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Abstract: Background: Osteoarthritis (OA) is a prevalent joint condition causing pain and disability,
especially in the elderly. Currently, OA diagnosis relies on clinical data and imaging, but recent
interest in metabolomics suggests that early biochemical changes in biofluids, particularly synovial
fluid (SF), could enable an earlier diagnosis and understanding of the disease. Methods: In this regard,
we conducted a lipidomics study in 33 plasma and SF samples from OA patients and 20 OA-free
controls to assess the diagnostic value of various lipid metabolites, using UHPLC-QTOF-ESI+MS.
Results: In plasma samples, 25 metabolites had area-under-the-curve (AUC) values higher than
0.9, suggesting a very good diagnostic potential for phosphatidic acid PA (16:0/16:0), PA (34:0),
phosphatidylethanolamine PE (34:2), glucosylceramide, phosphatidylcholine PC (32:1), and other
metabolites while in SF 20, metabolites had AUC values higher than 0.8, the vast majority belonging
to lipid metabolism as well. Conclusions: Although the results align with the previous literature,
larger cohort studies are necessary to confirm the diagnostic value of the lipid metabolites.

Keywords: lipidomics; metabolomics; osteoarthritis; diagnostic; biomarkers

1. Introduction

Osteoarthritis (OA) is one of the most common joint conditions, being the main
cause of pain and disability in the elderly. OA is a multifactorial disease involving many
risk factors: obesity, gender, trauma, repetitive joint use, genetics, hereditary metabolic
diseases, muscle weakness, pre-existing orthopedic disorders, rheumatoid polyarthritis,
intra-articular crystal deposits, bone turnover, and blood clotting. The diagnosis of OA is
established based on clinical data, which usually develops after the appearance of structural
changes [1]. Unfortunately, there are no available tests to confirm an early diagnosis, and
the severity of this disease is determined by imaging or arthroscopy [2,3].

Recently, there has been a growing interest in identifying the biochemical signature
of OA. Because changes in the metabolic profile occur frequently before alterations in the
genome or proteome, metabolomics analysis could allow for the early identification of
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biochemical changes to establish early diagnosis, disease stage, and therapeutic targets and
provide a better understanding of the disease’s pathogenesis [4]. Previous metabolomics
studies of OA have frequently used biofluids as a substrate for a minimally invasive
approach, such as urine, serum, and synovial fluid (SF). SF is a plasma ultrafiltrate, but it
also contains molecules that are produced by joint tissue cells, which serve as media for
nutrients and as lubricants for the joint surface. Being located inside the joint cavity, in
direct contact with the joint tissues, and with OA being a condition affecting the entire
joint, SF is recognized as the most important biofluid in the evaluation of the metabolomic
profile of OA [5–8].

The vast majority of the metabolomic studies of OA are focused on lipid metabolism,
as lipidomics could offer additional information related to dysfunctions. To date, few
studies have evaluated the metabolic profile of patients with OA using SF as a biological
specimen, mostly being focused on blood-derived samples, such as plasma or serum [9].

Mass spectrometry (MS) is the most sensitive detection method, with the widest
coverage of the metabolome. It is usually necessary to be coupled with chromatographic
separation techniques—gas chromatography (GC) and/or liquid chromatography (LC).
LC-MS is usually used for biofluid analysis, with both positive and negative ion detection
modes, using standard protocols [10]. The small number of studies that have used LC-MS
in the evaluation of SF in OA have conducted global or targeted metabolomics to identify
specific biomarkers, differentiate subgroups or phenotypes, and better understand the
pathogenesis of the disease. Fewer studies have used NMR in assessing the metabolic
profile of SF in patients with OA [11].

Lipids such as sphingolipids, phosphatidic acids, lysophosphatidic acid, and bis-
monoacylglycerolphosphates are known to be bioactive molecules, but their presence and
function in SF are yet to be understood. Only a few studies have evaluated the lipid
profile of SF in OA using MS. Kosinska et al. (2013) reported an increased concentration
of phospholipids species in SF of patients with OA compared to controls and differences
in this category of metabolites related to OA stage using electrospray ionization tandem
mass spectrometry (ESI-MS). These changes could lead to altered joint lubrication, the
production of reactive oxygen species (ROS), and scavenging the activity of SF and can
modulate the inflammatory state of the joints [12].

