
Citation: Almufadi, N.; Alhasson, H.F.

Classification of Diabetic Foot Ulcers

from Images Using Machine Learning

Approach. Diagnostics 2024, 14, 1807.

https://doi.org/10.3390/

diagnostics14161807

Received: 18 July 2024

Revised: 12 August 2024

Accepted: 14 August 2024

Published: 19 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Classification of Diabetic Foot Ulcers from Images Using
Machine Learning Approach
Nouf Almufadi and Haifa F. Alhasson *

Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
* Correspondence: hhson@qu.edu.sa

Abstract: Diabetic foot ulcers (DFUs) represent a significant and serious challenge associated with
diabetes. It is estimated that approximately one third of individuals with diabetes will develop
DFUs at some point in their lives. This common complication can lead to serious health issues if
not properly managed. The early diagnosis and treatment of DFUs are crucial to prevent severe
complications, including lower limb amputation. DFUs can be categorized into two states: ischemia
and infection. Accurate classification is required to avoid misdiagnosis due to the similarities
between these two states. Several convolutional neural network (CNN) models have been used and
pre-trained through transfer learning. These models underwent evaluation with hyperparameter
tuning for the binary classification of different states of DFUs, such as ischemia and infection. This
study aimed to develop an effective classification system for DFUs using CNN models and machine
learning classifiers utilizing various CNN models, such as EfficientNetB0, DenseNet121, ResNet101,
VGG16, InceptionV3, MobileNetV2, and InceptionResNetV2, due to their excellent performance in
diverse computer vision tasks. Additionally, the head model functions as the ultimate component
for making decisions in the model, utilizing data collected from preceding layers to make precise
predictions or classifications. The results of the CNN models with the suggested head model have
been used in different machine learning classifiers to determine which ones are most effective for
enhancing the performance of each CNN model. The most optimal outcome in categorizing ischemia
is a 97% accuracy rate. This was accomplished by integrating the suggested head model with
the EfficientNetB0 model and inputting the outcomes into the logistic regression classifier. The
EfficientNetB0 model, with the proposed modifications and by feeding the outcomes to the AdaBoost
classifier, attains an accuracy of 93% in classifying infections.

Keywords: diabetics; diabetic foot ulcers; convolutional neural networks; deep learning; diagnosis;
transfer learning; image classifier

1. Introduction

Diabetes is a chronic condition caused by high blood sugar levels. There are two main
types: one due to insufficient insulin production and the other from ineffective insulin
use in the body [1]. Diabetes may lead to severe health issues that can be life-threatening,
including the formation of Diabetic Foot Ulcers (DFUs) [2]. DFUs present a significant
complication of diabetes, associated with peripheral vascular disease and nervous system
dysfunction. The formation of DFUs results from reduced blood flow and nerve damage,
which can lead to tissue damage and poor wound healing [3].

The lifetime risk of an individual with diabetes developing a DFU is approximately
34%, indicating that roughly one out of every three diabetes patients is likely to experience
this complication [4]. DFUs have a high recurrence rate, with 40% after the first year of
occurrence and approximately 60% within three years [4]. The mismanagement and lack of
acknowledgment of diabetic foot sores can result in the need for lower limb amputation.
More than one million patients with diabetes in the United States undergo amputation as a
result of diabetes each year [5].
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The continuous assessment of patients with DFUs is crucial for healthcare profession-
als to monitor healing progress and determine the most suitable medication to prevent
complications [6–8]. DFUs can be attributed to two primary factors: ischemia, resulting
from limited blood flow, and infection, stemming from bacterial invasion in the affected
wound sites. Limb loss within three years is a risk for 40% of patients with ischemia, mainly
due to the potential for infection [9]. Approximately 56% of DFU cases result in infection,
with 20% of these infections ultimately leading to limb amputation [10–12].

DFUs have a negative impact on a patient’s quality of life and lead to an increased eco-
nomic burden. Improved classification methods and the early identification of DFUs play
crucial roles in providing timely intervention, accurate diagnosis, and efficient treatment to
minimize the associated consequences. Conventional approaches for assessing DFUs, such
as blood tests, physical examinations, and Doppler studies of leg blood vessels, are both
expensive and time-consuming.

Automated telemedicine systems can use Machine Learning (ML) and Deep Learning
(DL) techniques to assess ischemia and infection in DFUs based on the visual character-
istics of images. Ischemia is indicated by tissue death leading to black gangrenous toes,
while indicators of infection include purulent coloration and redness in and around the
ulcer [13]. Spotting infections and ischemia is essential for evaluating the healing process
and minimizing the chance of amputation.

The main contributions of this study are as follows:

• Explored and evaluated different ML models, and fed their results to modified versions
of different CNNs pre-trained on the DFU-Part (B) dataset to perform the binary
classification of infection and ischemia.

• Investigated the impact of feeding the results of the pre-trained models and the
proposed model to different ML classifiers on enhancing the results of the models.

2. Related Work

The number of studies that use ML and DL algorithms to detect or classify DFU images
has increased in recent years due to the importance of developing more efficient DFU assess-
ment automatic intelligent telemedicine systems to assist in diagnosing DFUs correctly and
rapidly, rather than using traditional methods, which are costly and time-consuming.

The authors of [14] presented novel DL methods for the real-time detection of DFU.
The method incorporates several stages, including using a CNN as a feature extractor, the
generation of proposals and refinement, and finally, a region of interest (ROI) classifier and
bounding box regressor. Moreover, Cruz et al. [15] aimed to classify patterns in thermal
images of patients with diabetes mellitus into five distinct levels. The study sought to
evaluate the effectiveness of conventional classifiers, such as artificial neural networks
(ANN) and support vector machines (SVM), as well as more contemporary and relevant
classifiers, such as convolutional neural networks (CNNs) for pattern classification in
thermal images. The researchers in [16] used four different models to detect DFU, including
single-shot detectors MobileNet (SSD-MobileNet), SSD-InceptionV2, Faster R-CNN with
InceptionV2, and R-FCN with ResNet 101. However, this study focused on classifying
DFU images for the binary classification of infection and ischemia. Therefore, this section
includes an overview of previous studies that focused on classifying DFU images into
binary classifications of infection and ischemia using ML and DL algorithms.

