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Abstract: Radiomics, which integrates the comprehensive characterization of imaging phenotypes
with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and
prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic
features are critical challenges that hinder their widespread clinical adoption. This review aims
to address the paucity of discussion regarding the factors that influence the reproducibility and
repeatability of radiomic features and their subsequent impact on the application of radiomic models.
We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based
radiomic features, examining sources of variation, the number of reproducible features, and the
availability of individual feature repeatability indices. We differentiate sources of variation into
random effects, which are challenging to control but can be quantified through simulation methods
such as perturbation, and biases, which arise from scanner variability and inter-reader differences
and can significantly affect the generalizability of radiomic model performance in diverse settings.
Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of
variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable
reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the
importance of random effects in feature selection and harmonizing biases between development and
clinical application settings to facilitate the successful translation of radiomic models from research
to clinical practice.

Keywords: radiomics; repeatability and reproducibility

1. Introduction

In the era of precision medicine, translational research that aims to solve specific
clinical questions with technical developments has gained increasing popularity due to the
availability of structured medical data and rapid advancements in data mining techniques.
Imaging is one of the most frequently analyzed data modalities due to the wide availability
of imaging data and their rich anatomical, textural, and functional information. Image-
derived biomarkers have been used in routine clinical practice, such as the TNM stage
determined from multiple imaging modalities and the bone scan index calculated from
SPECT [1]. Meanwhile, new imaging biomarkers have been actively investigated to fully
explore the potential of imaging data in personalized clinical decision making. One of the
most popular quantitative imaging biomarker development techniques is radiomics, in
which a comprehensive set of features are extracted from medical images and are correlated
with the underlying pathophysiology [2]. The general workflow of radiomics has been
shown in Figure 1. It has been recognized as a potentially effective tool for diagnosis,
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survival prognosis, and toxicity prediction by combining selected features into single
predictive signatures [3–7].
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Figure 1. Steps of radiomic feature extraction that could affect radiomic feature values. The red color
in ROI segmentation indicates the gross tumor volume as target in Radiotherapy. The color spectrum
of Preprocessing indicates the high Hounsfield units (red) and low Hounsfield units (blue) within the
gross tumor volume. The color spectrum of Feature extraction indicates the varied features value.

Despite the large number of radiomic signatures proposed in previous studies, very
few have been externally validated in a prospective setting [8], posing a great challenge to
reliable clinical applications. A repeatable and reproducible radiomic signature requires
complete transparency in signature composition and consistent measurements in the same
or similar conditions [9]. The latter, consistent measurement, relies heavily on the re-
peatability and reproducibility of individual radiomic features, which can be affected by
inconsistencies during all the steps of radiomic feature acquisition, including image ac-
quisition, structure delineation, image preprocessing, and feature extraction. The Imaging
Biomarker Standardization Initiative (IBSI) attempted to achieve consensus on the settings
and procedures in image preprocessing and feature extraction through international col-
laboration and provided guidelines on quality assurance and feature reporting [10]. On
the other hand, absolute agreements in image acquisition and structure delineation are
infeasible due to heterogeneous machines and imaging acquisition protocols, randomness
in machine status and patient setups, as well as bias and error in manual structure de-
lineations. Most reviews have approached this issue by summarizing and analyzing the
reliability of radiomic features with respect to each aspect and have provided suggestions to
mitigate the repeatability issues in each case. More clinical radiomic studies have assessed
radiomic feature repeatability and reproducibility under these types of uncertainties using
experimental techniques, including test–retest imaging and multiple delineations [11–14],
and perturbation methods [15–17].

It has been recognized that each step in the radiomic workflow impacts on radiomic
feature reliability, and several review articles have comprehensively investigated the source
of variations affecting radiomic feature repeatability in radiomic workflows. Zhao [18]
discussed the sources of variations in the radiomic workflow, categorizing them into
controllable and uncontrollable factors to provide a deeper perspective on the reliability
of radiomics and also provide potential solutions for each step. Yet, despite plenty of
discussions on the radiomic workflow, most reviews conducted a radiomic workflow-based
evaluation of sources of variations, and there was a lack of discussion on the nature of
the sources of variations. Furthermore, most of the reviews summarized the sources of
variations, and there was a lack of discussion of the results. Additionally, focusing on
individual feature repeatability would be more practical for developing reliable radiomic
signatures. For example, the assessment of radiomic feature repeatability via test–retest
and perturbation methods has been proven to be valuable in safeguarding the reliability
of radiomic signatures by improving their internal and external generalizability when
developed using only repeatable radiomic features.

