulocyte Count, (−0.001, 13.7] K/mm3 0.0017
Potassium, (4.0, 4.3] mmol/L 0.0009
Chloride, (104.0, 106.0] mmol/L 0.0009
Urea Nitrogen, (4.999, 13.0] mg/dL 0.0009

Lab/vital Phenotype 28 (kidney disease) Weight

Creatinine, (1.122, 21.48] mg/dL 0.1908
Urea Nitrogen, (23.0, 139.0] mg/dL 0.1631
CO2, (9.999, 26.0] mmol/L 0.0980
Chloride, (107.0, 122.0] mmol/L 0.0663
Potassium, (4.7, 9.8] mmol/L 0.0550

Dx/Rx Phenotype 6 (cardiovascular medication) Weight

Atorvastatin 40 mg tablet 0.0214
Amlodipine 10 mg tablet 0.0095
Clopidogrel 75 mg tablet 0.0050
Lisinopril 40 mg tablet 0.0025
Metoprolol succinate ER 25 mg 24 h tablet 0.0016

Lab/vital Phenotype 22 (anemia) Weight

Hemoglobin, (5.699, 12.1] g/dL 0.0559
Hematocrit, (18.099, 36.5] % 0.0547
Red Blood Cell Count, (1.87, 4.02] M/mm3 0.0517
Calcium, (4.799, 9.2] mg/dL 0.0512
Albumin, (1.499, 4.0] g/dL 0.0501
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(a) (b) (c)

(d) (e) (f)
Figure 3. Temporal factors of top six predictive phenotypes. Y-axis values are weights learned
in tensor decomposition and may give an indication of when the phenotype was characteristically
presented. (a) Dx/Rx phenotype 47 (back pain); (b) Dx/Rx phenotype 36 (cardiometabolic syndrome);
(c) lab/vital phenotype 18 (ambiguous); (d) lab/vital phenotype 28 (kidney disease); (e) Dx/Rx
phenotype 6 (cardiovascular medication); (f) lab/vital phenotype 22 (anemia).

Table 6. Top 10 logistic regression feature coefficients from the best-performing model on the “All”
feature set, reported as mean ± standard deviation. Milligrams (mg).

Feature Coefficient

Dx/Rx phenotype 7 −1.346 ± 0.191
Lab/vital phenotype 4 −0.911 ± 0.08
Lab/vital phenotype 18 0.858 ± 0.154
Lab/vital phenotype 11 −0.79 ± 0.046

Clopidogrel, 75 mg table (within last 5 years) 0.777 ± 0.076
Dx/Rx phenotype 47 0.768 ± 0.379
Dx/Rx phenotype 46 −0.712 ± 0.156
Dx/Rx phenotype 13 −0.708 ± 0.089

Lab/vital phenotype 9 −0.69 ± 0.106
Dx/Rx phenotype 35 −0.626 ± 0.221

The importance of features varies between models, making interpretation difficult
at times. When computing the, on average, most important features in the “All” set
across all models with global feature importance, there are large standard deviations (see
Figure 4). Additionally, we compared how each model cross-validation replicate ranked
variables by importance via the Kendall rank correlation coefficient (see Figure 4). This
metric shows on a scale of [−1, 1] how negatively or positively correlated the rankings
are, with 0 indicating no correlation. We found variable correlation between replicates and
models. Logistic regression, random forest, and XGBoost show decent correlation between
replicates. On the other hand, TabNet and EBM show relatively low correlation between
replicates. Surprisingly, despite somewhat comparable performance, the feature importance
ranking of logistic regression is somewhat negatively correlated with the rankings of both
random forest and XGBoost. This may be a result of the specific model properties, such as
the limitation of logistic regression in identifying linear relationships, whereas XGBoost
and random forest can identify nonlinear ones. However, it may also reflect the inherent
difficulty in the task of predicting future AMI events in this cohort.
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Figure 4. Kendall rank correlation coefficients comparing the ranking of features in the “All” set by
importance. A value of 1 indicates perfect positive correlation, −1 is perfect negative correlation, and
0 is no correlation.

Unlike the other models, TGFNN learns precise, interpretable rules that determine
predictions. The best-performing TGFNN model uses the “All” feature set and is based
on 12 rules learned directly from the data (AUROC = 0.658, AUPRC = 0.479, F1 = 0.456,
precision = 0.475, recall = 0.439). We present these rules in Figure 5. Linguistically, the most
important rule (R0) is

Patient has a history of Clopidogrel prescription and matches Dx/Rx phenotype 27
(characteristic features include: vitamin D3, simvastatin, vitamin B-12, vitamin C,
and malignant neoplasm of bladder (ICD10: C67)) and has high mean creatinine.

Rules 1–5 are similarly simple to understand, containing a couple of concepts each,
and describe combinations of cardiovascular and metabolic medication prescriptions along
with abnormal lab and vital measurements, as well as a family history of cardiovascular
conditions. Interestingly, while R6 has family history as important, R5 has the lack of
family history as important. These rules may be stratifying between different underlying
pathologies leading up to AMI. Notably, interpreting the “low”, “medium”, and “high”
concepts is dependent on the shape of the underlying membership functions. Because of
the flexible, trainable parameters of these functions, they may “squish” the “low” or “high”
function out of the possible range of values to dynamically simplify to only two concepts.