An ensemble approach based on CNN was utilized in [17] to integrate different
CNN pre-trained models and then feed the model results into the SVM algorithm to
produce predictions. The CNN pre-trained models used were the Inception-V3 model,
the InceptionResNetV2 model, and the ResNet50 model. Furthermore, the researchers
proposed a new data-augmentation technique to find the image ROI from foot images
and proposed a new feature descriptor that can extract the color ROIs from DFU images.
The proposed ensemble CNN algorithms achieved an accuracy rate of 90% in ischemia
classification and 73% in infection classification.
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In contrast, a 16-layer CNN model was proposed in [18]. The deep features extracted
from the proposed CNN model are supplied to different classifiers, which are Naive
Bayes (NB), Softmax, Decision Tree (DT), K-nearest Neighbor (KNN), and Ensemble. The
researchers found that the DT and Softmax classifiers achieved the highest results in classi-
fying DFU images for both ischemia and infection classifications across all performance
metrics. For infection classification, the DT achieved promising results with 0.996 accuracy,
and Softmax achieved 0.943 accuracy. For ischemia classification, Softmax achieved 0.976
accuracy, and DT achieved 0.948 accuracy.

Al-Garaawi et al. [19] presented a method based on a CNN that feeds the CNN model
texture information from DFU RGB images. The method includes two stages: using a
technique named mapped binary patterns to extract texture information from the RGB
image, and then using the obtained mapped image containing the texture information as
input for the CNN model to recognize DFUs. The proposed method achieved an accuracy
rate of 99% in recognizing ischemia and 74% in recognizing infection.

The authors of [20] proposed a system that includes several stages, including a feature
extraction stage, followed by a feature fusion stage, and finally a DFU classification stage.
For the feature extraction stage, different types of texture features are extracted using the
GoogLeNet CNN model, including the histogram of oriented gradients (HOG), Gabor,
and deep features. The feature fusion stage combines the extracted feature vectors into
a single feature vector. Finally, the classification stage uses the random forest algorithm
on the fusion vectors to perform DFU classification. The proposed system achieved a 92%
accuracy rate in ischemia classification and 73% in infection classification.

Additionally, the researchers in [21] proposed class knowledge banks (CKBs) to extract
class knowledge from the data and then store it in the CKBs to use for prediction with the
input images and the trained parameters in the networks. The researchers experimented
with different models with the proposed method, and the highest achieved accuracy was
78% for infection recognition, while for ischemia recognition, the highest achieved accuracy
was 90.90%.

Moreover, a new CNN-based approach (ResKNet) is proposed in [22] for ischemia
and infection classification. The approach includes a sequence of different layers, which are
experimented with different networks, starting from Res4Net to Res10Net. The Res4Net
achieved the highest result with 97.8% accuracy for ischemia recognition. For infection recog-
nition, the highest result was achieved by the Res7Net network with 80% accuracy. Table 1
summarizes the studies that implemented binary classification for infection and ischemia.

Table 1. Studies that implemented binary classification for infection and ischemia.

Author [ref.] Year Model Dataset Evaluation
Criteria Result

Goyal et al. [17] 2020

Ensemble CNN
(Inception-V3, In-
ceptionResNetV2,
and ResNet50)

with SVM classifier

DFU-Part (B) Accuracy Ischemia: 90%,
infection: 73%

Amin et al. [18] 2020 Proposed CNN DFU-Part (B) Accuracy Ischemia: 0.976,
infection: 0.996

Al-
Garaawi et al. [19] 2022

Proposed CNN
DFU-RGB-TEX-

NET

DFU-Part (A) and
DFU-Part (B) Accuracy Ischemia: 99%,

Infection: 74%

Al-
Garaawi et al. [20] 2022 GoogLNet CNN

with RF
DFU-Part (A) and

DFU-Part (B) Accuracy Ischemia: 92%
Infection: 73%
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Table 1. Cont.

Author [ref.] Year Model Dataset Evaluation
Criteria Result

Xu et al. [21] 2022

Transformer-based
DeiT model with
class knowledge

banks (CKBs)

DFU-Part (B) Accuracy Ischemia: 90.9%,
infection: 78%

Das et al. [22] 2022 ResKNet DFU-Part (B) Accuracy

Res4Net for
ischemia: 97.8%,

Res7Net for
infection: 80%

3. Methods

The proposed approach was implemented using Python 3.10 in a cloud computing
environment, specifically the Google Colab Pro version with a T4 GPU accelerator. The
TensorFlow platform was used along with the Keras framework to implement this work,
utilizing various libraries such as Sklearn, Pandas, Numpy, glob, and Matplotlib.

3.1. Proposed Framework

Figure 1 illustrates the proposed approach. We combined the pre-trained CNN models
with the proposed head model and fed the results to various ML classifiers to find the most
effective classifier to enhance the overall results. The proposed approach is used for both
ischemia classification and infection classification.
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Figure 1. Framework of the proposed approach for infection classification and ischemia classification.

3.2. Dataset

The DFU-Part (B) dataset [17] was used in this study. This dataset was used for
performing the binary classification of ischemia and the binary classification of infection
from DFU images. The dataset contains 1249 images of ischemia and 210 images of non-
ischemia. Additionally, there are 628 images of infection and 831 images of non-infection.
The authors of the DFU-Part (B) dataset proposed a new data augmentation technique called
natural data augmentation to make the dataset balanced. The natural data augmentation is
designed to identify the region of interest in DFU images. After the natural augmentation
was conducted, the authors of the chosen dataset created a total of 9870 augmented images
with an equal distribution of 4935 images for ischemia and 4935 images for non-ischemia. In
terms of infection, they generated 4890 augmented images with an equal class distribution
comprising 2945 infection images and 2945 non-infection images.

3.3. Pre-Processing

Due to the better performance of CNN models with larger datasets [23], we applied
data augmentation to the dataset, which plays a significant role in ensuring accurate and
dependable outcomes by increasing the number of images in the dataset. Furthermore,
data augmentation assists in avoiding the overfitting problem [23]. The data augmentation
techniques that were applied include rotation, horizontal flip, and vertical flip. Other
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augmentation techniques, such as crop, translation, and random scale, were avoided due to
the risk of missing the region of interest in the DFU images. Table 2 illustrates the number
of images in the selected dataset before and after applying the natural data augmentation
and our data augmentation for both ischemia classification and infection classification
using the parameter values that have been used on the dataset shown in Table 3.

