Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory
Abstract
:1. Introduction
2. ML for Detection of Systematic Errors
3. ML for Detection of Non-Systematic Errors
3.1. Intravenous Fluid Contamination
3.2. Wrong-Blood-in-Tube (WBIT) Errors
3.3. Interference
4. ML for Detection of Combinations of Errors Simultaneously
5. Standardised ML Model Creation and Ethical Considerations
6. Regulation
7. Future
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | machine learning |
PBRTQC | patient-based real-time quality control |
EDTA | ethylenediaminetetraacetic acid |
IQC | internal quality control |
QC | quality control |
MA | moving average |
MovSD | moving standard deviation |
MM | moving median |
AI | artificial intelligence |
DT | decision tree |
RF | random forest |
SVM | support vector machine |
k-NN | k-nearest neighbour |
BN | Bayesian network |
NN | neural network |
ANN | artificial neural network |
PCA | principal components analysis |
CUSUM | cumulative sum |
CSLR | CUSUM logistic regression |
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AST | aspartate transaminase |
EWMA | exponentially weighted moving average |
RARTQC | regression-adjusted real-time quality control |
tNAPed | trimmed average of number of patients affected before detection |
MLiQC | machine learning internal quality control |
HD50 | Harell-Davis median |
CVi | intra-individual coefficient of variation |
CVg | between-individual coefficient of variation |
AUC | area under curve |
AUROC | area under the receiver operating characteristics curve |
PSA | prostate specific antigen |
MovSO | moving sum of the outputs |
MLQC | machine learning quality control |
IF | isolation forest |
CART | classification and regression tree |
mNL-PBRTQC | machine-learning non-linear regression-adjusted patient-based real-time quality control |
L-RARTQC | linear regression-adjusted real-time quality control |
MLP | multilayer perceptron |
ln(MME) | natural logarithm of moving median |
Sqrt(MA) | square-root of moving average |
AoN | average of normals |
ln(MA) | natural logarithm of moving average |
Sqrt(MME) | square-root of moving median |
ln(x).r | natural logarithm of result |
Sqrt(x).r | square-root of result |
UMAP | uniform manifold approximation and projection |
WBIT | wrong blood in tube |
ACCORD trial | Action to Control Cardiovascular Risk in Diabetes trial |
NHANES | National Health and Nutrition Examination Survey |
DPP | Diabetes Prevention Program |
XGB/XGBoost | extreme gradient boosting |
DBN | deep belief network |
RCV | reference change value |
GBDT | gradient boosted decision tree |
wCDI | weighted calculated difference index |
GGT | gamma-glutamyl transferase |
SMOTE | synthetic minority over-sampling technique |
ADASYN | adaptive synthetic sampling approach |
IFCC | International Federation of Clinical Chemistry and Laboratory Medicine |
MHRA | Medicines and Healthcare products Regulatory Agency |
FDA | Food and Drug Administration |
References
- Fryer, A.A.; Smellie, W.S.A. Managing demand for laboratory tests: A laboratory toolkit. J. Clin. Pathol. 2013, 66, 62–72. [Google Scholar] [CrossRef]
- Satta, G.; Edmonstone, J. Consolidation of pathology services in England: Have savings been achieved? BMC Health Serv. Res. 2018, 18, 862. [Google Scholar] [CrossRef] [PubMed]
- Trazzi, M.; Yampolskiy, R.V. Artificial Stupidity: Data We Need to Make Machines Our Equals. Patterns 2020, 1, 100021. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, H.H.; Bietenbeck, A.; Cervinski, M.A.; Katayev, A.; Loh, T.P.; Badrick, T.C. Benefits, limitations and controversies on patient-based real-time quality control (PBRTQC) and the evidence behind the practice. Clin. Chem. Lab. Med. 2021, 59, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Loh, T.P.; Cervinski, M.A.; Katayev, A.; Bietenbeck, A.; van Rossum, H.; Badrick, T. Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control. Clin. Chim. Acta 2019, 495, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Bietenbeck, A.; Cervinski, M.A.; Katayev, A.; Loh, T.P.; van Rossum, H.H. Understanding Patient-Based Real-Time Quality Control Using Simulation Modeling. Clin. Chem. 2020, 66, 1072–1083. [Google Scholar] [CrossRef]
- Hoffmann, R.G.; Waid, M.E. The “Average of Normals” Method of Quality Control. Am. J. Clin. Pathol. 1965, 43, 134–141. [Google Scholar] [CrossRef]