Overall, we found the interpretable models able to accurately identify patients, without
pre-existing malignant cardiovascular diagnoses, that have an AMI within six months.
While the evaluated models varied in both performance and prioritization of important
features, we identified several consistently important medical concepts and phenotypes.
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Figure 5. Rules from best-performing TGFNN model on the “All” feature set. The darker red the cell,
the more important the concept in the rule. Relative rule contribution to predicting future AMI events
is listed along the x-axis. Rules and concepts with less than 0.1 relative importance were removed.

4. Discussion

We demonstrate that accurately predicting an AMI within six months in patients
without pre-existing cardiovascular conditions, using only outpatient data and interpretable
models, is possible. Furthermore, we show that temporal, computational phenotyping can
identify highly predictive clinical profiles of future AMI events. This suggests the relevance
of historical information, temporal EHR relationships, and computational phenotyping in
evaluating the future risk of AMI, which is often ignored in similar studies. We anticipate
that these findings will be informative to researchers and clinicians seeking to develop
interpretable machine learning approaches for hard-to-predict events like AMI, as well as
leverage high-dimensional longitudinal EHR data.

The Dx/Rx phenotypes predictive of future AMI onset generally agree with strongly
supported clinical relationships and also suggest potential underutilized relationships. The
predictive Dx/Rx phenotype 47 describes dorsalgia and other pain as predictive. While
low back pain does not have a known association with AMI, chronic pain is associated
with various cardiovascular diseases [34,35] and some pain medications, like non-steroidal
anti-inflammatory drugs (NSAIDs), are a known risk factor of AMI [36]. The consistently
predictive Dx/Rx phenotype 13 describes a profile of pain medication prescriptions, includ-
ing the NSAID ibuprofen. However, it was negatively related with future AMI according
to several models. This discontinuity may be dataset specific or indicate an underlying
relationship such as if a patient is on a certain type of medication it reflects their interaction
with healthcare professionals that may be helping prevent AMI in other ways. On the
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other hand, a back pain phenotype may capture patients who are misinterpreting angina
(precursor symptom of AMI) for dorsalgia. This could suggest clinicians increase their
suspicion of underlying cardiovascular diseases when patients present with back pain. In
congruence with known AMI risk factors, Dx/Rx phenotype 36 characterizes patients with
type 2 diabetes, potentially further complicated with hypertension [37,38]. The Dx/Rx
phenotype number 6 encompasses several cardiovascular medications like the platelet
inhibitor clopidogrel. A clopidogrel prescription suggests the patients may have already
had severe cardiovascular conditions, like coronary stenosis, that were not recorded in
the EHR, that required a stent. This phenotype may be predictive due to poor medication
adherence followed by in-stent re-stenosis and a subsequent AMI within approximately six
months (see phenotype temporal peak in Figure 3e). However, further analysis is required
to ascertain specific and supported claims of this clinical relationship.

The lab/vital phenotypes suggest some clinically valid risk factors, but are noticeably
harder to interpret due to large quantile ranges. Lab/vital phenotype 28 characterizes
patients with mild-to-severe kidney disease, indicated by elevated creatinine [39], high
urea nitrogen [40], and hyperchloremia [41]. Kidney disease greatly increases the risk of
adverse cardiac events like AMI [42]. Lab/vital phenotype 22 describes a patient with
mild-to-severe anemia, a risk factor of AMI [43]. The temporal component of the phenotype
suggests that this occurs relatively soon before AMI (see Figure 3f). However, the large
range of these lab result quantiles limits the utility of the phenotypes. In the future, more
precise partitioning of variables may resolve this. Notably, lab/vital phenotype 18 does
not described abnormal physiology. The range of the “Absolute Early Granulocyte Count”
encompasses essentially all possible values. A deeper look at the distribution of values in
the training data suggested this is a result of too few unique values to make five equally
sized quantiles. Additionally, the feature weights in this phenotype are relatively low,
indicating weak membership and thus a rather ambiguous phenotype. The relevance
of this phenotype with future AMI may be an artifact of the data or methods. While
phenotypes using laboratory values and vital signs can be improved, they can successfully
capture important abnormal physiology across temporal EHRs.

Visualizing SHAP values of the latest value and summary statistic features revealed
additional risk factors with known clinical relevance. Unlike standard feature importance
scores generated by tree-based models, SHAP values indicate the direction of relationships
between features and outcomes. Specifically, the SHAP values of the random forest and
XGBoost models trained on the “All” feature set suggest several predictive relationships
(see Figure 2). These predictive variables include high blood pressure [44], family history
of cardiovascular diseases [45], high body mass index [12], smoking [46], and low mean
corpuscular hemoglobin levels [47]. Additionally, the SHAP values agree with other feature
importance scores, indicating the presence of Dx/Rx phenotypes 36 and 47, back pain and
cardiometabolic syndrome, respectively, are predictive of a future AMI. Other features were
not consistently highly predictive across multiple replicates or models. The contradictions
and variability in the importance of features and their relationship to future AMI events
are likely a result of noise within the used EHR data and reflect a typical challenge in
predictive machine learning in healthcare. Computational approaches, such as this work,
may best serve as a screening method for a specific clinical relationship to be explored in
more controlled settings.