The sizes of the images in the dataset varied between 1600 × 200 and 3648× 2736 pixels.
Therefore, the images were resized to 224 × 224 pixels to decrease the training time.
The number of ischemia images in the ischemia dataset was increased from 9870 to
12,124 (ischemia [6062], non-ischemia [6062]), and that of infection images in the infec-
tion dataset was increased from 4890 to 8424 (infection [4212], non-infection [4212]). The
ischemia dataset and the infection dataset were split into 70% for training, 20% for vali-
dation, and 10% for testing. The ratio of splitting the dataset into training, testing, and
validation was selected after trying different ratios with the aim of picking the split ratio
that provided the best results. After comparing different ratios, the ratio of 70% for training,
20% for validation, and 10% for testing was chosen as it showed the best results compared
to other split ratios.

Table 2. Summary of the number of images in the DFU-Part (B) dataset for each class before and after
natural data augmentation and after our augmentation process.

Classification Type Class No of Images No. of Natural Augmented
Images

No. of Augmented Images
(Ours)

Ischemia Classification Ischemia 1249 4935 6062
Non-ischemia 210 4935 6062

Infection Classification Infection 628 2945 4212
Non-infection 831 2945 4212

Figure 2 shows an example of an ischemia image before and after augmentation;
Figure 2a is an ischemia image before augmentation, and Figure 2b–e are the newly gen-
erated ischemia images after augmentation. Moreover, Figure 3 shows an example of
an infection image before and after data augmentation. Figure 3a shows an infection
image before augmentation, and Figure 3b–e are the newly generated infection images
after augmentation.

(a) (b) (c) (d) (e)

Figure 2. A sample of ischemia images from DFU-Part (B) dataset: (a) before augmentation and
(b–e) newly generated ischemia images after augmentation.

(a) (b) (c) (d) (e)

Figure 3. A sample of infection images from DFU-Part (B) dataset: (a) before augmentation, and
(b–e) newly generated infection images after augmentation.



Diagnostics 2024, 14, 1807 6 of 23

Table 3. Parameter details used for data augmentation.

Operation Name Value

Rotation 30◦

Flip Horizontal/Vertical

3.4. Competing Transfer Learning Models

Various pre-trained CNN models were utilized to examine and assess their effective-
ness in classifying infection and ischemia images. This phase involved evaluating the
performances of different CNN models independently before adding the proposed head
model and feeding the models’ results to ML classifiers. The models used in this study
included EfficientNetB0, DenseNet121, ResNet101, VGG16, InceptionV3, MobileNetV2,
and InceptionResNetV2. The CNN models were pre-trained using the TL technique. The
TL technique allows the CNN models to learn rich and discriminative features and save
time and computational resources by gaining expertise from a large-scale domain and then
applying it to a specific domain. The transfer learning (TL) technique has been applied to
the various CNN models using the ImageNet dataset. The top layers of the pre-trained
CNN model extract basic features, such as colors and edges, whereas the bottom layers
capture more advanced features, such as objects and contours. In this way, we utilized the
ability of the pre-trained CNN models to extract significant features and enhance classifica-
tion accuracy by applying the knowledge gained from a pre-trained CNN model to another
task, which is identifying the types of DFUs from images. In addition, the performances
of the CNN models depend heavily on the training procedure. To implement transfer
learning, we used the original architectures for the different CNN models used in this
study, removing the top layer of each model and using ImageNet for the initial weights.
This excludes the final dense layer, specifically the fully connected (dense) layer that is
responsible for mapping the 1280-dimensional feature vector from the penultimate layer
into predictions for the 1000 ImageNet classes. This adjustment retains the convolutional
base of the models, which outputs feature maps, and is particularly advantageous for
transfer learning scenarios. Moreover, we freeze the weights of a specific layer by set-
ting layer.trainable = False to keep the weights of that particular layer fixed during the
training process.

To deliver superior results, the hyperparameter tuning of the CNN models was per-
formed during this phase to establish the best settings of the CNN pre-trained models in
ischemia classification and infection classification.

Table 4 illustrates the hyperparameter values that were used with all the models.

Table 4. Hyperparameter values.

Parameter Name Value

Optimizer Adamax
Learning Rate 0.001

Patience of the EarlyStopping 20
Batch Size 32

Epochs 100

3.5. Modified Architectures of CNNs (The Proposed Head Model)

After employing various pre-existing CNN models to identify the most effective one
for categorizing DFU images for both infections and ischemia, we compared the perfor-
mances of the pre-trained models after combining them with the proposed head model
to address the overfitting issue and improve the results. The analysis of the loss graphs
for the pre-trained CNN models in the first stage indicated that while the training loss
decreased steadily, the validation loss initially dropped but then started to rise, indicating
an overfitting issue. Moreover, the accuracy graphs showed a gap between the training
and validation accuracy, which also indicates an overfitting issue. This learning problem
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prompted the development of a new head model positioned at the end of CNN models to
address the overfitting issue and improve performance. Figure 4 illustrates the structure of
the proposed head model.

Dropout Layer (0.5)

BatchNormalization
Layer

BatchNormalization
Layer

Dense (256)+Reg(L2+L1)+ ReLU 

Dropout Layer (0.5)

Dense (2) + Sigmoid

Dropout Layer (0.5)

Dropout Layer (0.45)

Dense (128)+Reg(L2+L1)+ ReLU 

Figure 4. Proposed head model structure.

The structure of the head model was refined through multiple experiments involving
different combinations of layer types and values to find an effective model structure for
preventing overfitting. The selected model structure showed optimal fitting learning curves
in both loss graphs and accuracy graphs of CNN models, with a noticeable decrease in
both training and validation losses. In addition, the training and validation accuracy are
increased, and the gap between them is decreased. The proposed head model design
effectively tackled overfitting issues and improved performance outcomes by incorporating
multiple layers arranged in a specific order, as shown in Table 5.

Table 5. Details of proposed head model structure.