Therefore, this review aimed to (1) summarize the sources of variation in the CT/MR-
based radiomic feature repeatability literature in terms of random effects and bias and dis-
cuss their implications for different applications and (2) summarize the number/proportion
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of highly repeatable and reproducible radiomic features under randomness and bias in
radiomic workflows reported in previous studies. Specifically for the second arm, we
focused on the comparison of highly repeatable and reproducible features under different
sources of variations, including scanners, image acquisition protocols, test–retest imaging,
intra-observer contouring, and inter-observer contouring, categorized by different imaging
modalities. This review could provide a more holistic picture of radiomic feature suscepti-
bility to different bias and random factors during applications in real clinical scenarios and
facilitate the construction of reliable radiomic signatures.

2. Materials and Methods
2.1. Eligibility Criteria

Peer-reviewed full-text articles written in the English language and published between
1 May 2017 and 1 December 2023 were eligible for inclusion in this review. Three electronic
databases (PubMed, EMbase, and Web of Science) were used to search for records. Publica-
tions included in our review met all of the following inclusion criteria: (1) peer-reviewed
English full-text reports; (2) included radiomic features extracted from CT images or MR
images; (3) indicated compliance with IBSI during feature extraction; and (4) focused on
the repeatability and reproducibility of radiomic features resulting from variations during
image acquisition and segmentation.

2.2. Research Strategy

To search for articles, we used the following search string: (“Radiomics” OR “Texture”)
AND (“Reproducibility” OR “Repeatability” OR “Robustness” OR “Stability”) AND (“CT”
OR “CT Scan” OR “Computed Tomography” OR “MRI” OR “Magnetic resonant image”).
We also screened the Cochrane Database of Systematic Reviews for any previous reviews
addressing the robustness of CT-based radiomic features. For all the articles obtained where
we used the full text for data extraction, we screened the bibliographic references within
them for additional potentially eligible studies. The researchers downloaded these elec-
tronic full-text articles using university library subscriptions. Two experienced researchers
independently reviewed the eligibility of the studies based on the previously mentioned
eligibility criteria.

2.3. Data Extraction

Data were extracted to a spreadsheet with a drop-down list for each item, defined
by the first author, imaging modalities, sources of variations, criteria for highly repeat-
able/reproducible features, imaging sites, number/portion of highly repeatable/reproducible
features, and availability of repeatability/reproducibility metric values for individual features.

3. Results
3.1. Overall Results

Overall, 38 publications, including 24 publications on CT scans and 16 publications on
MR scans (2 publications involved both CT and MR scans), were included in the analysis.
The inclusion flowchart was shown in Figure 2.

The sources of variations were categorized into two main categories, random effects
and bias. For sources of variations, random effects were summarized according to (1) intra-
scanner test–retest (CT: n = 7, MR: n = 6), (2) intra-observer variability on segmentations
(CT: n = 2, MR: n = 1), (3) perturbations (CT: n = 1, MR: n = 0), and (4) auto-generated
segmentations (CT: n = 1, MR: n = 0). Bias was summarized according to (1) acquisition
parameters (CT: n = 9, MR: n = 2), (2) inter-scanner variability (CT: n = 4, MR: n = 5),
(3) inter-observer variability on segmentations (CT: n = 6, MR: n = 5), (4) preprocessing
parameters (CT: n = 3, MR: n = 3), (5) contrast agent-related bias (CT: n = 2, MR: n = 0), and
(6) spatial variability (CT: n = 0, MR: n = 1).
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For the reliability index quantifying feature repeatability against random effects,
concordance coefficients of correlation (CCCs) (n = 5), intra-class coefficients of correlation
(ICCs) (n = 11), coefficients of variance (CVs) (n = 2), dynamic ranges (DRs) (n = 1), and
Bland–Altman analysis (n = 1) were used. Several publications [19–21] applied a combined
index to identify highly repeatable features. For the reliability index quantifying feature
reproducibility against bias, CCCs (n = 13), ICCs (n = 20), CVs (n = 8), quartile coefficients of
dispersion (QCDs) (n = 1), DRs (n = 2), Kendall’s concordance coefficients (n = 2), r2 (n = 1),
and average symmetric mean absolute percentage errors (n = 2) were used. Similarly,
several publications [19,20,22–26] applied a combined reliability index to identify highly
repeatable features. Furthermore, the thresholds for identifying repeatable/reproducible
features also exhibited relatively large variations across different studies.