When compared to summary statistics and the most recent recorded data, compu-
tational EHR phenotypes can significantly increase interpretability and performance in
biomedical machine learning. Across multiple model architectures and feature sets, the
phenotypes consistently ranked as the most important features. These results suggest that
historical and temporal information encoded in EHRs is highly relevant for predictive
modeling, and specifically for AMI risk assessment. Additionally, we suggest the increased
use of tensor decomposition in EHR feature extraction. The employed tensor factorization
algorithm mines temporal, high-dimensional EHR data without supervision, removing
the need for clinicians to manually curate phenotypes. These phenotypes capture patterns



Diagnostics 2024, 14, 1741 16 of 27

of co-occurring medical variables across time to describe distinct patient profiles. These
patient phenotypes reduce the dimensionality of the EHR data while maintaining inter-
pretability and improving performance. Predictive phenotypes can prioritize to clinicians
the important sets of conditions patients present with in the clinic, that may be indicative
of risk for a future AMI. These can direct more targeted studies to establish association.
Additionally, they can provide information regarding the timing of conditions, which may
prompt further investigation into understanding the progression and evolution of disease,
as well as potential timing for early intervention. Notably, computational phenotypes may
be difficult to interpret if they are redundant, have many features with similar weight, or do
not make clinical sense. Many improvements upon the base PARAFAC tensor factorization
have been made to address these problems specifically for temporal EHR phenotyping [24].
However, in this work, we focused on the baseline approach due to its wide accessibility.

While we did not identify a singular superior, interpretable machine learning model,
we identified several strengths and weaknesses. Overall, random forest, logistic regression,
and TGFNN performed best. All models exhibit good calibration. In a similar AMI
prediction study, [11] presents poor model calibration results. As the authors state, poor
calibration in [11] is likely a result of very severe class imbalance, whereas in this work
we limit class imbalance via the downsampling of matched negative samples and class-
weighted loss functions. Some models, like EBM and TabNet, displayed very poor recall
and F1 scores due to biased class predictions. They also showed low concordance in feature
importance between cross-validation instances. It is likely that these models were not well
suited for this particular dataset and task. The TGFNN provides clear rules for predictions,
making it perhaps the most interpretable of the models. The rule-based nature of TGFNN
well reflects how clinicians make decisions and identify patterns. We anticipate that the
further development of TGFNN and other interpretable rule-based models will aid clinical
adoption. Still, in the example presented in Figure 5, interpretation can be difficult if
“medium” concepts cannot be clarified. Logistic regression and random forest both showed
some of the best performance and consistency of feature importance. These models are
often too simplistic to solve difficult tasks; however, in this case, deriving features from
computational phenotypes improved performance.

This study has several limitations that affect the applicability and bias of results. First,
the employed cohort of patients comes from a single hospital system and is predominantly
elderly and white. We excluded data on procedures received by patients. We employed
mRMR feature selection, which may not find the optimal set of features. Additionally,
the interpretation of important features showed high variability between and even within
models. We note that while similar studies attempting to predict AMI, such as the work
carried out in [11], show higher AUROC values, this work attempts a potentially more
difficult task to predict AMI events within a cohort without pre-existing cardiac conditions.
Future work could address these limitations by expanding the cohort inclusion criteria,
incorporating data from multiple healthcare systems, as well as using computational
methods to explore the causal relationships between clinical features and AMI onset.

In conclusion, we suggest that temporal, computational phenotyping can improve the
utility of outpatient EHRs in both predicting the risk of AMI in otherwise low-risk patients
and identifying novel risk factors for further investigation. Additionally, we demonstrate
that interpretable machine learning models can consistently identify important risk factors
and accurately predict a future AMI event in patients without pre-existing cardiovascular
conditions, using only outpatient data. We note that model-derived feature importance
scores may be discordant, and encourage researchers to validate findings. We anticipate
that these findings will promote further development in computational and machine
learning approaches to identify novel phenotypes that can aid clinicians in understanding,
predicting, and preventing AMI and subsequent hospitalization.
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Figure A1. Cont.
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(c) (d)