Layer Name Values

Dropout Layer 0.5 Rate
BatchNormalization Default Values
Dropout Layer 0.5 Rate
BatchNormalization Default Values
Dense Layer 256 Units + kernel reg = l2(l = 0.016) + activity reg = l1(0.006) + bias reg = l1(0.006) + ReLU
Dropout Layer 0.5 Rate
Dense Layer 128 Units + kernel reg = l2(l = 0.016) + activity reg = l1(0.006) + bias reg = l1(0.006) + ReLU
Dropout Layer 0.45 Rate
Dense Layer 2 Units + Sigmoid

A dropout layer is used to prevent overfitting and enhance the generalization ability
of the CNN models. A dropout rate of 0.5 signifies that 50% of input units (neurons) will
be deleted during training to reduce the complexity of the CNN models. A BatchNormal-
ization layer is used to provide better generalization performance of the CNN models.
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The dropout and batch normalization layers were carefully chosen and arranged
through multiple experiments to determine the most effective configuration that yields
optimal results. Similarly, the number of dense layers and their units were extensively
explored to achieve the best outcome. In addition, a combination of regularization tech-
niques including kernel regularizer, L1 and L2 regularization, activity regularization, and
bias regularization is employed to address overfitting issues and manage the CNN model
complexity. The values for these regularization techniques were selected based on various
experiments to identify the most suitable settings.

In the dense layers, the model employs the ReLU activation function, which has
been found to be the most suitable activation function after testing various activation
functions. The final layer contains a dense layer with 2 units, facilitating binary classification
output with a sigmoid activation function, which is well suited for binary classification
tasks. The proposed approach will be used for ischemia classification to perform the
binary classification of ischemia (ischemia or non-ischemia). Similarly, the same proposed
approach will be used for infection classification to perform the binary classification of
infection (infection or non-infection).

3.6. Feeding the Model Results to Machine Learning Classifiers

The results of the modified architectures of CNN models, after the proposed head
model is added, are fed to different ML algorithms to enhance the overall results of the
modified architectures of CNN models in both infection classification and ischemia classifi-
cation. To identify the best ML classifiers that can be used with each CNN model with the
proposed head model, the LazyClassifier function was utilized. LazyClassifier is a function
included in the LazyPredict library that ranks the performances of various ML classifiers
based on their results from best to worst. LazyClassifier is used for predicting binary
variables. During this phase, the ML classifier that provided the best results compared to
other ML classifiers was chosen to report its results.

4. Experimental Results and Discussion

This section presents and analyzes the findings of this research, involving both the
initial phase results and the outcomes at subsequent phases. Each subsection includes
tables that outline the performance of each CNN model using various assessment measures,
such as accuracy, precision, sensitivity, specificity, F1 score, area under the curve (AUC),
and processing time for each DFU state, ischemia classification, and infection classification.
In addition, ROC curves illustrating the performance of all the CNN models are included
for all phases of ischemia classification and infection classification. Moreover, this section
features graphs depicting the loss curve and accuracy curve of the CNN models before
and after integrating the proposed head model to demonstrate notable enhancements in
learning curves for both ischemia classification and infection classification. A significant
improvement is observed in the learning trajectory of these models after incorporating the
proposed head model.

4.1. Performance Evaluation Metrics

The output of the proposed approach is binary classification. The proposed binary
classification approach was applied to infection images (infection, non-infection) and
ischemia images (ischemia, non-ischemia). Various assessment measures are available for
computing data classification outcomes. The computation depends on the true positive (TP)
and true negative (TN) values, indicating the accurate classification of positive and negative
cases, as well as false positive (FP) and false negative (FN) values, denoting misclassified
negative and positive cases [24].

Precision =
TP

TP + FP
(1)
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Recall (Sensitivity) =
TP

(TP + FN)
(2)

Specificity =
TN

TN + FP
(3)

F1-Measure =
2 · TP

2 · TP + FP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Moreover, the area under curve (AUC) is a measure of the ability of the classifier to
differentiate between two classes:

AUC =
Sp − np(nn + 1)/2

npnn
(6)

where Sp is the sum of the all positive example, np is the number of positive example, and
nn is the number of negative example.

4.2. Results of Competitor Models

Table 6 presents the results of CNN models (EfficientNetB0, DenseNet121, ResNet101,
VGG16, InceptionV3, MobileNetV2, and InceptionResNetV2) in ischemia classification by
accuracy, precision, sensitivity, specificity, F1 score, AUC, and time (S). Additionally, Table 7
presents the results of CNN models in infection classification using the same evaluation
metrics. Both Tables 6 and 7 indicate that the EfficientNetB0 model outperformed other
CNN models in both ischemia and infection classifications.

The EfficientNetB0 model achieved 0.947 accuracy, 0.950 precision, 0.943 sensitivity,
0.950 specificity, 0.947 F1 score, and 0.947 AUC in ischemia classification. For infection
classification, the EfficientNetB0 model obtained 0.904 accuracy, 0.886 precision, 0.926
sensitivity, 0.881 specificity, 0.906 F1 score, and 0.904 AUC.

Table 6. Ischemia classification results of CNN pre-trained models.

Name of the Pre-Trained CNN Modified Model Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

EfficientNetB0 0.947 0.950 0.943 0.950 0.947 0.947 1895
ResNet101 0.925 0.912 0.940 0.909 0.926 0.925 1688
DenseNet121 0.899 0.883 0.920 0.878 0.901 0.899 1135
VGG16 0.886 0.892 0.878 0.894 0.885 0.886 1632
InceptionV3 0.819 0.766 0.919 0.719 0.835 0.819 1105
MobileNetV2 0.832 0.809 0.869 0.795 0.838 0.832 880
InceptionResNetV2 0.560 0.534 0.950 0.21 0.684 0.560 2163

Bold values indicate the highest values.

Table 7. Infection classification results of CNN pre-trained models.

Name of the Pre-Trained CNN Modified Model Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

EfficientNetB0 0.904 0.886 0.926 0.881 0.906 0.904 831
ResNet101 0.896 0.917 0.872 0.921 0.894 0.896 2109
DenseNet121 0.829 0.814 0.853 0.805 0.833 0.829 653
VGG16 0.827 0.822 0.834 0.819 0.828 0.827 1010
InceptionV3 0.763 0.824 0.668 0.857 0.738 0.763 725
MobileNetV2 0.747 0.717 0.817 0.677 0.764 0.747 747
InceptionResNetV2 0.535 0.522 0.810 0.260 0.635 0.535 1193

Bold values indicate the highest values.