The imaging sites covered in the included studies were phantom (n = 5), liver (n = 5),
lung (n = 6), skin (n = 1), heart (n = 1), pancreas (n = 1), and kidney (n = 2) sites for CT scans.
The imaging sites covered in the included studies were phantom (n = 1), brain (n = 4), lung
(n = 1), liver (n = 3), heart (n = 1), breast (n = 1), prostate (n = 2), and cervix (n = 1) sites for
MRI scans.

The proportion of features found to be highly repeatable against random effects ranged
from 15.1% to 93.1% across the literature investigating feature repeatability on CT scans
and from 0.50% to 91.6% across the literature investigating feature repeatability on MR
scans. The proportion of features that were highly reproducible against bias ranged from
0% to 100% across the literature on CT scans and from 2.5% to 96.7% across that on MR
scans. Furthermore, a clear trend was observed, namely, that more features are susceptible
to inter-scanner/observer variability than intra-scanner/observer variability.

Lastly, 26 out of 38 included publications had repeatability/reproducibility indices
available for individual radiomic features.

3.2. Random Effects Affecting CT-Based Radiomic Features

Ten publications were included in the summary of the role of random effects on the
repeatability of CT-based radiomic features, as shown in Table 1.
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Table 1. Summary of the literature on random effects affecting CT-based radiomic features.

Author Modality Sources of
Variation

Criteria for High
Repeatablity

/Reproduciblity
Site Highly Repeatable/

Reproducible Features
Availability of

Reliability Index

Chen et al.
(2021) [27] CT Intra-scanner

test–retest CV < 10% Phantom and
hematoma

Phantom: 79.05% to 81.43%
Hematoma: 42.54% to 45.4% No

Chen et al.
(2022) [22] DECT SECT Intra-scanner

test–retest
Bland–Altman
analysis > 0.90 Phantom DECT: 87.02 ± 5.79%

SECT: 92.91 ± 1.89% Yes

Euler et al.
(2021) [19] CT Intra-scanner

test–retest CCC and DR ≥ 0.9 Liver
74% to 86% repeatable

features under acquisition
settings

No

Mahon et al.
(2019) [28] CT Intra-scanner

test–retest CCC > 0.9 Lung Tumor: 54.4%
Normal tissue: 78.5% Yes

Muenzfeld et al.
(2021) [29] CT Intra-scanner

test–retest CCC > 0.85 Phantom 19/86 (22%) Yes

Prayer et al.
(2020) [30] CT Intra-scanner

test–retest ICC > 0.9 Lung 65/86 (75.58%) Yes

Duan et al.
(2022) [31]

MIP Intra-observer
variability ICC > 0.75 Liver

77/107 (71.96%)
Yes

CECT Intra-observer
variability 84/107 (78.50%)

Kocak et al.
(2019) [32]

CECT Intra-observer
variability ICC > 0.75 Kidney

Texture features: 693/744
(93.1%) No

CT Intra-observer
variability

Texture features: 686/744
(92.2%)

EPV Le et al.
(2021) [33] CT Perturbations ICC > 0.9 Heart 14/93 (15.1%) No

Müller-Franzes
et al. (2022) [34] CT Autogenerated

segmentations ICC > 0.99 Multi-site
Lung: 269/439 (61.28%)
Liver: 292/439 (66.51%)

Kidney: 377/439 (85.88%)
Yes

Abbreviation: MIP, maximum intensity projection; CT, computed tomography; CECT, contrast-enhanced com-
puted tomography; CV, coefficient of variation; CCC, concordance correlation coefficient; ICC, intra-class coeffi-
cient of correlation; DR, dynamic range.