Figure A1. The predictive performance of random forest using features from different rank decompo-
sitions. The lines (blue = training set, orange = validation set) show the mean score of three replicates,
with shaded regions showing 95% confidence intervals. (a) Mean AUROC of lab/vital phenotypes;
(b) mean AUPRC of lab/vital phenotypes; (c) mean AUROC of Dx/Rx phenotypes; (d) mean AUPRC
of Dx/Rx phenotypes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A2. The predictive performance of random forest using different-sized feature sets selected by
mRMR. The lines (blue = training set, orange = validation set) show the mean score of three replicates,
with shaded regions showing 95% confidence intervals. (a) AUROC for phenotypes; (b) AUPRC for
phenotypes; (c) F1 for phenotypes; (d) AUROC for latest, demo.; (e) AUPRC for latest, demo.; (f) F1
for latest, demo.; (g) AUROC for summary statistics; (h) AUPRC for summary statistics; (i) F1 for
summary statistics.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A3. The predictive performance of random forest using different-sized feature sets selected by
mRMR. The lines (blue = training set, orange = validation set) show the mean score of three replicates,
with shaded regions showing 95% confidence intervals. (a) AUROC for latest, demo., statistics;
(b) AUPRC for latest, demo., statistics; (c) F1 for latest, demo., statistics; (d) AUROC for latest,
demo., phenotypes; (e) AUPRC for latest, demo., phenotypes; (f) F1 for latest, demo., phenotypes;
(g) AUROC for All; (h) AUPRC for All; (i) F1 for All.

Table A1. Model cross-validation results on training set.

Feature Set Model AUROC AUPRC F1 Precision Recall

All

DT 0.682 ± 0.01 0.514 ± 0.024 0.526 ± 0.023 0.488 ± 0.038 0.577 ± 0.061
EBM 0.796 ± 0.011 0.669 ± 0.014 0.418 ± 0.047 0.776 ± 0.016 0.288 ± 0.045
LR 0.677 ± 0.01 0.512 ± 0.011 0.528 ± 0.009 0.479 ± 0.01 0.588 ± 0.009
RF 0.729 ± 0.004 0.562 ± 0.006 0.575 ± 0.004 0.505 ± 0.005 0.666 ± 0.006

TGFNN 0.647 ± 0.027 0.489 ± 0.025 0.458 ± 0.04 0.478 ± 0.048 0.455 ± 0.096
TNET 0.672 ± 0.019 0.513 ± 0.05 0.318 ± 0.097 0.611 ± 0.018 0.224 ± 0.094
XGB 0.682 ± 0.006 0.511 ± 0.005 0.526 ± 0.009 0.462 ± 0.006 0.612 ± 0.024

Latest, demo., phenotypes

DT 0.712 ± 0.011 0.547 ± 0.011 0.557 ± 0.009 0.484 ± 0.029 0.664 ± 0.064
EBM 0.736 ± 0.017 0.591 ± 0.022 0.232 ± 0.134 0.783 ± 0.123 0.146 ± 0.092
LR 0.655 ± 0.011 0.482 ± 0.011 0.505 ± 0.012 0.458 ± 0.014 0.562 ± 0.009
RF 0.698 ± 0.005 0.529 ± 0.006 0.545 ± 0.001 0.475 ± 0.004 0.638 ± 0.005

TGFNN 0.537 ± 0.008 0.36 ± 0.005 0.464 ± 0.008 0.343 ± 0.003 0.717 ± 0.031
TNET 0.674 ± 0.015 0.511 ± 0.039 0.331 ± 0.109 0.596 ± 0.009 0.241 ± 0.117
XGB 0.652 ± 0.01 0.469 ± 0.014 0.506 ± 0.008 0.445 ± 0.008 0.586 ± 0.017
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Table A1. Cont.

Feature Set Model AUROC AUPRC F1 Precision Recall

Latest, demo., statistics

DT 0.65 ± 0.01 0.477 ± 0.008 0.526 ± 0.011 0.429 ± 0.02 0.686 ± 0.071
EBM 0.715 ± 0.013 0.568 ± 0.018 0.19 ± 0.094 0.771 ± 0.05 0.113 ± 0.063
LR 0.635 ± 0.01 0.475 ± 0.012 0.48 ± 0.005 0.438 ± 0.01 0.532 ± 0.007
RF 0.708 ± 0.007 0.559 ± 0.004 0.545 ± 0.005 0.489 ± 0.012 0.617 ± 0.01

TGFNN 0.634 ± 0.015 0.479 ± 0.017 0.506 ± 0.006 0.344 ± 0.012 0.96 ± 0.052
TNET 0.616 ± 0.02 0.458 ± 0.058 0.246 ± 0.093 0.563 ± 0.016 0.164 ± 0.084
XGB 0.716 ± 0.01 0.568 ± 0.008 0.549 ± 0.013 0.502 ± 0.012 0.607 ± 0.021

Latest, demographics

DT 0.652 ± 0.012 0.489 ± 0.021 0.508 ± 0.018 0.445 ± 0.018 0.595 ± 0.063
EBM 0.646 ± 0.018 0.49 ± 0.019 0.051 ± 0.052 0.867 ± 0.126 0.027 ± 0.028
LR 0.632 ± 0.016 0.476 ± 0.019 0.469 ± 0.019 0.44 ± 0.013 0.504 ± 0.027
RF 0.627 ± 0.013 0.449 ± 0.013 0.504 ± 0.01 0.423 ± 0.012 0.622 ± 0.017