Figure 5a depicts the ROC curves of the CNN models in classifying ischemia, while
Figure 5b shows the ROC curves of the CNN models in classifying infection. The Efficient-
NetB0 CNN model demonstrated superior performance in both ischemia classification and
infection classification, evident from its closer proximity to the upper left corner of the ROC
curve. This indicates that the true positive (TP) rate of EfficientNetB0 is higher than that of
other models, while its false positive (FP) rate is lower.
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Figure 5. ROC curves of the CNN pre-trained models for (a) ischemia and (b) infection classification.

4.3. Results of Modified Architectures of CNNs

Table 8 shows the outcomes of the CNN models with the proposed head model for
ischemia classification, whereas Table 9 presents the findings of CNN models utilizing the
proposed head model for infection classification. The highest performance was observed in
both ischemia and infection classifications when employing the EfficientNetB0 model in
combination with the proposed head model, surpassing other models used alongside this
approach. The EfficientNetB0 model combined with the proposed head model produced
encouraging outcomes with 0.965 for accuracy, 0.959 for precision, 0.971 for sensitivity, 0.958
for specificity, 0.965 for the F1 score, and 0.965 for the AUC in the ischemia classification.
Furthermore, the EfficientNetB0 model with the proposed head model produced impressive
results in infection classification with 0.919 for accuracy, 0.951 for precision, 0.883 for
sensitivity, 0.954 for specificity, 0.916 for F1 score, and 0.919 for the AUC.

After integrating the proposed head model into the CNN models, the time metric
shows a slight increase after incorporating the head model in most of the models as shown
in Tables 6–9. This is attributed to the increased complexity resulting from additional layers
and regularization techniques, including dropout, L1, and L2, which have been introduced
to address overfitting issues and enhance generalizability with unseen data.

Moreover, there was a notable improvement in ischemia classification for Efficient-
NetB0, ResNet101, DenseNet121, and InceptionResNetV2. In addition, adding the pro-
posed head model led to enhanced results for EfficientNetB0, ResNet101, DenseNet121,
VGG16,and InceptionResnetV2 in infection classification. Overall, incorporating the pro-
posed head model resulted in increased accuracy across all CNN models by addressing
overfitting issues commonly encountered by these models. The CNN models’ performance
showed a significant improvement with the addition of the proposed head model, as de-
picted in Figures 13–16. This enhancement is evident in both the loss curve and accuracy
curve for ischemia classification and infection classification. Having models that exhibit
an ideal learning curve is of greater importance compared to having models that offer
higher accuracy but suffer from overfitting. The addition of the proposed head model
significantly enhances the learning curve, effectively addressing the issue of overfitting.
As a result, the models demonstrate improved generalizability and accuracy due to the
appropriate complexity structure provided by the proposed head model, making them
more dependable for practical use.



Diagnostics 2024, 14, 1807 11 of 23

Table 8. Ischemia classification results of CNN pre-trained models with the proposed head model.

Name of the Pre-Trained CNN Modified Model Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

Modified EfficientNetB0 0.965 0.959 0.971 0.958 0.965 0.965 1263
Modified ResNet101 0.933 0.939 0.925 0.940 0.932 0.933 2383
Modified DenseNet121 0.902 0.922 0.879 0.925 0.900 0.902 1226
Modified VGG16 0.878 0.897 0.853 0.902 0.875 0.878 1581
Modified InceptionV3 0.775 0.854 0.665 0.886 0.748 0.775 1173
Modified MobileNetV2 0.785 0.766 0.818 0.751 0.792 0.785 1046
Modified InceptionResNetV2 0.638 0.596 0.851 0.425 0.701 0.638 2540

Bold values indicate the highest values.

Table 9. Infection classification results of CNN pre-trained models with the proposed head model.

Name of the Pre-Trained CNN Modified Model Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

Modified EfficientNetB0 0.919 0.951 0.883 0.954 0.916 0.919 1209
Modified ResNet101 0.899 0.918 0.876 0.921 0.896 0.899 2311
Modified DenseNet121 0.868 0.935 0.791 0.945 0.857 0.868 981
Modified VGG16 0.847 0.915 0.765 0.928 0.833 0.847 1143
Modified InceptionV3 0.707 0.761 0.604 0.810 0.673 0.707 1241
Modified MobileNetV2 0.738 0.741 0.732 0.744 0.736 0.738 841
Modified InceptionResNetV2 0.561 0.732 0.194 0.928 0.307 0.561 2740

Bold values indicate the highest values.

Figure 6a shows the ROC curves of the CNN models with the proposed head model
in ischemia classification. Furthermore, Figure 6b illustrates the ROC curves of the CNN
models with the proposed head model in infection classification. The ROC curves of the
models in Figure 6 show that the EfficientNetB0 CNN model with the proposed head model
outperforms the other models, which are DenseNet121, ResNet101, VGG16, InceptionV3,
MobileNetV2, and InceptionResNetV2, all with the proposed head model, in both ischemia
classification and infection classification.
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Figure 6. ROC curves of the CNN pre-trained models with the proposed head model for (a) ischemia
and (b) infection classification.

4.4. Results of Effect of Augmentation Process

The differences in accuracy between the augmented and non-augmented datasets
for both ischemia and infection classification are proven for all competitors and shown,
e.g., in Figure 7 for EfficientNetB0. This empirically demonstrates that the augmented
dataset significantly enhances the accuracy of the classification models. Given that the
visual data we worked with have high inherent variability, it is necessary for the models to
learn in a robust manner—learning generalized features rather than just the memorization
of specific instances.
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(a) (b)

(c) (d)

Figure 7. Results of the accuracy of EfficientNetB0 in infection classification (top row) and ischemia classi-
fication (lower row) on the DFU-Part (B) dataset: (a,c) before augmentation and (b,d) after augmentation.

