Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. LDCT Image Acquisition
2.3. Automatic vBMD Measurement
2.3.1. Training and Validation Datasets
2.3.2. Model Training
2.3.3. ROI Identification and vBMD Assessment
2.4. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Prevalence of Osteoporosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef] [PubMed]
- Lee, Y.K.; Yoon, B.H.; Koo, K.H. Epidemiology of osteoporosis and osteoporotic fractures in South Korea. Endocrinol. Metab. 2013, 28, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Ha, Y.C.; Kim, T.Y.; Cho, H.; Lee, Y.K.; Baek, J.Y.; Jang, S. Healthcare Costs of Osteoporotic Fracture in Korea: Information from the National Health Insurance Claims Database, 2008–2011. J. Bone Metab. 2017, 24, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Park, S.M.; Park, S.Y.; Yoo, J.I.; Jung, H.S.; Nho, J.H.; Kim, S.H.; Lee, Y.K.; Ha, Y.C.; Jang, S.; et al. Osteoporosis and Osteoporotic Fracture Fact Sheet in Korea. J. Bone Metab. 2020, 27, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Glüer, C.C. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos. Int. 2000, 11, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Orwoll, E.S.; Oviatt, S.K.; Mann, T. The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J. Clin. Endocrinol. Metab. 1990, 70, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Peacock, M.; Eilam, O.; Dorulla, G.; Braunstein, E.; Johnston, C.C. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos. Int. 1997, 7, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.W.; Thomas, B.J.; Brown, J.K.; Finkelstein, J.S. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J. Bone Miner. Res. 2012, 27, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tong, X.; Cheng, Q.; Xiao, Q.; Cui, J.; Li, J.; Liu, Y.; Fang, X. Fully automated deep learning system for osteoporosis screening using chest computed tomography images. Quant. Imaging Med. Surg. 2024, 14, 2816–2827. [Google Scholar] [CrossRef]
- Engelke, K.; Adams, J.E.; Armbrecht, G.; Augat, P.; Bogado, C.E.; Bouxsein, M.L.; Felsenberg, D.; Ito, M.; Prevrhal, S.; Hans, D.B.; et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD Official Positions. J. Clin. Densitom 2008, 11, 123–162. [Google Scholar] [CrossRef]
- Pickhardt, P.J. Value-added Opportunistic CT Screening: State of the Art. Radiology 2022, 303, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Tse, J.J.; Smith, A.C.J.; Kuczynski, M.T.; Kaketsis, D.A.; Manske, S.L. Advancements in Osteoporosis Imaging, Screening, and Study of Disease Etiology. Curr. Osteoporos. Rep. 2021, 19, 532–541. [Google Scholar] [CrossRef]
- Boutin, R.D.; Lenchik, L. Value-Added Opportunistic CT: Insights Into Osteoporosis and Sarcopenia. AJR Am. J. Roentgenol. 2020, 215, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Lenchik, L.; Weaver, A.A.; Ward, R.J.; Boone, J.M.; Boutin, R.D. Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Curr. Rheumatol. Rep. 2018, 20, 74. [Google Scholar] [CrossRef]
- Engelke, K.; Chaudry, O.; Bartenschlager, S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr. Osteoporos. Rep. 2023, 21, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shi, D.; Wang, H.; Chen, T.; Cui, D.; Cheng, X.; Lu, Y. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur. Radiol. 2020, 30, 4107–4116. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, F.; Cheng, G.; Wang, H.; Lu, X.; He, D.; Wu, Y.; Ma, H.; Ph, D.H.; Yu, T. Automated vertebral bone mineral density measurement with phantomless internal calibration in chest LDCT scans using deep learning. Br. J. Radiol. 2023, 96, 20230047. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Huang, Y.; Li, X.; Yan, W.; Lu, X.; Jia, X.; Li, J.; Hu, J.; Sun, T.; Jing, W.; et al. Development and validation of a fully automated system using deep learning for opportunistic osteoporosis screening using low-dose computed tomography scans. Quant. Imaging Med. Surg. 2023, 13, 5294–5305. [Google Scholar] [CrossRef]
- Oh, S.; Kang, W.Y.; Park, H.; Yang, Z.; Lee, J.; Kim, C.; Woo, O.H.; Hong, S.J. Evaluation of deep learning-based quantitative computed tomography for opportunistic osteoporosis screening. Sci. Rep. 2024, 14, 363. [Google Scholar] [CrossRef]
- Löffler, M.T.; Sekuboyina, A.; Jacob, A.; Grau, A.L.; Scharr, A.; El Husseini, M.; Kallweit, M.; Zimmer, C.; Baum, T.; Kirschke, J.S. A Vertebral Segmentation Dataset with Fracture Grading. Radiol. Artif. Intell. 2020, 2, e190138. [Google Scholar] [CrossRef]
- Ahn, C.; Kim, J.H. AntiHalluciNet: A Potential Auditing Tool of the Behavior of Deep Learning Denoising Models in Low-Dose Computed Tomography. Diagnostics 2023, 14, 96. [Google Scholar] [CrossRef]
- Nam, J.G.; Ahn, C.; Choi, H.; Hong, W.; Park, J.; Kim, J.H.; Goo, J.M. Image quality of ultralow-dose chest CT using deep learning techniques: Potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Eur. Radiol. 2021, 31, 5139–5147. [Google Scholar] [CrossRef]
- Yeoh, H.; Hong, S.H.; Ahn, C.; Choi, J.Y.; Chae, H.D.; Yoo, H.J.; Kim, J.H. Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT. Korean J. Radiol. 2021, 22, 1850–1857. [Google Scholar] [CrossRef]
- ACo., R. ACR–SPR–SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF QUANTITATIVE COMPUTED TOMOGRAPHY (QCT) BONE MINERAL DENSITY. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf (accessed on 1 March 2024).