TGFNN 0.583 ± 0.035 0.402 ± 0.028 0.381 ± 0.213 0.311 ± 0.174 0.493 ± 0.277
TNET 0.655 ± 0.017 0.493 ± 0.048 0.193 ± 0.102 0.673 ± 0.024 0.119 ± 0.08
XGB 0.613 ± 0.015 0.421 ± 0.013 0.465 ± 0.012 0.421 ± 0.013 0.519 ± 0.026

Phenotypes

DT 0.684 ± 0.012 0.498 ± 0.017 0.542 ± 0.007 0.482 ± 0.035 0.625 ± 0.057
EBM 0.726 ± 0.033 0.579 ± 0.044 0.158 ± 0.162 0.85 ± 0.116 0.099 ± 0.111
LR 0.631 ± 0.018 0.456 ± 0.018 0.484 ± 0.009 0.442 ± 0.018 0.535 ± 0.02
RF 0.713 ± 0.01 0.559 ± 0.01 0.552 ± 0.007 0.497 ± 0.007 0.621 ± 0.012

TGFNN 0.628 ± 0.013 0.443 ± 0.011 0.498 ± 0.029 0.384 ± 0.042 0.776 ± 0.223
TNET 0.631 ± 0.028 0.457 ± 0.061 0.276 ± 0.201 0.531 ± 0.033 0.242 ± 0.235
XGB 0.726 ± 0.012 0.568 ± 0.021 0.563 ± 0.013 0.514 ± 0.016 0.623 ± 0.011

Summary statistics

DT 0.664 ± 0.006 0.512 ± 0.011 0.462 ± 0.032 0.531 ± 0.06 0.421 ± 0.073
EBM 0.717 ± 0.031 0.575 ± 0.043 0.162 ± 0.13 0.846 ± 0.099 0.096 ± 0.084
LR 0.629 ± 0.01 0.478 ± 0.012 0.464 ± 0.007 0.44 ± 0.014 0.492 ± 0.004
RF 0.711 ± 0.004 0.567 ± 0.005 0.555 ± 0.005 0.486 ± 0.007 0.646 ± 0.01

TGFNN 0.633 ± 0.02 0.477 ± 0.023 0.506 ± 0.004 0.381 ± 0.056 0.828 ± 0.212
TNET 0.592 ± 0.013 0.435 ± 0.077 0.164 ± 0.099 0.592 ± 0.043 0.1 ± 0.069
XGB 0.721 ± 0.009 0.572 ± 0.008 0.559 ± 0.006 0.512 ± 0.011 0.615 ± 0.003

Table A2. Model cross-validation results on validation set.

Feature Set Model AUROC AUPRC F1 Precision Recall

All

DT 0.596 ± 0.033 0.422 ± 0.042 0.444 ± 0.029 0.424 ± 0.045 0.479 ± 0.078
EBM 0.671 ± 0.043 0.508 ± 0.061 0.292 ± 0.034 0.622 ± 0.13 0.197 ± 0.041
LR 0.634 ± 0.032 0.469 ± 0.05 0.483 ± 0.045 0.448 ± 0.039 0.534 ± 0.089
RF 0.643 ± 0.045 0.466 ± 0.06 0.495 ± 0.016 0.45 ± 0.046 0.56 ± 0.054

TGFNN 0.614 ± 0.042 0.457 ± 0.053 0.42 ± 0.077 0.441 ± 0.039 0.42 ± 0.138
TNET 0.566 ± 0.018 0.387 ± 0.224 0.156 ± 0.108 0.442 ± 0.252 0.1 ± 0.079
XGB 0.583 ± 0.025 0.414 ± 0.034 0.439 ± 0.042 0.396 ± 0.028 0.504 ± 0.099

Latest, demo., phenotypes

DT 0.586 ± 0.028 0.414 ± 0.03 0.452 ± 0.029 0.405 ± 0.038 0.522 ± 0.085
EBM 0.642 ± 0.034 0.469 ± 0.053 0.165 ± 0.104 0.518 ± 0.125 0.106 ± 0.073
LR 0.632 ± 0.039 0.465 ± 0.053 0.48 ± 0.049 0.447 ± 0.049 0.528 ± 0.085
RF 0.64 ± 0.048 0.464 ± 0.06 0.496 ± 0.023 0.443 ± 0.049 0.571 ± 0.049

TGFNN 0.532 ± 0.014 0.357 ± 0.007 0.46 ± 0.026 0.339 ± 0.009 0.718 ± 0.086
TNET 0.576 ± 0.02 0.39 ± 0.226 0.156 ± 0.111 0.467 ± 0.272 0.098 ± 0.072
XGB 0.606 ± 0.024 0.425 ± 0.026 0.467 ± 0.023 0.412 ± 0.019 0.546 ± 0.069

Latest, demo., statistics

DT 0.596 ± 0.03 0.411 ± 0.022 0.485 ± 0.033 0.395 ± 0.026 0.633 ± 0.075
EBM 0.641 ± 0.041 0.487 ± 0.048 0.152 ± 0.045 0.641 ± 0.128 0.088 ± 0.031
LR 0.619 ± 0.039 0.464 ± 0.05 0.464 ± 0.049 0.427 ± 0.034 0.517 ± 0.096
RF 0.634 ± 0.039 0.472 ± 0.052 0.474 ± 0.04 0.425 ± 0.032 0.543 ± 0.081

TGFNN 0.615 ± 0.037 0.461 ± 0.05 0.507 ± 0.009 0.344 ± 0.013 0.962 ± 0.05
TNET 0.562 ± 0.022 0.391 ± 0.229 0.146 ± 0.086 0.472 ± 0.282 0.087 ± 0.054
XGB 0.594 ± 0.013 0.431 ± 0.022 0.437 ± 0.019 0.397 ± 0.007 0.488 ± 0.044
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Table A2. Cont.