Another lipidomics study quantified the composition of sphingolipids and minor
glycerophospholipid species in the SF of patients with early and late stages of OA. Several
lipid species were significantly increased in different stages of OA, compared to normal SF,
and 21 species of lipids were different between early OA and advanced OA. These changes
could lead to the development of disease-specific diagnostic and staging biomarkers [13].

Therefore, our study aims to identify specific lipidomic signatures of blood plasma and
SF from patients with confirmed OA, using UHPLC-QTOF-ESI+MS technology coupled
with statistics, for potential biomarker discovery in terms of OA diagnosis and staging.

2. Materials and Methods
2.1. Study Subjects and Sample Collection

This study included 53 subjects in total, out of which 33 were patients previously
diagnosed with OA (mostly knee OA) and 20 were OA-free controls. Blood and SF were
collected from the subjects at the Orthopedic and Traumatology Clinic from Timisoara
County Emergency Clinical Hospital, Romania. Every patient had given their informed
consent for the use of their biological samples. This study was carried out following the
1964 Declaration of Helsinki and its subsequent amendments, which was authorized by
our institution’s Ethics Committee (Ethics Committee of the University of Medicine and
Pharmacy “Victor Babes” Timisoara, Romania, approval code no 08/28.02.2020, approval
date 28 February 2020). Venous blood was drawn into tubes coated with EDTA. The
plasma was separated straightaway by centrifugation (15 min, 2000× g) and was kept
frozen (−80 ◦C) for further testing. Orthopedic specialists used routine arthrocentesis
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methods to collect SF samples. Table 1 displays the clinical and demographic details of the
53 participants in this study.

Table 1. Demographic and clinical characteristics of OA patients and controls.

Characteristics Patients (n = 33) Controls (n = 20)

Age (±SD) 64.5 (±8.0) 35.2 (±16.4)
Biological sex, n (%)
Female 16 (48.5%) 10 (50.0%)
Male 17 (51.5%) 10 (50.0%)
Geographic area, n (%)
Urban 22 (66.7%) 14 (70.0%)
Rural 11 (33.3%) 6 (30.0%)
Diagnosis, n (%)
Knee OA 28 (84.8%)
Hip joint OA 3 (9.1%)
Shoulder OA 2 (6.1%)

2.2. Sample Processing

A volume of 0.8 mL of solvent mix was added to 0.2 mL plasma (methanol/acetonitri-
le/methyl tert-butyl ether (1:1:0.25)). The mix was then vortexed for 30 s and kept at −20 ◦C
for 24 h for protein precipitation. After defrosting, the tubes were centrifuged at 12,500× g
for 10 min. Collection of the supernatant was then performed, which was subsequently
filtered through 0.2 µm PTFE filters and introduced in the autosampler vials for further
metabolomic analyses. We added 0.75 mL mix of methanol/acetonitrile (1:1) and 0.25 mL of
acetone to a volume of 0.25 mL of SF (the supernatant after the centrifugation at 12,500 rpm).
The mix was subsequently vortexed for 30 s and kept at −20 ◦C for 24 h. After defrosting,
the samples were centrifuged at 12,500× g for 10 min and the supernatant was kept in an
ultrasonic bath at 35 ◦C to eliminate the acetone residue. After filtration through 0.2 µm
nylon filters, the samples were introduced in the autosampler vials for analysis.

2.3. UHPLC-QTOF-ESI+-MS Analysis

Using a Thermo Scientific HPLC UltiMate 3000 system with a Dionex Ultimate quater-
nary pump delivery and ESI+-QTOF-MS detection, the UHPLC-MS analysis was carried
out on a Bruker Daltonics MaXis Impact device (Bruker GmbH, Bremen, Germany). A
C18 reverse-phase column was used (Kinetex, UPLC C18, Phenomenex, Torrance, CA,
USA) (5 µm, 4.6 × 150 mm), set at 25 ◦C and at a flow rate of 0.8 mL/min. There was
a 25 µL injection volume. Eluent A (water containing 0.1% formic acid) and eluent B
(methanol/acetonitrile/isopropanol, 1:1:1, containing 0.1% formic acid) comprised the
gradient that represented the mobile phase. Together, 70% A (min 0), 30% A (min 4), 0% A
(min 7), 30% A (min 10), 70% A (min 13), and 70% A for two minutes made up the gradient
system. The entire run time was 15 min.