4.5. Results of Feeding Model Results to Machine Learning Classifiers

Table 10 presents the results of feeding the result of each CNN model with the proposed
head model to the selected ML classifier in ischemia classification. On the other hand,
Table 11 shows the results of each CNN model with the proposed head model after feeding
the result of each model to the selected ML classifier in infection classification. The ML
classifier that was used with each CNN model with the proposed head model was selected
based on the best performances of different ML classifiers in enhancing the overall results
of each CNN model with the proposed head model compared to other ML classifiers. For
the time metric, Tables 10 and 11 include the training time of the CNN models with the
proposed head model plus the time that the ML classifier took to produce the final result
after feeding the result of the CNN models with the proposed head model to the selected
ML classifier.

Feeding the result of the EfficientNetB0 model with the proposed head model to the
LogisticRegression ML classifier provided the highest results in ischemia classification
compared to the results of the other CNN model with the proposed head model after
feeding them with the selected ML classifier. The results of the EfficientNetB0 model with
the proposed head model after it is fed to the LogisticRegression ML classifier in ischemia
classification are 0.967, 0.967, 0.968, 0.967, 0.967, and 0.967 for the accuracy, the precision,
the sensitivity, the specificity, the F1 score, and the AUC, respectively. The highest result in
infection classification is achieved after feeding the result of the EfficientNetB0 model with
the proposed head model to the AdaBoostClassifier ML classifier with 0.927 for accuracy,
0.934 for precision, 0.919 for sensitivity, 0.936 for specificity, 0.927 for the F1 score, and 0.927
for the AUC, respectively.
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Table 10. Ischemia classification results of CNN pre-trained models with the proposed head model
after feeding the results into ML classifier.

Name of the Pre-Trained Model + Proposed Head Model + ML Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

(EfficientNetB0 + Proposed Model) + LogisticRegression 0.967 0.967 0.968 0.967 0.967 0.967 1263 + 0.06
(ResNet101 + Proposed Model) + XGBClassifier 0.935 0.940 0.930 0.940 0.935 0.935 2383 + 0.23
(DenseNet121 + Proposed Model ) + KNeighborsClassifier 0.911 0.911 0.912 0.911 0.911 0.911 1226 + 0.07
(VGG16 + Proposed Model) + KNeighborsClassifier 0.882 0.881 0.883 0.881 0.882 0.882 1581 + 0.07
(InceptionV3 + Proposed Model) + XGBClassifier 0.777 0.757 0.817 0.738 0.786 0.777 1173 + 0.90
(MobileNetV2 + Proposed Model) + AdaBoostClassifier 0.784 0.773 0.803 0.764 0.788 0.784 1046 + 0.64
(InceptionResNetV2 + Proposed Model) + AdaBoostClassifier 0.652 0.616 0.805 0.499 0.698 0.652 2540 + 0.25

Bold values indicate the highest values.

Table 11. Infection classification results of CNN pre-trained models with the proposed head model
after feeding the results into ML classifier.

Name of the Pre-Trained Model + Proposed Head Model + ML Accuracy Precision Sensitivity Specificity F1 Score AUC Time (S)

(EfficientNetB0 + Proposed Model) + AdaBoostClassifier 0.927 0.934 0.919 0.936 0.927 0.927 1209 + 0.23
(ResNet101 + Proposed Model) + LogisticRegression 0.900 0.918 0.879 0.921 0.898 0.900 2311 + 0.12
(DenseNet121 + Proposed Model) + XGBClassifier 0.874 0.867 0.883 0.864 0.875 0.874 981 + 0.08
(VGG16 + Proposed Model) + LogisticRegression 0.863 0.909 0.808 0.919 0.855 0.863 1143 + 0.11
(InceptionV3 + Proposed Model) + XGBClassifier 0.718 0.739 0.672 0.763 0.704 0.718 1241 + 1.36
(MobileNetV2 + Proposed Model) + AdaBoostClassifier 0.747 0.758 0.727 0.767 0.742 0.747 841 + 0.34
(InceptionResNetV2 + Proposed Model) + AdaBoostClassifier 0.561 0.683 0.229 0.893 0.343 0.561 2740 + 0.17

Bold values indicate the highest values.

Figure 8a illustrates the ROC curves of the models after feeding the results of the CNN
models with the proposed head model to the selected ML classifier in ischemia classification.
In regards to infection classification, Figure 8b illustrates the ROC curves of the CNN
models with the proposed head model after feeding the results of the models to the selected
ML classifier. The ROC curves of the models in Figure 8a show that feeding the results of
the EfficientNetB0 CNN model with the proposed head model to the LogisticRegression
ML classifier outperforms the performance of the other CNN model with the proposed
head model after feeding them with the selected ML classifier in ischemia classification.
Furthermore, Figure 8b shows that feeding the results of the EfficientNetB0 CNN model
with the proposed head model to the AdaBoostClassifier ML classifier outperforms the
performance of the other CNN model with the proposed head model after feeding them to
the selected ML classifier in infection classification.
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Figure 8. ROC curves of the CNN pre-trained models with the proposed head model after feeding
the results to ML classifier for (a) ischemia and (b) infection classification.
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Figure 9 shows the confusion matrix of the selected approach that provides the best
results in ischemia classification, which is the EfficientNetB0 with the proposed head model
after feeding the results to the LogisticRegression classifier. Moreover, Figure 10 illustrates
the confusion matrix of the selected approach that provides the highest results in infection
classification, which is EfficientNetB0 with the proposed head model after feeding the
results to the AdaBoostClassifier classifier.

Figure 9. Confusion matrix of EfficientNetB0 with the proposed head model after feeding the results
of them to the LogisticRegression classifier for ischemia classification.

Figure 10. Confusion matrix of EfficientNetB0 with the proposed head model after feeding the results
of them to the AdaBoostClassifier classifier for infection classification.
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Figure 11 illustrates instances of ischemia that have been correctly categorized by
the selected approach that provides the highest results in ischemia classification, which is
EfficientNetB0 with the proposed head model after feeding the results to the LogisticRegres-
sion classifier. Figure 12 presents images of infections accurately classified by the selected
approach that provides the best results in infection classification, which is EfficientNetB0
with the proposed head model after feeding the results to the AdaBoostClassifier classifier.

Figure 11. Sample of correctly classified images from DFU-Part (B) dataset of ischemia for ischemia
classification.

Figure 12. Sample of correctly classified images from DFU-Part (B) dataset of infection for infection
classification.