Feature Set Model AUROC AUPRC F1 Precision Recall

Latest, demographics

DT 0.575 ± 0.03 0.398 ± 0.03 0.456 ± 0.032 0.4 ± 0.03 0.535 ± 0.074
EBM 0.617 ± 0.059 0.46 ± 0.072 0.025 ± 0.036 0.556 ± 0.37 0.013 ± 0.02
LR 0.618 ± 0.063 0.464 ± 0.075 0.444 ± 0.1 0.42 ± 0.048 0.495 ± 0.168
RF 0.602 ± 0.048 0.423 ± 0.054 0.454 ± 0.095 0.399 ± 0.039 0.551 ± 0.177

TGFNN 0.57 ± 0.051 0.391 ± 0.049 0.353 ± 0.217 0.298 ± 0.168 0.476 ± 0.352
TNET 0.556 ± 0.029 0.385 ± 0.228 0.106 ± 0.074 0.513 ± 0.298 0.06 ± 0.042
XGB 0.584 ± 0.047 0.4 ± 0.046 0.45 ± 0.05 0.396 ± 0.052 0.531 ± 0.086

Phenotypes

DT 0.584 ± 0.048 0.408 ± 0.047 0.462 ± 0.053 0.411 ± 0.035 0.53 ± 0.089
EBM 0.632 ± 0.054 0.462 ± 0.065 0.106 ± 0.111 0.428 ± 0.26 0.07 ± 0.084
LR 0.603 ± 0.065 0.434 ± 0.071 0.465 ± 0.046 0.42 ± 0.059 0.523 ± 0.037
RF 0.64 ± 0.064 0.475 ± 0.078 0.493 ± 0.035 0.445 ± 0.062 0.559 ± 0.028

TGFNN 0.605 ± 0.064 0.426 ± 0.069 0.5 ± 0.042 0.393 ± 0.057 0.772 ± 0.235
TNET 0.547 ± 0.024 0.363 ± 0.331 0.069 ± 0.073 0.381 ± 0.35 0.038 ± 0.041
XGB 0.607 ± 0.045 0.444 ± 0.066 0.47 ± 0.018 0.427 ± 0.037 0.528 ± 0.032

Summary statistics

DT 0.552 ± 0.02 0.382 ± 0.012 0.357 ± 0.044 0.408 ± 0.06 0.336 ± 0.084
EBM 0.631 ± 0.046 0.477 ± 0.048 0.126 ± 0.101 0.685 ± 0.209 0.078 ± 0.07
LR 0.605 ± 0.04 0.454 ± 0.047 0.447 ± 0.017 0.418 ± 0.036 0.484 ± 0.029
RF 0.613 ± 0.041 0.454 ± 0.049 0.465 ± 0.02 0.404 ± 0.035 0.553 ± 0.051

TGFNN 0.602 ± 0.044 0.447 ± 0.047 0.484 ± 0.031 0.353 ± 0.018 0.817 ± 0.223
TNET 0.544 ± 0.021 0.361 ± 0.33 0.051 ± 0.049 0.44 ± 0.403 0.027 ± 0.026
XGB 0.591 ± 0.02 0.432 ± 0.023 0.437 ± 0.024 0.4 ± 0.027 0.485 ± 0.049

Table A3. Model cross-validation results on test set.

Feature Set Model AUROC AUPRC F1 Precision Recall

All

DT 0.583 ± 0.018 0.407 ± 0.021 0.432 ± 0.033 0.4 ± 0.016 0.478 ± 0.079
EBM 0.674 ± 0.003 0.494 ± 0.004 0.294 ± 0.033 0.558 ± 0.025 0.202 ± 0.034
LR 0.663 ± 0.005 0.478 ± 0.003 0.503 ± 0.006 0.446 ± 0.005 0.576 ± 0.016
RF 0.652 ± 0.002 0.458 ± 0.004 0.5 ± 0.005 0.439 ± 0.006 0.581 ± 0.014

TGFNN 0.636 ± 0.016 0.463 ± 0.01 0.441 ± 0.03 0.46 ± 0.043 0.438 ± 0.092
TNET 0.615 ± 0.02 0.429 ± 0.017 0.253 ± 0.091 0.49 ± 0.033 0.182 ± 0.094
XGB 0.609 ± 0.011 0.416 ± 0.01 0.465 ± 0.023 0.405 ± 0.01 0.546 ± 0.049