- Jacobson, J.A.; Jamadar, D.A.; Hayes, C.W. Dual X-ray absorptiometry: Recognizing image artifacts and pathology. AJR Am. J. Roentgenol. 2000, 174, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, F.; Allaire, B.; Kopperdahl, D.L.; Keaveny, T.M.; Sigurdsson, S.; Bredella, M.A.; Anderson, D.E.; Samelson, E.J.; Kiel, D.P.; Gudnason, V.G.; et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos. Int. 2021, 32, 261–269. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Graffy, P.M.; Zea, R.; Lee, S.J.; Liu, J.; Sandfort, V.; Summers, R.M. Automated Abdominal CT Imaging Biomarkers for Opportunistic Prediction of Future Major Osteoporotic Fractures in Asymptomatic Adults. Radiology 2020, 297, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, J.H.; Yoon, S.H.; Lee, J.H.; Lee, C.H.; Shin, C.S.; Park, Y.S. Vertebral bone attenuation on low-dose chest CT: Quantitative volumetric analysis for bone fragility assessment. Osteoporos. Int. 2017, 28, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Bae, S.H.; Lee, S.H.; Lee, J.; Lee, D.R. New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: The Korea National Health and Nutrition Examination Survey 2008–2010. J. Korean Med. Sci. 2014, 29, 1514–1522. [Google Scholar] [CrossRef]
- Cui, L.H.; Choi, J.S.; Shin, M.H.; Kweon, S.S.; Park, K.S.; Lee, Y.H.; Nam, H.S.; Jeong, S.K.; Im, J.S. Prevalence of osteoporosis and reference data for lumbar spine and hip bone mineral density in a Korean population. J. Bone Miner. Metab. 2008, 26, 609–617. [Google Scholar] [CrossRef]
- Park, E.J.; Joo, I.W.; Jang, M.J.; Kim, Y.T.; Oh, K.; Oh, H.J. Prevalence of osteoporosis in the Korean population based on Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2011. Yonsei Med. J. 2014, 55, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhao, K.; Zha, X.; Du, X.; Li, Y.; Chen, S.; Wu, Y.; Li, S.; Lu, Y.; Zhang, Y.; et al. Opportunistic Screening Using Low-Dose CT and the Prevalence of Osteoporosis in China: A Nationwide, Multicenter Study. J. Bone Miner. Res. 2021, 36, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Li, N.; Li, K.; Li, X.Y.; Zhang, P.; Xuan, Y.J.; Cheng, X.G. Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J. Orthop. Translat 2019, 18, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Ruggiero, C.; Meccariello, L.; Bisaccia, M.; Ceccarini, P.; Caraffa, A. Osteoporosis in Men: A Review of an Underestimated Bone Condition. Int. J. Mol. Sci. 2021, 22, 2105. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Lim, J.H.; Nguyen, D.; Okamura, R.; Amiri, H.M.; Calmes, M.; Nugent, K. Screening for osteoporosis in men aged 70 years and older in a primary care setting in the United States. Am. J. Mens. Health 2013, 7, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Einstadter, D.; Magrey, M. Screening and treatment of osteoporosis after hip fracture: Comparison of sex and race. J. Clin. Densitom. 2014, 17, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Kiebzak, G.M.; Beinart, G.A.; Perser, K.; Ambrose, C.G.; Siff, S.J.; Heggeness, M.H. Undertreatment of osteoporosis in men with hip fracture. Arch. Intern. Med. 2002, 162, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.C.; Melton, L.J., 3rd; Borrud, L.G.; Shepherd, J.A. Lumbar spine bone mineral density in US adults: Demographic patterns and relationship with femur neck skeletal status. Osteoporos. Int. 2012, 23, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Al-Bashaireh, A.M.; Haddad, L.G.; Weaver, M.; Chengguo, X.; Kelly, D.L.; Yoon, S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018, 2018, 1206235. [Google Scholar] [CrossRef] [PubMed]