The mass range covered by the MS parameters was 100–1000 Da. The drying gas flow
was set at 12 L/min, the temperature of the drying gas was set at 300 ◦C, and the pressure
of the nebulizing gas was set at 2.8 bar. A sodium formate calibration was carried out prior
to every chromatographic run. Specific software from Bruker Daltonics—Chromeleon 7.3.2,
TofControl 3.2, Hystar 3.2, and Data Analysis 4.2—was utilized for the instrument’s control
and data processing. The resolution setting for this untargeted analysis was Full Scan mode
since it can capture more metabolic features.

2.4. Statistics

Data analysis was used to process the following data: First, the individual Total Ion
Chromatograms (TICs) were registered. After that, they were converted to Base Peak
Chromatograms (BPCs), and the Find Molecular Features (FMF) tool was used to record
the compound spectra. The retention time, peak regions and intensities, signal/noise (S/N)
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ratio for each component, and m/z values for each metabolite were all included in the table
that was derived from the FMF matrix. Both molecules with S/N values less than 10 and
retention times less than 1.6 min (the LC column’s empty volume) were removed. The initial
step of the statistical analysis involved saving the matrix as an Excel file, which contained
the peak intensities (higher than 10,000) and m/z [M + H+] values for each sample. Using
the tools available at https://www.bioinformatics.org/bioinfo-af-cnr/NEAPOLIS/, the
m/z values were aligned (accessed on 8 July 2024). The ability to compute the mean intensity
values and standard deviation for every m/z value was provided by the aligned matrix.

Second, the completed aligned matrix was loaded into the web software Metaboan-
alyst 6.0 after being converted to a csv file (https://www.metaboanalyst.ca/; accessed
on 8 July 2024). For the sample normalization, normalization by sum was chosen. In
addition, log transformation and Pareto scaling were chosen for data transformation and
scaling, respectively.

For the multivariate statistics, we used the matrices including 245 m/z values in
plasma and 272 values in SF, respectively. The experimental m/z values were compared
with the average of the theoretical m/z values from the Human Metabolome DataBase
(HMDB) and Lipidmaps databases, the accuracy of theoretical–experimental m/z values
being below 30 ppm (±0.01 Da). Then, utilizing the two most pertinent databases, LIPID
MAPS® Lipidomics Gateway (CA, USA), the most relevant compounds that may be thought
of as possible biomarkers were identified (https://www.lipidmaps.org/databases/lmsd/
overview; accessed on 9 July 2024) and Human Metabolome Database (https://hmdb.ca/;
accessed on 9 July 2024).

Lastly, the multivariate analysis was represented by partial least squares discriminant
analysis (PLSDA) and VIP scores, Fold change values, Volcano plots, and Random Forest
(Mean Decrease Accuracy) for prediction, finding correlations between samples and be-
tween variables (m/z values). Using biomarker analysis, the Receiver Operating Curves
(ROCs) were obtained and the values of areas under ROC curves (AUCs) were ranked
according to their sensitivity/specificity. The Enrichment Analysis was applied based on
the identified cohorts of molecules.

3. Results

The clinical and demographic information for both the OA-affected patients and the
OA-free controls is shown in Table 1. The mean age discrepancy between the cases and
controls (64.5 years vs. 35.2, respectively) could not be adjusted due to the small sample
size. Both groups contained both male and female members, and the majority of them
(66.7% of the OA patients and 70% of the healthy controls) were urban residents. Nearly
eighty-five percent of the study’s participants had been diagnosed with knee OA, while
the controls did not have OA and were primarily admitted to the clinic because of bone
fractures or ligament ruptures caused by accidents.

All identified metabolites, either the common ones found in plasma and SF or the
molecules identified only in plasma or in SF, can be seen in Supplementary Table S1A–C. The
tables include the m/z values for the precursor ion (adduct [M + H+], identified as putative
biomarkers by comparison with the average isotopic mass and a mass tolerance of 0.05 Da,
according to the HMDB and LipidMaps databases (IDs included). Their identification,
with putative names, has been carried out using the HMDB and LipidMaps databases. The
multivariate analysis of the plasma samples assessed by supervised PLSDA evaluated the
co-variance for the first five components. The explained co-variance of groups C (controls)
and P (patients) was 24.8%, the discrimination being significant (Figure 1, left). From the
PLSDA loadings plot, we selected the most relevant molecules that could be considered
responsible for the discrimination. Figure 1 (right) represents the m/z values of these
molecules and the VIP scores above 1 for the top 15 molecules, as a measure of their
significance. The red and blue colors reflect the relative variation of their values in the C
versus P group.