Latest, demo., phenotypes

DT 0.596 ± 0.008 0.412 ± 0.016 0.464 ± 0.018 0.404 ± 0.018 0.551 ± 0.067
EBM 0.662 ± 0.007 0.479 ± 0.006 0.18 ± 0.106 0.597 ± 0.045 0.113 ± 0.071
LR 0.661 ± 0.003 0.478 ± 0.004 0.502 ± 0.01 0.45 ± 0.003 0.567 ± 0.022
RF 0.651 ± 0.004 0.459 ± 0.005 0.5 ± 0.005 0.439 ± 0.007 0.58 ± 0.011

TGFNN 0.537 ± 0.007 0.349 ± 0.003 0.465 ± 0.007 0.341 ± 0.003 0.732 ± 0.026
TNET 0.617 ± 0.01 0.438 ± 0.016 0.274 ± 0.095 0.499 ± 0.039 0.204 ± 0.113
XGB 0.597 ± 0.013 0.411 ± 0.008 0.45 ± 0.015 0.395 ± 0.01 0.524 ± 0.031

Latest, demo., statistics

DT 0.575 ± 0.007 0.389 ± 0.006 0.464 ± 0.019 0.374 ± 0.009 0.618 ± 0.074
EBM 0.631 ± 0.004 0.458 ± 0.004 0.151 ± 0.058 0.575 ± 0.056 0.089 ± 0.04
LR 0.623 ± 0.004 0.452 ± 0.004 0.468 ± 0.009 0.416 ± 0.002 0.536 ± 0.025
RF 0.625 ± 0.004 0.453 ± 0.005 0.467 ± 0.004 0.41 ± 0.007 0.544 ± 0.015

TGFNN 0.619 ± 0.002 0.452 ± 0.003 0.498 ± 0.002 0.337 ± 0.01 0.955 ± 0.06
TNET 0.575 ± 0.007 0.4 ± 0.01 0.209 ± 0.081 0.481 ± 0.039 0.142 ± 0.077
XGB 0.591 ± 0.004 0.407 ± 0.003 0.444 ± 0.006 0.4 ± 0.009 0.5 ± 0.012

Latest, demographics

DT 0.581 ± 0.011 0.402 ± 0.013 0.451 ± 0.02 0.391 ± 0.013 0.539 ± 0.065
EBM 0.619 ± 0.003 0.456 ± 0.003 0.04 ± 0.039 0.747 ± 0.153 0.021 ± 0.021
LR 0.622 ± 0.002 0.454 ± 0.003 0.459 ± 0.009 0.427 ± 0.007 0.496 ± 0.02
RF 0.603 ± 0.004 0.415 ± 0.005 0.471 ± 0.016 0.396 ± 0.007 0.585 ± 0.049

TGFNN 0.586 ± 0.043 0.412 ± 0.04 0.385 ± 0.215 0.314 ± 0.176 0.499 ± 0.282
TNET 0.594 ± 0.007 0.424 ± 0.006 0.166 ± 0.081 0.553 ± 0.069 0.105 ± 0.072
XGB 0.587 ± 0.004 0.388 ± 0.008 0.443 ± 0.014 0.394 ± 0.004 0.508 ± 0.034
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Table A3. Cont.

Feature Set Model AUROC AUPRC F1 Precision Recall

Phenotypes

DT 0.597 ± 0.006 0.403 ± 0.01 0.462 ± 0.014 0.41 ± 0.019 0.534 ± 0.055
EBM 0.646 ± 0.005 0.454 ± 0.007 0.098 ± 0.117 0.296 ± 0.27 0.063 ± 0.08
LR 0.631 ± 0.003 0.44 ± 0.004 0.477 ± 0.004 0.43 ± 0.006 0.536 ± 0.017
RF 0.651 ± 0.002 0.463 ± 0.006 0.493 ± 0.004 0.442 ± 0.004 0.56 ± 0.015

TGFNN 0.616 ± 0.005 0.421 ± 0.01 0.488 ± 0.039 0.377 ± 0.039 0.766 ± 0.236
TNET 0.601 ± 0.019 0.413 ± 0.016 0.231 ± 0.184 0.442 ± 0.071 0.224 ± 0.237
XGB 0.627 ± 0.013 0.441 ± 0.01 0.463 ± 0.014 0.425 ± 0.011 0.508 ± 0.025

Summary statistics

DT 0.557 ± 0.012 0.384 ± 0.012 0.366 ± 0.043 0.413 ± 0.039 0.341 ± 0.077
EBM 0.621 ± 0.001 0.453 ± 0.005 0.138 ± 0.102 0.647 ± 0.104 0.085 ± 0.068
LR 0.609 ± 0.004 0.445 ± 0.004 0.458 ± 0.005 0.415 ± 0.005 0.51 ± 0.006
RF 0.615 ± 0.004 0.44 ± 0.006 0.475 ± 0.003 0.407 ± 0.005 0.572 ± 0.015

TGFNN 0.601 ± 0.007 0.436 ± 0.008 0.486 ± 0.017 0.359 ± 0.035 0.816 ± 0.227
TNET 0.556 ± 0.017 0.385 ± 0.011 0.147 ± 0.094 0.464 ± 0.032 0.095 ± 0.071
XGB 0.578 ± 0.009 0.395 ± 0.011 0.436 ± 0.014 0.392 ± 0.007 0.491 ± 0.026

Table A4. Results from Friedman’s test on feature set mean model performance.