4.6. Loss and Accuracy Curve Graphs

Figure 13 depicts the loss curve graphs of all CNN models before and after integrating
the suggested head model for ischemia classification, while Figure 14 illustrates the loss
curve graphs of all CNN models before and after incorporating the proposed head model
for infection classification. It is evident from the loss curves in Figure 13 for ischemia
classification and Figure 14 for infection classification that the learning curve of CNN
models reaches an optimal state once the proposed head model is integrated. Before
incorporating the head models, it was evident from the loss curve that the CNN models
were experiencing challenges with overfitting. The training loss plot showed a continuous
decline, while the validation loss plot decreased initially and then began to increase,
signaling an overfitting issue. However, following the addition of the head model to the
CNN models, both training and validation losses exhibited a decrease, indicating optimal
learning for these models. Figure 15 shows the accuracy trend of the CNN models before
and after adding the head model for ischemia classification, while Figure 16 displays the
corresponding graphs for infection classification. These visuals demonstrate an increase
in validation accuracy following the integration of the proposed head model, as well as a
decrease in the gap between train accuracy and validation accuracy. These results indicate
improved model precision and overall performance enhancement.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)
Figure 13. Training and validation loss curves of each pre-trained model before and after
adding the proposed head model in ischemia classification (a) ResNet101, (b) Modified ResNet101,
(c) DenseNet121, (d) Modified DenseNet121, (e) VGG16, (f) Modified VGG16, (g) InceptionV3,
(h) Modified InceptionV3, (i) MobileNetV2, (j) Modified MobileNetV2, (k) InceptionResNetV2,
(l) Modified InceptionResNetV2, (m) EfficientNetB0, and (n) Modified EfficientNetB0.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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Figure 14. Training and validation loss curves of each pre-trained model before and after
adding the proposed head model in infection classification(a) ResNet101, (b) Modified ResNet101,
(c) DenseNet121, (d) Modified DenseNet121, (e) VGG16, (f) Modified VGG16, (g) InceptionV3,
(h) Modified InceptionV3, (i) MobileNetV2, (j) Modified MobileNetV2, (k) InceptionResNetV2,
(l) Modified InceptionResNetV2, (m) EfficientNetB0, and (n) Modified EfficientNetB0.
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Figure 15. Training and validation accuracy curves of each pre-trained model before and after
adding the proposed head model in ischemia classification (a) ResNet101, (b) Modified ResNet101,
(c) DenseNet121, (d) Modified DenseNet121, (e) VGG16, (f) Modified VGG16, (g) InceptionV3,
(h) Modified InceptionV3, (i) MobileNetV2, (j) Modified MobileNetV2, (k) InceptionResNetV2,
(l) Modified InceptionResNetV2, (m) EfficientNetB0, and (n) Modified EfficientNetB0.
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(a) (b) (c)
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Figure 16. Training and validation accuracy curves of each pre-trained model before and after
adding the proposed head model in infection classification (a) ResNet101, (b) Modified ResNet101,
(c) DenseNet121, (d) Modified DenseNet121, (e) VGG16, (f) Modified VGG16, (g) InceptionV3,
(h) Modified InceptionV3, (i) MobileNetV2, (j) Modified MobileNetV2, (k) InceptionResNetV2,
(l) Modified InceptionResNetV2, (m) EfficientNetB0, and (n) Modified EfficientNetB0.
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4.7. Discussion

This study focused on classifying DFU images into binary classifications of each DFU
state, ischemia and infection, to avoid DFU misdiagnosis due to the similarities of the
two states of DFUs. The proposed approach in this study will aid in the development
of more efficient automatic DFU assessment intelligent telemedicine systems that assist
in diagnosing DFUs correctly and more promptly, which helps in providing effective
treatment to prevent the worsening of DFUs and reduce the risk of negative consequences.

This study shows that the EfficientNetB0 pre-trained model provides the best results
in both ischemia classification and infection classification compared to the DenseNet121,
ResNet101, VGG16, 9 InceptionV3, MobileNetV2, and InceptionResNetV2 pre-trained
models. Moreover, this study shows the significance of adding the proposed head model to
the pre-trained CNN models in improving the performances of the models by overcoming
the overfitting problem, which clearly shows in the improvement of the learning curve of
the models.

In addition, solving the overfitting problem by adding the proposed head model to
the CNN models makes the CNN models more accurate, reliable, and generalizable with
unseen data. Additionally, the results of most of the CNN models are increased after
adding the proposed head model with all the evaluation metrics. Furthermore, in this
study, the results of each CNN model with the proposed head model were fed to different
ML classifiers to select the best classifier that can be used with each model to enhance the
overall results of the proposed approach.

The highest achieved result in this study for ischemia classification was achieved by
the EfficientNetB0 pre-trained CNN model with the proposed head model after feeding
its results to the LogisticRegression ML classifier with 0.967, 0.967, 0.968, 0.967, 0.967, and
0.967 for the accuracy, the precision, the sensitivity, the specificity, the F1 score, and the
AUC, respectively. For the infection classification, the highest result was achieved by the
EfficientNetB0 pre-trained model with the proposed head model after feeding its results
to the AdaBoostClassifier ML classifier with 0.927 for the accuracy, 0.934 for the precision,
0.919 for the sensitivity, 0.936 for the specificity, 0.927 for the F1 score, and 0.927 for the
AUC (Table 12).

Table 12. Comparison between the proposed model and existing approaches in the literature.

Study Model Class Accuracy Precision Sensitivity Specificity F1 Score AUC

Goyal et al. [17] Ensemble CNNwith SVM classifier Ischemia 0.903 0.918 0.886 0.921 0.902 0.904
Infection 0.727 0.735 0.709 0.744 0.722 0.731

Al-Garaawi et al. [20] GoogLNet CNN Ischemia 0.92 0.94 0.93 0.90 0.93 0.97
Infection 0.73 0.73 0.74 0.71 0.76 0.81

Proposed Work (EfficientNetB0 + Head Model) + LogisticRegression Ischaemia 0.967 0.967 0.968 0.967 0.967 0.967
(EfficientNetB0 + Head Model) + AdaBoostClassifier Infection 0.927 0.934 0.919 0.936 0.927 0.927

According to the literature, the results achieved in this study are higher than the
achieved results of previous studies that used pre-trained CNN models in classifying DFU
images, as a binary classification of each ischemia classification and infection classification.
Goyal et al. [17], used three pre-trained models (Inception-V3, InceptionResNetV2, and
ResNet50) in an ensemble approach and achieved 90% for the accuracy in ischemia classifi-
cation and 73% for the accuracy in infection classification. Moreover, Al-Garaawi et al. [20]
used a pre-trained GoogLeNet CNN model and achieved 92% accuracy in ischemia classi-
fication and 73% accuracy in infection classification. The accuracy rates achieved in this
study were higher than those of the aforementioned studies. This study achieved 97% and
93% for the accuracy in ischemia classification and infection classification, respectively.