https://www.bioinformatics.org/bioinfo-af-cnr/NEAPOLIS/
https://www.metaboanalyst.ca/
https://www.lipidmaps.org/databases/lmsd/overview
https://www.lipidmaps.org/databases/lmsd/overview
https://hmdb.ca/
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Figure 1. (Left) partial least squares discriminant analysis (PLSDA) plot with sample identification,
showing the discrimination between C and P groups; (right) PLSDA loadings plot, showing the VIP
scores of the main 15 molecules selected as representative for the discrimination between groups C
and P; (bottom) scatter 3D considering the first 3 components released from Metaboanalyst 6.0.

According to the PLSDA plot, the P group was less homogeneous than the C group.
The cross-validation algorithm (when the first four components were considered) indicated
an accuracy of over 0.9, a maximal value of R2 = 0.95, and Q2 values over 0.7, suggesting a
good predictability for this model.

The Volcano plot (Figure 2) represents the m/z values of molecules with higher peak
intensity in the P group (log2 FC > 0) and decreased levels (log2 FC < 0) compared to
controls (group C).

The Metaboanalyst 6.0 program states that the receiver operating characteristic (ROC)
curve is a helpful tool for assessing the accuracy of the diagnosis in biomarker analysis. The
area under the ROC curve (AUC) is a key component of several biomarker combination
techniques. This characteristic made it possible to evaluate each molecule’s sensitivity
against specificity and identify each one as a potential biomarker. Higher AUC values
around 1 indicate a higher likelihood of a particular molecule being regarded as a biomarker.
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Table 2 displays the probable identification, m/z value, AUC value, p-values, and log2FC
values for every identified molecule, along with its variance across the P and C groups.

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 12 
 

 

indicated an accuracy of over 0.9, a maximal value of R2 = 0.95, and Q2 values over 0.7, 
suggesting a good predictability for this model. 

The Volcano plot (Figure 2) represents the m/z values of molecules with higher peak 
intensity in the P group (log2 FC > 0) and decreased levels (log2 FC < 0) compared to con-
trols (group C). 

 
Figure 2. Volcano plot representing the m/z values of molecules with increased MS intensity levels 
in the P group compared to the C group. 

The Metaboanalyst 6.0 program states that the receiver operating characteristic 
(ROC) curve is a helpful tool for assessing the accuracy of the diagnosis in biomarker anal-
ysis. The area under the ROC curve (AUC) is a key component of several biomarker com-
bination techniques. This characteristic made it possible to evaluate each molecule’s sen-
sitivity against specificity and identify each one as a potential biomarker. Higher AUC 
values around 1 indicate a higher likelihood of a particular molecule being regarded as a 
biomarker. Table 2 displays the probable identification, m/z value, AUC value, p-values, 
and log2FC values for every identified molecule, along with its variance across the P and 
C groups. 

Table 2. The m/z values, area-under-the-curve (AUC) values, p-values, and log2FC values for the 
putative biomarkers in blood plasma of OA patients compared to controls. 

m/z Value Identification AUC p-Value Log2FC Tendency 
649.4019 PA (16:0/16:0) 0.977 5.141 × 10−3 −2.974 P > C 
677.4319 PA (34:0) 0.973 2.772 × 10−2 −1.767 P > C 
693.4267 PA (36:6) 0.957 1.623 × 10−2 −3.242 P > C 
605.3785 PA (26:4;O2) 0.954 7.273 × 10−3 −2.457 P > C 
180.1222 Glucosamine 0.952 1.544 × 10−8 0.378 P < C 
158.1420 Tiglylglycine 0.943 6.066 × 10−9 0.290 P < C 
716.5010 PE (34:2) 0.941 8.020 × 10−3 −2.431 P > C 

Figure 2. Volcano plot representing the m/z values of molecules with increased MS intensity levels in
the P group compared to the C group.