Metric p-Value

AUROC 2.79 × 10−20

AUPRC 1.86 × 10−10

F1 3.68 × 10−7

Precision 1.54 × 10−4

Recall 5.04 × 10−4

Table A5. Statistically significant Nemenyi test results on pairwise feature set mean model perfor-
mance comparison (alpha = 0.05).

Metric Feature Set 1 Feature Set 2 p-Value

AUROC

Phenotypes Summary statistics 0.001
Phenotypes Latest, demographics 0.001

Summary statistics Latest, demo., phenotypes 0.001
Latest, demographics Latest, demo., phenotypes 0.001

Phenotypes Latest, demo., statistics 0.004
Summary statistics Latest, demo., statistics 0.009

Latest, demo., phenotypes Latest, demo., statistics 0.014
Summary statistics All 0.001

Latest, demographics All 0.001
Latest, demo., statistics All 0.001

AUPRC

Summary statistics Latest, demo., phenotypes 0.001
Latest, demographics Latest, demo., phenotypes 0.006

Latest, demo., phenotypes Latest, demo., statistics 0.047
Phenotypes All 0.005

Summary statistics All 0.001
Latest, demographics All 0.001

Latest, demo., statistics All 0.001

F1

Phenotypes Summary statistics 0.002
Phenotypes Latest, demographics 0.003

Summary statistics Latest, demo., phenotypes 0.001
Latest, demographics Latest, demo., phenotypes 0.001

Summary statistics All 0.001
Latest, demographics All 0.001

Precision
Latest, demo., phenotypes Latest, demo., statistics 0.010

Summary statistics All 0.007
Latest, demo., statistics All 0.001

Recall Summary statistics Latest, demo., phenotypes 0.004
Latest, demographics Latest, demo., phenotypes 0.009
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(a) (b)

(c) (d)

(e)
Figure A4. Results of cross-validation-trained models. These plot show the mean test set scores
of each model on each feature set. Error bars indicate the standard deviation. The lower limit of
the x-axes of the AUROC and AUPRC plots are set to the worst-case scenario of random guessing.
(a) Mean test AUROC; (b) mean test AUPRC; (c) mean test precision; (d) mean test recall; (e) mean
test F1.

Table A6. Results from Friedman’s test on mean model performance on all feature sets.

Metric p-Value

AUROC 7.24 × 10−27

AUPRC 1.06 × 10−23

F1 5.52 × 10−27

Precision 4.66 × 10−22

Recall 5.17 × 10−25
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Table A7. Statistically significant Nemenyi test results on pairwise feature set mean model perfor-
mance comparison (alpha = 0.05).

Metric Model 1 Model 2 p-Value

AUROC

RF TGFNN 0.004
LR TGFNN 0.001
RF XGB 0.001
LR XGB 0.001
RF TNET 0.001
LR TNET 0.001

TGFNN EBM 0.001
XGB EBM 0.001

TNET EBM 0.001
RF DT 0.001
LR DT 0.001

TGFNN DT 0.045
EBM DT 0.001

AUPRC

LR TGFNN 0.018
RF XGB 0.001
LR XGB 0.001
RF TNET 0.004
LR TNET 0.001
RF EBM 0.021

TGFNN EBM 0.001
XGB EBM 0.001

TNET EBM 0.001
RF DT 0.001
LR DT 0.001

TGFNN DT 0.018
EBM DT 0.001

F1

RF XGB 0.001
TGFNN XGB 0.026

RF TNET 0.001
LR TNET 0.001

TGFNN TNET 0.001
XGB TNET 0.003
RF EBM 0.001
LR EBM 0.001

TGFNN EBM 0.001
XGB EBM 0.001
RF DT 0.002

TGFNN DT 0.037
TNET DT 0.002
EBM DT 0.001

Precision

RF TGFNN 0.008
LR TGFNN 0.001
LR XGB 0.014

TGFNN TNET 0.001
XGB TNET 0.001
RF EBM 0.001
LR EBM 0.010

TGFNN EBM 0.001
XGB EBM 0.001
RF DT 0.037
LR DT 0.001

TNET DT 0.001
EBM DT 0.001
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Table A7. Cont.

Metric Model 1 Model 2 p-Value

Recall

RF XGB 0.023
TGFNN XGB 0.005

RF TNET 0.001
LR TNET 0.001

TGFNN TNET 0.001
XGB TNET 0.002
RF EBM 0.001
LR EBM 0.001

TGFNN EBM 0.001
XGB EBM 0.001

TGFNN DT 0.045
TNET DT 0.001
EBM DT 0.001
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