- Van Rossum, H.H.; Van Den Broek, D. Design and implementation of quality control plans that integrate moving average and internal quality control: Incorporating the best of both worlds. Clin. Chem. Lab. Med. 2019, 57, 1329–1338. [Google Scholar] [CrossRef]
- Loh, T.P.; Bietenbeck, A.; Cervinski, M.A.; van Rossum, H.H.; Katayev, A.; Badrick, T. Recommendation for performance verification of patient-based real-time quality control. Clin. Chem. Lab. Med. 2020, 58, 1205–1213. [Google Scholar] [CrossRef]
- Duan, X.; Wang, B.; Zhu, J.; Shao, W.; Wang, H.; Shen, J.; Wu, W.; Jiang, W.; Yiu, K.L.; Pan, B.; et al. Assessment of patient-based real-time quality control algorithm performance on different types of analytical error. Clin. Chim. Acta 2020, 511, 329–335. [Google Scholar] [CrossRef]
- Punchoo, R.; Bhoora, S.; Pillay, N. Applications of machine learning in the chemical pathology laboratory. J. Clin. Pathol. 2021, 74, 435–442. [Google Scholar] [CrossRef]
- Bunch, D.R.; Durant, T.J.; Rudolf, J.W. Artificial Intelligence Applications in Clinical Chemistry. Clin. Lab. Med. 2023, 43, 47–69. [Google Scholar] [CrossRef]
- De Bruyne, S.; Speeckaert, M.M.; Van Biesen, W.; Delanghe, J.R. Recent evolutions of machine learning applications in clinical laboratory medicine. Crit. Rev. Clin. Lab. Sci. 2021, 58, 131–152. [Google Scholar] [CrossRef]
- Rabbani, N.; Kim, G.Y.E.; Suarez, C.J.; Chen, J.H. Applications of Machine Learning in Routine Laboratory Medicine: Current State and Future Directions. Clin. Biochem. 2022, 103, 1–7. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Kubat, M. An Introduction to Machine Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Tsai, E.R.; Demirtas, D.; Hoogendijk, N.; Tintu, A.N.; Boucherie, R.J. Turnaround time prediction for clinical chemistry samples using machine learning. Clin. Chem. Lab. Med. 2022, 60, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Poole, S.; Schroeder, L.F.; Shah, N. An unsupervised learning method to identify reference intervals from a clinical database. J. Biomed. Inf. Inform. 2016, 59, 276–284. [Google Scholar] [CrossRef]
- Luo, Y.; Szolovits, P.; Dighe, A.S.; Baron, J.M. Using Machine Learning to Predict Laboratory Test Results. Am. J. Clin. Pathol. 2016, 145, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Kurstjens, S.; De Bel, T.; Van Der Horst, A.; Kusters, R.; Krabbe, J.; van Balveren, J. Automated prediction of low ferritin concentrations using a machine learning algorithm. Clin. Chem. Lab. Med. 2022, 60, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Regulski, K.; Opaliński, A.; Swadźba, J.; Sitkowski, P.; Wąsowicz, P.; Kwietniewska-Śmietana, A. Machine Learning Prediction Techniques in the Optimization of Diagnostic Laboratories’ Network Operations. Appl. Sci. 2024, 14, 2429. [Google Scholar] [CrossRef]
- Baik, S.M.; Hong, K.S.; Park, D.J. Application and utility of boosting machine learning model based on laboratory test in the differential diagnosis of non-COVID-19 pneumonia and COVID-19. Clin. Biochem. 2023, 118, 110584. [Google Scholar] [CrossRef]
- Cabitza, F.; Campagner, A.; Ferrari, D.; Di Resta, C.; Ceriotti, D.; Sabetta, E.; Colombini, A.; De Vecchi, E.; Banfi, G.; Locatelli, M.; et al. Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. Clin. Chem. Lab. Med. 2021, 59, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Çubukçu, H.C.; Topcu, D.I.; Bayraktar, N.; Gülşen, M.; Sarı, N.; Arslan, A.H. Detection of COVID-19 by Machine Learning Using Routine Laboratory Tests. Am. J. Clin. Pathol. 2022, 157, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Tschoellitsch, T.; Dünser, M.; Böck, C.; Schwarzbauer, K.; Meier, J. Machine Learning Prediction of SARS-CoV-2 Polymerase Chain Reaction Results with Routine Blood Tests. Lab. Med. 2021, 52, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Schwab, P.; Schütte, A.D.M.; Dietz, B.; Bauer, S. Clinical Predictive Models for COVID-19: Systematic Study. J. Med. Internet Res. 2020, 22, e21439. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Park, M.W.; Lee, H.; Kim, Y.; Kim, Y.; Park, Y.H. Development of machine learning model for diagnostic disease prediction based on laboratory tests. Sci. Rep. 2021, 11, 7567. [Google Scholar] [CrossRef] [PubMed]