3.3. Bias Affecting CT-Based Radiomic Features

Twenty-one publications were included in the summary of the effect of bias on the
repeatability of CT-based radiomic features, as shown in Table 2.

Table 2. Summary of the literature on bias affecting CT-based radiomic features.

Author Modality Sources of
Variation

Criteria for High
Repeatablity/

Reproduciblity
Site

Highly Repeatable/
Reproducible

Features

Availability
of Reliability

Index

Chen et al.
(2021) [27] CT Acquisition

parameters CV < 10%
Phantom

and
hematoma

Phantom:
48.89% to 53.97%

Hematoma:
43% to 42.38%

No

Chen et al.
(2022) [22] CT

Acquisition
parameters ICC/CCC > 0.90

Phantom

DECT: 10.76 ± 2.05%
SECT: 10.28 ± 2.05%

Yes
Inter-scanner

variability CV/QCD < 10%

DECT: 15.16 ± 3.26%,
32.78 ± 5.62%

SECT: 17.09 ± 2.60%,
27.73 ± 4.07%

Denzler et al.
(2021) [35] CT Acquisition

parameters ICC > 0.9 Lung 360/1386 (26%) Yes
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Table 2. Cont.

Author Modality Sources of
Variation

Criteria for High
Repeatablity/

Reproduciblity
Site

Highly Repeatable/
Reproducible

Features

Availability
of Reliability

Index

Euler et al.
(2021) [19] CT Acquisition

parameters CCC and DR ≥ 0.9 Liver

32.7% to 99.2%
reproducible features

across different
energies

No

Gruzdev et al.
(2020) [36] CECT

Inter-observer
variability

Kendall’s
concordance

coefficient > 0.7
Pancreas

52/52 (100%)
features for all phases

No
Inter-scanner

variability
74% reproducible
texture features

Inter-scanner and
inter-observer

variability

67% reproducible
texture features

Ibrahim et al.
(2021) [37] CT Contrast-

enhanced phases CCC > 0.9 Liver 42/167 (25.15%) No

Lennartz et al.
(2022) [38] DECT Inter-scanner

variability CCC > 0.9
Phantom

and
multi-sites

Phantom: None
Patients: 2.5% to
16.1% of features

No

Meyer et al.
(2019) [39]) CT Acquisition

parameters R2 ≥ 0.95 Liver 12/106 (11%) Yes

Muenzfeld et al.
(2021) [29] CT Acquisition

parameters CCC > 0.85 Phantom 11/86 (12.8%) Yes

Perrin et al.
(2018) [40] CECT

Contrast-agent
injection rate

CCC > 0.9 Liver

Liver parenchyma:
63/254 (24.8%) and

0/254 (0%)
Liver malignancies:

68/254 (26.77%) and
50/254 (19.69%) Yes

Acquisition
parameters

Liver parenchyma:
20/254 (7.87%),

0/254 (0%);
Liver malignancies:

34/254 (13.39%)

Prayer et al.
(2020) [30] CT Inter-scanner

variability ICC > 0.9 Lung ICC ranges from
0.471 to 0.927 Yes

Refaee et al.
(2022) [41] CT Acquisition

parameters CCC > 0.9 Phantom 6/91 (6.59%) to 78/91
(85.71%) No

Rinaldi et al.
(2022) [42] CT Acquisition

parameters OCCC ≥ 0.85 Lung 1260/1414 (89.11%) Yes

Bianconi et al.
(2021) [43] CT Inter-observer

variability

Average symmetric
mean absolute

percentage
error < 10%

Lung 30/88 (34.09%) Yes

Duan et al.
(2022) [31]

MIP Inter-observer
variability ICC > 0.75 Liver

71/107 (66.36%)
Yes

CECT Inter-observer
variability 74/107 (69.16%)

Haarburger
et al. (2020) [44] CT

Inter-observer
variability and

automatic
segmentation

ICC > 0.9 Multi-site

Lung: 71/105
(67.62%)

Kidney: 61/105
(58.10%)

Liver: 75/105
(71.43%)

Yes
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Table 2. Cont.