Table 2. The m/z values, area-under-the-curve (AUC) values, p-values, and log2FC values for the
putative biomarkers in blood plasma of OA patients compared to controls.

m/z Value Identification AUC p-Value Log2FC Tendency

649.4019 PA (16:0/16:0) 0.977 5.141 × 10−3 −2.974 P > C

677.4319 PA (34:0) 0.973 2.772 × 10−2 −1.767 P > C

693.4267 PA (36:6) 0.957 1.623 × 10−2 −3.242 P > C

605.3785 PA (26:4;O2) 0.954 7.273 × 10−3 −2.457 P > C

180.1222 Glucosamine 0.952 1.544 × 10−8 0.378 P < C

158.1420 Tiglylglycine 0.943 6.066 × 10−9 0.290 P < C

716.5010 PE (34:2) 0.941 8.020 × 10−3 −2.431 P > C

688.4703 PE (32:2) 0.939 8.144 × 10−5 −3.647 P > C

111.1072 Hydroquinone 0.934 4.864 × 10−9 0.240 P < C

200.2218 Octenoylglycine 0.929 9.512 × 10−10 0.257 P < C

737.4505 PA (39:5) 0.929 2.121 × 10−2 −4.185 P > C

644.4471 Glucosylceramide (d18:1/12:0) 0.923 4.578 × 10−6 −2.840 P > C

664.4142 PE (30:0) 0.921 8.399 × 10−2 −1.351 P > C

732.4947 PC (32:1) 0.921 1.132 × 10−4 −4.078 P > C
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Table 2. Cont.

m/z Value Identification AUC p-Value Log2FC Tendency

765.4786 PA (41:5) 0.920 6.297 × 10−2 −3.328 P > C

172.1554 L-Homocysteine sulfate 0.909 2.154 × 10−5 0.447 P < C

235.1505 5-Methoxytryptophan 0.904 8.310 × 10−5 0.163 P < C

633.4083 PA (O-16:0/16:1) 0.904 3.011 × 10−2 −1.246 P > C

149.0811 L-2-Hydroxyglutaric acid 0.902 6.590 × 10−1 0.057 P < C

406.0416 12-HETE-GABA 0.902 6.884 × 10−7 0.165 P < C

Abbreviations: PA = phosphatidic acid; PE = phosphatidylethanolamine; PC = phosphatidylcholine.

Significantly high AUC values above 0.9 were obtained for 25 molecules that might be
considered potential biomarkers for OA diagnosis; these molecules belong to various lipid
classes. These data confirm that lipid molecules, mainly long-chain glycerophosphates (PA)
and glycerophospholipids (PC and PE) can be considered predictive molecules with good
diagnostic values for OA detection. Glucosamine is also a particularly good biomarker
related to OA, and in our study, its values in the P group were significantly lower than in
the C group.

Next, in the multivariate analysis of the SF samples, via supervised PLSDA, the co-
variance for the first five components was similarly evaluated. The explained co-variance
of groups was 22%, the discrimination being significant (Figure 3, left). The right of
Figure 3 represents the loadings graph showing the top 15 molecules (m/z values) and their
corresponding VIP scores above 1 as a measure of discrimination between groups.

According to the PLSDA plot, in this case, the control group was less homogeneous
than the patient group, and this can be explained by the metabolic diversity of the con-
trol group.

Next, a biomarker analysis was also performed, using MetaboAnalyst 6.0. Table 3
shows the m/z values and putative identifications, AUC values, p-values, and log2FC
values for each molecule identified, as well as the variation in the comparison groups.

Table 3. The m/z values, AUC values, p-values, and log2FC values for the putative biomarkers in SF
of OA patients relative to controls.