Tables 13 and 14 show comparisons of the pre-trained CNN model results on ischemia
classification and infection classification in each stage of the proposed approach based on
accuracy, before adding the proposed head model, after adding the proposed head model,
and, finally, after feeding the results of the CNN pre-trained model with the proposed head
model to the selected ML classifier. It is evident from the result comparison that the results
of most of the CNN models improved after adding the proposed head model. However,
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even if the results of some of the CNN models are not increased, the models become more
accurate as a result of solving the overfitting problem. This increased accuracy makes the
models more reliable and ready to be implemented in a clinical environment. In addition,
the results of the various CNN models with the proposed head model are enhanced after
the results are fed to the selected ML classifier.

Table 13. Comparison of results each stage of ischemia classification.

Name of the
Pre-Trained Model Accuracy Name of the Pre-Trained Model +

Proposed Head Model Accuracy Name of the Pre-Trained Model + Proposed Head Model + ML Accuracy

EfficientNetB0 0.947 EfficientNetB0 + Proposed Model 0.965 (EfficientNetB0 + Proposed Model) + LogisticRegression 0.967
ResNet101 0.925 ResNet101 + Proposed Model 0.933 (ResNet101 + Proposed Model) + XGBClassifier 0.935
DenseNet121 0.899 DenseNet121 + Proposed Model 0.902 (DenseNet121 + Proposed Model ) + KNeighborsClassifier 0.911
VGG16 0.886 VGG16 + Proposed Model 0.878 (VGG16 + Proposed Model) + KNeighborsClassifier 0.882
InceptionV3 0.819 InceptionV3 + Proposed Model 0.775 (InceptionV3 + Proposed Model) + XGBClassifier 0.777
MobileNetV2 0.832 MobileNetV2 + Proposed Model 0.785 (MobileNetV2 + Proposed Model) + AdaBoostClassifier 0.784
InceptionResNetV2 0.560 InceptionResNetV2 + Proposed Model 0.638 (InceptionResNetV2 + Proposed Model) + AdaBoostClassifier 0.652

Bold values indicate the highest values.

Table 14. Comparison of results of each stage of infection classification.

Name of the
Pre-Trained Model Accuracy Name of the Pre-Trained Model +

Proposed Head Model Accuracy Name of the Pre-Trained Model + Proposed Head Model + ML Accuracy

EfficientNetB0 0.904 EfficientNetB0 + Proposed Model 0.919 (EfficientNetB0 + Proposed Model) + AdaBoostClassifier 0.927
ResNet101 0.896 ResNet101 + Proposed Model 0.899 (ResNet101 + Proposed Model) + LogisticRegression 0.900
DenseNet121 0.829 DenseNet121 + Proposed Model 0.868 (DenseNet121 + Proposed Model) + XGBClassifier 0.874
VGG16 0.827 VGG16 + Proposed Model 0.847 (VGG16 + Proposed Model) + LogisticRegression 0.863
InceptionV3 0.763 InceptionV3 + Proposed Model 0.707 (InceptionV3 + Proposed Model) + XGBClassifier 0.718
MobileNetV2 0.747 MobileNetV2 + Proposed Model 0.738 (MobileNetV2 + Proposed Model) + AdaBoostClassifier 0.747
InceptionResNetV2 0.535 InceptionResNetV2 + Proposed Model 0.561 (InceptionResNetV2 + Proposed Model) + AdaBoostClassifier 0.561

Bold values indicate the highest values.

5. Conclusions

DFU prevalence is increasing and affecting a larger number of people every day. The
early detection of DFU enables prompter and more effective intervention. The timely
identification and treatment of DFUs can increase survival rates and decrease mortality.
However, existing clinical approaches for recognizing DFUs are susceptible to human
error due to subjectivity and insufficient expertise among healthcare professionals. As a
result, there is a need for more dependable, precise, and user-friendly solutions to support
physicians in this area. In this study, we introduced a proposed model to address overfitting
and improve the performance of pre-trained CNN models. The effectiveness of pre-trained
fine-tuned models such as EfficientNetB0, ResNet101, DenseNet121, VGG16, IInceptionV3,
MobileNetV2, and InceptionResNetV2 was examined to perform the binary classification
of ischemia/non-ischemia and infection/non-infection states before and after adding
the proposed model, involving ML approaches and hyperparameter tuning. The results
show that the proposed model effectively addressed overfitting issues while enhancing
results across different ML classifiers for CNN models with the proposed head model. We
conclude that the EfficientNetB0 model provides the best results compared to other CNN
pre-trained models, which are ResNet101, DenseNet121, etc. in both ischemia classification
and infection classification. Furthermore, this study showed that the EfficientNetB0 model
with the proposed head model and after feeding the results to the LogisticRegression
classifier achieved the highest result in ischemia classification. Additionally, for infection
classification, the EfficientNetB0 model with the proposed head model and feeding the
results to AdaBoostClassifier classifier achieved the highest result.

For future work, the proposed approach can be used with a larger dataset when a
larger dataset for ischemia classification and infection classification of the DFU images
becomes available. Moreover, the proposed approach can be used with different diseases
to classify them based on the images with different classes. Moreover, this proposed
approach can be used for different diabetes complications such as mouth ulcers caused
by rosuvastatin [25] or monitoring the development or regression of diabetic wounds
during laboratory experiments [26]. Furthermore, by providing a more comprehensive
understanding of the abilities of various CNNs to classify DFU images, this work helps to
clarify the significance of the backbone’s capability in developing a lightweight model to
handle such diagnoses in real time.
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