Author Modality Sources of
Variation

Criteria for High
Repeatablity/

Reproduciblity
Site

Highly Repeatable/
Reproducible

Features

Availability
of Reliability

Index

Kocak et al.
(2019) [32]

CECT Inter-observer
variability

ICC > 0.75 Kidney

Texture features:
632/744 (84.9%)

No
CT Inter-observer

variability
Texture features:
571/744 (76.7%)

Konik et al.
(2021) [45] CT Inter-observer

variability ICC > 0.85 Kidney 78/169 (46.15%) Yes

Li et al.
(2020) [23] CT Preprocessing

parameters
ICC > 0.8 and

CV < 20% Phantom 44/88 (50%) No

Le et al.
(2021) [33] CT Preprocessing

parameters ICC > 0.9 Heart 52/93 (55.9%) No

Bianconi et al.
(2021) [43] CT Preprocessing

parameters

Averaging
symmetric mean

absolute percentage
error < 10%

Lung 28/88 (31.82%) Yes

Abbreviation: MIP, maximum intensity projection; CT, computed tomography; CECT, contrast-enhanced com-
puted tomography; CV, coefficient of variation; CCC, concordance correlation coefficient; ICC, intra-class coeffi-
cient of correlation; OCCC, overall concordance correlation coefficient.

3.4. Random Effects Affecting MR-Based Radiomic Features

Eight publications were included in the summary of the role of random effects in the
repeatability of MRI-based radiomic features, as shown in Table 3.

Table 3. Summary of the literature investigating random effects affecting MR-based radiomic features.

Author Modality Sources of
Variation

Criteria for High
Repeatablity/

Reproduciblity
Site Highly Repeatable/Reproducible

Features
Availability of

Reliability
Index

Carbonell et al.
(2022) [20] MRI Intra-scanner

test–retest
ICC > 0.9 and

CV < 20% Liver

HCC-T1WIpre: 45/108 (41.67%),
T1WIpvp: 47/108 (43.52%), T2WI:

39/108 (36.11%), ADC: 21/108
(19.44%)

Liver-T1WIpre: 32/92 (34.78%),
T1WIpvp: 16/92 (17.39%), T2WI:

12/92 (13.04%), ADC: 2/92 (2.17%)

Yes

Fiset et al.
(2019) [13] MRI (T2WI) Intra-scanner

test–retest ICC ≥ 0.75 Cervical Cervical: 917/1761 (52.1%) Yes

Mahon et al.
(2019) [28] MRI Intra-scanner

test–retest CCC ≥ 0.9 Lung

Lung (TRUFISP): 64.4% (tumor),
67.8% (normal tissue)

Lung (VIBE): 54.4% (tumor), 72.9%
(normal tissue)

Yes

Mitchell-Hay
et al. (2022) [21] MRI (T1WI) Intra-scanner

test–retest CCC/DR > 0.9 Brain 8/1596 (0.50%) features were
repeatable in all centers Yes

Pandey et al.
(2021) [46] MRI (T2WI) Intra-scanner

test–retest ICC > 0.5 Brain

ICC: 0.73 for right grey matter,
0.78 for left grey matter

ICC: 0.65 for right white matter,
0.67 for left white matter

Yes

Dewi et al.
(2023) [47] MRI (T2WI) Intra-scanner

test–retest ICC > 0.75 Prostate 25/107 (23.36%) at fixed bin count
discretization of 64 Yes

Duan et al.
(2022) [31] MRI Intra-observer

variability ICC > 0.75 Liver 98/107 (91.6%) Yes

Müller-Franzes
et al. (2022) [34] MRI Automatic

segmentations ICC > 0.99 Brain 77/439 (17.54%) Yes

Abbreviations: CCC, concordance correlation coefficient; ICC, intra-class coefficient of correlation; CV, coefficient
of variation; T1WI, T1-weighted image; T2WI, T2-weighted image; ADC, apparent diffusion coefficient; HCC,
hepatocellular carcinoma.
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3.5. Bias Affecting MR-Based Radiomic Features

Thirteen publications were included in the summary of investigations on MRI-based
radiomic feature repeatability affected by random effects, as shown in Table 4.