- Sampson, M.L.; Gounden, V.; van Deventer, H.E.; Remaley, A.T. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results. Clin. Biochem. 2016, 49, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, B.; Zhu, J.; Zhang, C.; Jiang, W.; Zhou, J.; Shao, W.; Zhao, Y.; Yu, Q.; Lei, L.; et al. Regression-Adjusted Real-Time Quality Control. Clin. Chem. 2021, 67, 1342–1350. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, W.; Padoan, A.; Wang, Z.; Feng, X.; Han, Z.; Chen, C.; Liang, Y.; Wang, T.; Cui, W.; et al. Traceable machine learning real-time quality control based on patient data. Clin. Chem. Lab. Med. 2022, 60, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.G.; Petersen, P.H.; Libeer, J.; Ricos, C. Proposals for setting generally applicable quality goals based on biology. Ann. Clin. Biochem. 1997, 34, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liang, Y.; Cheng, H.; Padoan, A.; Wang, Z.; Feng, X.; Han, Z.; Song, B.; Wang, W.; Plebani, M.; et al. A multi-model fusion algorithm as a real-time quality control tool for small shift detection. Comput. Biol. Med. 2022, 148, 105866. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, Z.; Huang, D.; Wang, W.; Feng, X.; Han, Z.; Song, B.; Wang, Q.; Zhou, R. A study on quality control using delta data with machine learning technique. Heliyon 2022, 8, e09935. [Google Scholar] [CrossRef]
- Liang, Y.F.; Padoan, A.; Wang, Z.; Chen, C.; Wang, Q.; Plebani, M.; Zhou, R. Machine learning-based nonlinear regression-adjusted real-time quality control modeling: A multi-center study. Clin. Chem. Lab. Med. 2024, 62, 635–645. [Google Scholar] [CrossRef]
- Baron, J.M.; Mermel, C.H.; Lewandrowski, K.B.; Dighe, A.S. Detection of Preanalytic Laboratory Testing Errors Using a Statistically Guided Protocol. Am. J. Clin. Pathol. 2012, 138, 406–413. [Google Scholar] [CrossRef]
- Spies, N.C.; Hubler, Z.; Azimi, V.; Zhang, R.; Jackups Jr, R.; Gronowski, A.R.; Farnsworth, C.W.; Zaydman, M.A. Automating the Detection of IV Fluid Contamination Using Unsupervised Machine Learning. Clin. Chem. 2024, 70, 444–452. [Google Scholar] [CrossRef]
- Strylewicz, G.; Doctor, J. Evaluation of an automated method to assist with error detection in the ACCORD central laboratory. Clin. Trials 2010, 7, 380–389. [Google Scholar] [CrossRef]
- Doctor, J.N.; Strylewicz, G. Detecting ‘wrong blood in tube’ errors: Evaluation of a Bayesian network approach. Artif. Intell. Med. 2010, 50, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.W.; Baron, J.M. Using Machine Learning-Based Multianalyte Delta Checks to Detect Wrong Blood in Tube Errors. Am. J. Clin. Pathol. 2018, 150, 555–566. [Google Scholar] [CrossRef]
- Farrell, C.J. Identifying mislabelled samples: Machine learning models exceed human performance. Ann. Clin. Biochem. 2021, 58, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liang, Y.F.; Cheng, H.L.; Wang, W.; Huang, D.W.; Wang, Z.; Feng, X.; Han, Z.W.; Song, B.; Padoan, A.; et al. A highly accurate delta check method using deep learning for detection of sample mix-up in the clinical laboratory. Clin. Chem. Lab. Med. 2022, 60, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Doi, S.; Yokota, S.; Imai, T.; Ohe, K. Highly accurate and explainable detection of specimen mix-up using a machine learning model. Clin. Chem. Lab. Med. 2020, 58, 375–383. [Google Scholar] [CrossRef]
- Yang, C.; Li, D.; Sun, D.; Zhang, S.; Zhang, P.; Xiong, Y.; Zhao, M.; Qi, T.; Situ, B.; Zheng, L. A deep learning-based system for assessment of serum quality using sample images. Clin. Chim. Acta 2022, 531, 254–260. [Google Scholar] [CrossRef]
- Demirci, F.; Akan, P.; Kume, T.; Sisman, A.R.; Erbayraktar, Z.; Sevinc, S. Artificial Neural Network Approach in Laboratory Test Reporting: Learning Algorithms. Am. J. Clin. Pathol. 2016, 146, 227–237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, J.; Li, X.; Sun, C.; Zhang, Y. Using machine learning to develop an autoverification system in a clinical biochemistry laboratory. Clin. Chem. Lab. Med. 2020, 59, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Master, S.R.; Badrick, T.C.; Bietenbeck, A.; Haymond, S. Machine Learning in Laboratory Medicine: Recommendations of the IFCC Working Group. Clin. Chem. 2023, 69, 690–698. [Google Scholar] [CrossRef]
- Chen, I.Y.; Pierson, E.; Rose, S.; Joshi, S.; Ferryman, K.; Ghassemi, M. Ethical Machine Learning in Healthcare. Annu. Rev. Biomed. Data Sci. 2021, 4, 123–144. [Google Scholar] [CrossRef]
- Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.; Beer, L.; et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 2021, 3, 199–217. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Haymond, S.; Master, S.R. How Can We Ensure Reproducibility and Clinical Translation of Machine Learning Applications in Laboratory Medicine? Clin. Chem. 2022, 68, 392–395. [Google Scholar] [CrossRef]
- Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Larochelle, H. Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). J. Mach Learn Res. 2020, 22, 7459–7478. [Google Scholar] [CrossRef]
- Norgeot, B.; Quer, G.; Beaulieu-Jones, B.K.; Torkamani, A.; Dias, R.; Gianfrancesco, M.; Arnaout, R.; Kohane, I.S.; Saria, S.; Topol, E.; et al. Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist. Nat. Med. 2020, 26, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Boussard, T.; Bozkurt, S.; Ioannidis, J.P.A.; Shah, N.H. MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. J. Am. Med. Inf. Inform. Assoc. 2020, 27, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.M.; Mortazavi, B.J.; Deo, R.C.; Curtis, L.; Kao, D.P. Recommendations for reporting machine learning analyses in clinical research. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006556. [Google Scholar] [CrossRef] [PubMed]
- Samek, W.; Muller, K.-R. Towards Explainable Artificial Intelligence. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.B., Eds.; Springer: Cham, Switzerland, 2019; pp. 5–22. [Google Scholar]
- Maliha, G.; Gerke, S.; Cohen, I.G.; Parikh, R.B. Artificial Intelligence and Liability in Medicine: Balancing Safety and Innovation. Milbank Q. 2021, 99, 629–647. [Google Scholar] [CrossRef] [PubMed]
- Castagno, S.; Khalifa, M. Perceptions of Artificial Intelligence Among Healthcare Staff: A Qualitative Survey Study. Front. Artif. Intell. 2020, 3, 578983. [Google Scholar] [CrossRef] [PubMed]
- Laï, M.C.; Brian, M.; Mamzer, M.F. Perceptions of artificial intelligence in healthcare: Findings from a qualitative survey study among actors in France. J. Transl. Med. 2020, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- UK Department for Science, Innovation and Technology. A Pro-Innovation Approach to AI Regulation: Government Response. 2024. Available online: https://www.gov.uk/government/consultations/ai-regulation-a-pro-innovation-approach-policy-proposals/outcome/a-pro-innovation-approach-to-ai-regulation-government-response (accessed on 16 May 2024).
- European Union. Artificial Intelligence Act. 2021/0106(COD). Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html (accessed on 16 May 2024).
- Medicines & Healthcare Products Regulatory Agency. Impact of AI on the Regulation of Medical Products. Implementing the AI White Paper Principles. 2024. Available online: https://www.gov.uk/government/publications/impact-of-ai-on-the-regulation-of-medical-products (accessed on 5 June 2024).
- Food and Drug Administration (FDA). Artificial Intelligence and Medical Products: How CBER, CDER, CDRH, and OCP Are Working Together. 2024. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device (accessed on 15 May 2024).
- Lohn, A.; Musser, M. AI and Compute: How Much Longer Can Computing Power Drive Artificial Intelligence Progress? Center for Security and Emerging Technology: Washington, DC, USA, 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Ghahramani, Z.; Daley, S.; Sayed, S.; Spittle, G.; Trefethen, A. Independent Review of the Future of Compute: Final Report and Recommendations. 2023. Available online: https://www.gov.uk/government/publications/future-of-compute-review/the-future-of-compute-report-of-the-review-of-independent-panel-of-experts (accessed on 15 May 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorde, N.; Mahapatra, S.; Kalaria, T. Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory. Diagnostics 2024, 14, 1808. https://doi.org/10.3390/diagnostics14161808
Lorde N, Mahapatra S, Kalaria T. Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory. Diagnostics. 2024; 14(16):1808. https://doi.org/10.3390/diagnostics14161808
Chicago/Turabian StyleLorde, Nathan, Shivani Mahapatra, and Tejas Kalaria. 2024. "Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory" Diagnostics 14, no. 16: 1808. https://doi.org/10.3390/diagnostics14161808
APA StyleLorde, N., Mahapatra, S., & Kalaria, T. (2024). Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory. Diagnostics, 14(16), 1808. https://doi.org/10.3390/diagnostics14161808