Center | n | CT Manufacturer | Tube Voltage | Slice Thickness |
---|---|---|---|---|
1 | 1157 | Siemens (1108) | 100 kVp (104) | 3 mm |
120 kVp (1052) | ||||
Canon (49) | ||||
135 kVp (1) | ||||
2 | 1007 | GE (449) | 120 kVp (1007) | 0.668 mm (1) |
1.25 mm (1) | ||||
Philips (520) | 2.5 mm (895) | |||
3 mm (3) | ||||
Canon (38) | 4 mm (106) | |||
10 mm (1) |
Age | n | Both | n | Female | n | Male |
---|---|---|---|---|---|---|
20~24 | 39 | 155.00 (141.00–176.00) | 16 | 165.24 (153.67–177.72) | 23 | 151.40 (132.49–167.10) |
25~29 | 89 | 153.00 (138.00–170.50) | 41 | 156.83 (139.40–181.70) | 48 | 150.48 (135.41–165.52) |
30~34 | 82 | 151.00 (132.00–169.00) | 38 | 155.76 (139.50–187.07) | 44 | 147.23 (128.27–167.42) |
35~39 | 133 | 147.00 (125.50–161.50) | 48 | 153.54 (138.55–171.79) | 85 | 144.59 (122.23–158.32) |
40~44 | 169 | 150.00 (127.00–170.50) | 85 | 155.13 (133.80–173.66) | 84 | 146.16 (123.29- 161.82) |
45~49 | 171 | 141.00 (125.00–166.00) | 86 | 150.37 (135.17–173.15) | 85 | 133.47 (117.64- 159.32) |
50~54 | 163 | 123.00 (105.00–146.00) | 77 | 119.54 (101.83–141.69) | 86 | 127.93 (107.57–147.40) |
55~59 | 163 | 115.00 (92.00–138.00) | 80 | 107.02 (87.47–126.80) | 83 | 121.98 (96.35–143.29) |
60~65 | 181 | 100.00 (85.00–116.50) | 92 | 92.28 (80.43–112.78) | 89 | 105.24 (91.68–126.81) |
65~69 | 197 | 91.00 (72.50–117.00) | 97 | 81.80 (62.52–103.53) | 100 | 102.25 (82.98–127.53) |
70~74 | 176 | 81.50 (61.25–110.00) | 86 | 70.98 (53.83–92.41) | 90 | 94.65 (74.89–129.30) |
75~79 | 154 | 71.50 (55.75–94.00) | 82 | 65.55 (43.70–81.64) | 72 | 84.33 (64.70–104.40) |
80~84 | 126 | 71.50 (48.50–101.25) | 49 | 68.16 (40.80–92.54) | 77 | 73.36 (55.59–105.58) |
85~ | 72 | 69.50 (50.25–115.50) | 31 | 60.07 (41.82–92.57) | 41 | 86.08 (25.44–123.80) |
Total | Men | Women | ||||
---|---|---|---|---|---|---|
Parameter | n (%) | Age-Standardized (%) | n (%) | Age-Standardized (%) | n (%) | Age-Standardized (%) |
Current LDCT study | 1915 | 1007 | 908 | |||
≥50 years (N) | 1232 | 638 | 594 | |||
Osteoporosis | 424 (34.4) | 26.3 | 171 (26.8) | 18.0 | 253 (42.6) | 34.9 |
Osteopenia | 480 (39.0) | 42.0 | 254 (39.8) | 42.4 | 226 (38.0) | 41.5 |
Published DXA data | ||||||
≥50 years | ||||||
Osteoporosis | 22.4 | 7.5 | 37.3 | |||
Osteopenia | 47.9 | 46.8 | 48.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.Y.; Yang, Z.; Park, H.; Lee, J.; Hong, S.-J.; Shim, E.; Woo, O.H. Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population. Diagnostics 2024, 14, 1789. https://doi.org/10.3390/diagnostics14161789
Kang WY, Yang Z, Park H, Lee J, Hong S-J, Shim E, Woo OH. Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population. Diagnostics. 2024; 14(16):1789. https://doi.org/10.3390/diagnostics14161789
Chicago/Turabian StyleKang, Woo Young, Zepa Yang, Heejun Park, Jemyoung Lee, Suk-Joo Hong, Euddeum Shim, and Ok Hee Woo. 2024. "Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population" Diagnostics 14, no. 16: 1789. https://doi.org/10.3390/diagnostics14161789
APA StyleKang, W. Y., Yang, Z., Park, H., Lee, J., Hong, S. -J., Shim, E., & Woo, O. H. (2024). Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population. Diagnostics, 14(16), 1789. https://doi.org/10.3390/diagnostics14161789