Table 4. Summary of the literature investigating bias affecting MR-based radiomic features.

Author Modality Sources of
Variation

Criteria for
High

Repeatablity/
Reproduciblity

Site
Highly Repeat-

able/Reproducible
Features

Availability
of Reliability

Index

Carbonell et al.
(2022) [20] MRI

Inter-observer
variability

CCC > 0.75 and
CV < 20% Liver

HCC-T1WIpre: 95/108
(87.96%), T1WIpvp:

102/108 (94.44%), T2WI:
61/108 (56.48%), ADC:

91/108 (84.26%)
Liver-T1WIpre: 25/92

(27.17%), T1WIpvp:
37/92 (40.22%), T2WI:

8/92 (8.70%), ADC:
49/92 (53.26%) Yes

Inter-scanner
variability

CCC > 0.75,
CV < 20%

HCC-T1WIpre: 23/108
(21.30%), T1WIpvp:

25/108 (23.15%), T2WI:
11/108 (10.19%), ADC:

7/108 (6.48%)
Liver-T1WIpre: 0/92
(0%), T1WIpvp: 0/92

(0%), T2WI: 0/92 (0%),
ADC: 0/92 (0%)

Fiset et al.
(2019) [13]

MRI
(T2W)

Inter-observer
variability ICC > 0.9

Cervix
1301/1761 (73.88%) Yes

Inter-scanner
variability ICC ≥ 0.75 248/1761 (14.1%) Yes

Lee et al.
(2021) [24] MRI Acquisition

parameters
ICC > 0.9,
CV < 20%

Phantom and
brain (healthy

volunteers)

Phantom: average ICC,
0.963 (T1WI) and 0.959

(T2WI)
Brain: average ICC, 0.856
(T1WI) and 0.859 (T2WI)

Yes

Mitchell-Hay
et al. (2022) [21]

MRI
(T1WI)

Inter-scanner
variability ICC > 0.9 Brain

40/1595 (2.51%) features
were excellent in terms

of reproducibility
Yes

Pandey et al.
(2020) [46]

MRI
(T2WI)

Spatial
variability

ICC > 0.5 Brain

29.04% of gray matter
and 38.7% of white

matter features
demonstrated an

ICC > 0.5 Yes

Inter-scanner
variability

18% of gray matter and
21.5% of white matter
features demonstrated

an ICC > 0.5

Raisi-Estabragh
et al. (2020) [48] MRI Inter-scanner

variability ICC > 0.9 Cardiac

LV myocardium: 4/16
(25%) for repeatable

shape features, (28/38,
74%) for repeatable first
order features, (125/146,

86%) for repeatable
texture features

Yes
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Table 4. Cont.

Author Modality Sources of
Variation

Criteria for
High

Repeatablity/
Reproduciblity

Site
Highly Repeat-

able/Reproducible
Features

Availability
of Reliability

Index

Duron et al.
(2019) [49] MRI

Preprocessing
parameters

ICC > 0.8 and
CCC > 0.9

Lacrimal
gland

54/69 (78.26%) for T2WI,
37/69 (53.62%) for T1WI,
and 31/69 (44.93%) for

ADC No

Breast 32/69 (46.38%) for
DISCO sequence

Moradmand
(2019) [26] MRI Preprocessing

parameters CCC/DR > 0.9
Brain

(glioblas-
toma)

703/4066 (17.3%) No

Scalco et al.
(2020) [50] T2w-MRI Preprocessing

parameters ICC > 0.9 Prostate
Prostate: 14%

Obturators: 12%
Bulb: 13/91 (14%)