m/z Value Identification AUC p-Value Log2FC Tendency

427.2684 N-stearoylarginine 0.919 5.116 × 10−4 0.710 P < C

123.0358 Diammonium Oxalate 0.897 5.153 × 10−3 0.540 P < C

892.5812 PS (44:6) 0.897 5.305 × 10−6 1.656 P < C

229.1307 Myristic acid 0.893 3.945 × 10−4 0.571 P < C

889.4723 PG (44:1) 0.880 8.980 × 10−6 −1.106 P > C

672.4706 PE (31:3) 0.863 9.671 × 10−6 0.595 P < C

576.3644 LPC (22:2) 0.859 1.124 × 10−4 −0.946 P > C

708.4333 Cer (d18:0/28:0) 0.859 2.846 × 10−6 −1.189 P > C

801.4294 PI (32:5) 0.855 2.528 × 10−4 −0.991 P > C

845.4516 PI (35:4) 0.855 2.049 × 10−4 −0.918 P > C

620.3867 PE (P-16:0/12:0) 0.842 8.591 × 10−4 −1.069 P > C

713.3851 PI (25:0) 0.842 3.234 × 10−4 −1.036 P > C

729.3583 PI 23:2;O3 0.838 3.370 × 10−6 −1.331 P > C

664.4095 PE (30:0) 0.833 2.137 × 10−3 −1.060 P > C
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Table 3. Cont.

m/z Value Identification AUC p-Value Log2FC Tendency

116.0625 L-Proline 0.829 3.572 × 10−3 0.722 P < C

522.5724 LysoPC (18:1) 0.825 2.013 × 10−4 −0.942 P > C

897.5344 PI (39:6) 0.825 1.581 × 10−3 0.613 P < C

368.4051 N-oleoyl GABA 0.821 5.418 × 10−3 −0.643 P > C

840.4976 PE (44:10) 0.821 1.537 × 10−5 −1.097 P > C

285.2153 Stearic acid 0.816 1.392 × 10−2 0.689 P < C

Abbreviations: PS = phosphatidylserine; PG = phosphatidylglycerol; PE = phosphatidylethanolamine;
LPC = lysophosphatidylcholine; PI = phosphatidylinositol; Cer = ceramide; GABA = gamma-aminobutyric acid.
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scores of the main 15 molecules selected as representative for the discrimination between groups;
(bottom) scatter 3D for SF (considering first 3 components); in the bottom left corner, there is the
loadings representation, released from Metaboanalyst 6.0.
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As in the case of blood plasma, many glycerophospholipids derivatives (PS, PI, PE,
and PG), lyso-derivatives (LPC), and free fatty acids (myristic acid) were identified with
AUC values > 0.8. Prostaglandin derivatives can be considered important biomarkers due
to their involvement in inflammation.

Lastly, the cohort of molecules separated and identified in plasma and SF samples were
subjected to the Pathway Enrichment Analysis, provided by Metaboanalyst 6.0. Figure 4
shows an overview of the metabolite sets (top 25) found in plasma and SF. The most
relevant are the pathways related to plasmalogen synthesis, molecules with an ester (acyl
group) linked lipid at the sn-2 position of the glycerol backbone, chemically designated
as 1-0(1Z-alkenyl)-2-acyl-glycerophospholipids. Moreover, mitochondrial beta-oxidation,
fatty acid, and sphingolipid metabolism are affected in OA, according to the inputs of
our study.
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4. Discussion

In this study, we investigated the lipidomic signature of OA in 53 subjects (33 OA pa-
tients and 20 healthy controls) to identify potential minimally invasive diagnostic biomark-
ers for the detection of this disease. As it is well known that the lipid metabolism suffers
alterations in the early phases of the OA pathogenesis, we identified lipid derivatives with
very good diagnostic accuracies (AUC > 0.9), with significantly altered levels in plasma
and SF of OA patients relative to controls.

While there are not many human studies examining the lipidomic profile in relation
to OA development in SF, our findings generally agree with other publications that have
been published. Gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) has
been used by several authors to examine the metabolic profile of SF in patients with early
(KL grade 1 or 2) vs. late (KL grade 3 or 4) knee OA. Subsequently, hierarchical clustering
and orthogonal partial least squares discriminant analyses were performed. Patients with
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late-stage knee OA were found to have elevated levels of several lipids, such as arachidonic
acid, palmitoleic acid, linoleic acid, oleic acid, palmitic acid, and stearic acid, in addition to
other metabolites [14–16].

Furthermore, it has been shown that SF depends on lipid species to lubricate joints
and lower friction; as a result, this dysregulation probably represents the inflammatory
and lubricating states of the joint tissue after injury. Furthermore, the dysregulation of
glycolysis, the tricarboxylic acid cycle, fatty acid production, oxidation, and degradation in
injured participants may represent the health and functioning of mitochondria in different
joint tissues after injury. Energy is produced by both glucose and fatty acids in functioning
mitochondria but in malfunctioning mitochondria, the preference is for fatty acids over
glucose. Fatty acid buildup can result in decreased adenosine triphosphate (ATP) synthesis,
a compromised stress response, an increase in reactive oxygen species, apoptosis, and other
factors that when combined can cause systemic irreversible damage [17–19].

In addition, in support of these findings, Wu et al. (2017) investigated possible
alterations in the lipid profile of mice SF, finding significant dysregulations, suggesting
that the investigation of the lipid metabolism in OA is crucial for the early detection of
the disease. The authors found that there was a positive correlation between the levels of
adiponectin and the serum levels of ω-3 PUFAs but a negative correlation with OA and
wound size. Conversely, the majority of ω-6 PUFAs showed favorable associations with
inflammatory adipokines, OA, and poor healing. It is noteworthy that there was an inverse
correlation between joint degradation and the amounts of palmitoleic acid and pentadecylic
acid (C15:0, an odd-chain SFA). Because injuries may result in mitochondrial malfunction,
which allows fatty acids to enter the mitochondria and become the main energy source, it
has been shown that lipid metabolism plays a significant role in joint health [20].

Other plasma metabolomics studies in OA patients identified upregulated molecules
such as palmitoleic acid (C16:1), carnitine C20:2, hypoxanthine, xanthosine, and N-α-
acetyl-L-asparagine, which were positively correlated with knee OA [21]. In addition,
in the patellar, lateral, and medial compartments, the reduction in cartilage volume was
1.98 ± 0.46%, 1.06 ± 0.58%, and 1.34 ± 0.72% annually, respectively. According to these
results, there was a 0.12 ± 0.02% annual decrease in patellar cartilage volume linked with
the increased ratios of hexadecenoylcarnitine (C16:1) to tetradecanoylcarnitine (C14) and
C16:1 to dodecanoylcarnitine (C12) (p < 3.03 × 10−6). These findings indicated that the
loss of patellar cartilage was related to changes in long-chain fatty acid β-oxidation. The
ratios of C16:1 to C14 and C12 may be utilized to predict long-term cartilage deterioration,
although further research is required [21,22].

It is interesting to note that patients with metabolic problems may have aberrant
plasma concentrations of carnitine and acylcarnitine due to anomalies in the metabolic
enzymes or transport proteins involved in fatty acid and amino acid metabolism. It is well
established that the main role of carnitine is to combine with fatty acids or deamination
products of branched-chain amino acids to form acylcarnitine. After leaving the cytoplasm,
these metabolites are transferred to the mitochondria, where beta-oxidation completely
breaks them down and releases energy. Thus, abnormalities in one or more acylcarnitine
levels are indicative of diseases related to the metabolism of fatty acids or branched-chain
amino acids [23].

Nevertheless, our research was limited in terms of population size (53 subjects) and
had an age mismatch between patients and controls that could not be adjusted, which
represents the main limitations of the current work. Although the results are consistent
with previous literature reports, for the lipid metabolites to have a more reliable diagnostic
value, bigger cohort studies are required to substantiate our findings, and further targeted
lipidomics studies are warranted.

5. Conclusions

We have shown that the lipid profile of OA patients is highly altered and that the
affected metabolites could represent novel biomarkers for the detection of the disease.
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We have found 25 molecules with very high diagnostic accuracies (AUC > 0.9) that were
significantly dysregulated in plasma samples of OA patients compared to OA-free controls
and 20 molecules with high AUC values (>0.8) in SF. However, given the small-scale design
of our study, future, large-scale targeted lipidomics studies are required to confirm and
further validate our findings.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics14161834/s1, Table S1A. Metabolites found in
both plasma and synovial fluid, with m/z values for the precursor ion (adduct [M + H+], identi-
fied as putative biomarkers by comparison with the average isotopic mass and a mass tolerance of
0.05 Da, according to HMDB and LipidMaps databases (IDs included); Table S1B. Metabolites found
in plasma with m/z values for the precursor ion (adduct [M + H+], identified as putative biomarkers
by comparison with the average isotopic mass and a mass tolerance of 0.05 Da, according to HMDB
and LipidMaps databases (IDs included). Plasma putative biomarkers of differentiation between
control groups C and P, selected according to three statistic algorithms: PLSDA (VIP values above
1.5), Random Forest (RF) with MDA values above 0.0005, and AUC values above 0.900; Table S1C.
Metabolites found in the synovial fluid with m/z values for the precursor ion (adduct [M + H+],
identified as putative biomarkers by comparison with the average isotopic mass and a mass tolerance
of 0.05 Da, according to HMDB and LipidMaps databases (IDs included)). Putative biomarkers
of differentiation between controls and patients in synovial fluid were selected according to three
statistic algorithms: PLSDA (VIP values above 1.7), Random Forest (RF) with MDA values above
0.0002, and AUC values above 0.800.
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