Yes

Duan et al.
(2022) [31] MRI Inter-observer

variability ICC > 0.75 Liver 85/107 (79.4%) Yes

Fiset et al.
(2019) [13]

MRI
(T2W)

Inter-observer
variability ICC > 0.9 Cervix 1301/1761 (73.88%) Yes

Haniff
(2021) [51] MRI

Semi-automatic
segmentation ICC ≥ 0.8 Liver

640/662 (96.7%)
Yes (partial)

Inter-observer
variability 517/662 (78.1%)

Müller-Franzes
et al. (2022) [34] MRI Automatic

segmentations ICC > 0.99 Brain 77/439 (17.54%) Yes

Abbreviations: CCC, concordance correlation coefficient; ICC, intra-class coefficient of correlation; CV, coefficient
of variation; T1WI, T1-weighted image; T2WI, T2-weighted image; ADC, apparent diffusion coefficient; HCC,
hepatocellular carcinoma.

4. Discussion
4.1. Significance of Repeatability and Reproducibility in Radiomic Studies

Radiomics has emerged as a pivotal technique to augment the value of medical imag-
ing through high-throughput characterization of medical images. The explicit mathematical
definitions of each radiomic feature enhance the interpretability of radiomic signatures,
offering a more transparent alternative to the “black box” deep learning models. The
key advantage of radiomics over deep learning-based methods is the standardization of
the image preprocessing and feature definition standardization due to the effort by Zwa-
nenburg et al. An increasing number of publications have explored the diagnostic and
prognostic value of radiomic approaches for various diseases in recent years. However,
despite the surge in publications, concerns about reproducibility and repeatability have
been prevalent since the inception of the field. It is believed that the usage of highly
repeatable and reproducible radiomic features should be the first and foremost criterion
to safeguard downstream model reliability [16]. Previous evidence has also suggested
the positive impact of repeatable radiomic features in improving both the internal and
external generalizability of radiomic models [6,17,52]. Guidelines such as the EvaluAtion
of Radiomics research (CLEAR) [53], the Radiomics Quality Score (RQS) [54], and the
Joint EANM/SNMMI guideline on radiomics [55] have underscored the importance of
evaluating the reproducibility and repeatability of radiomic features and models. Un-
derstanding the source of radiomic feature variability is fundamental to harnessing the
potential of radiomics in precision medicine by ensuring its reliability and determining its
scope of application.
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4.2. Randomness: A Fundamental Source of Variation in Radiomic Studies

Randomness, inherent and unpredictable variability which cannot be controlled in
image acquisition and segmentation, is a primary concern when addressing repeatability
issues in radiomic studies. The influence of randomness on radiomic features has been the
subject of extensive research, particularly through the use of repeated scans with identical
scanners at brief intervals. This randomness can arise from factors such as patient position-
ing and scanner noise, which may induce fluctuations in image intensity and, as a result,
affect the consistency of radiomic features. For instance, Muenzfeld et al. [29] investigated
the repeatability of CT-based radiomic features by performing multiple scans on a medical
phantom with the same scanner, applying a CCC threshold of 0.85 to define repeatability.
Their study revealed that a mere 22% (19 out of 86) of the features from original images
met this repeatability criterion. Similarly, other research has explored the effects of ran-
domness on radiomic features, particularly with intra-observer segmentations, where a
single observer is responsible for multiple delineations on the same subject. Here, the
randomness is attributed to the variability in segmentation boundaries, which affects the
region of interest for feature extraction and, consequently, the radiomic features themselves.
Specifically, Duan et al. [31] examined the impact of intra-observer variability by setting
a more permissive threshold for high repeatability, with an ICC greater than 0.75. Their
results indicated that 78.5% (84 out of 107) of CECT-based radiomic features and 72.0%
(77 out of 107) of CT-based radiomic features were repeatable. It is important to recognize
that intra-observer variability in ROI delineation may differ depending on the imaging
modality, the anatomical site, and the observer’s experience. These studies highlight the
vulnerability of radiomic features to randomness. The implications are clear: employing
non-repeatable features to construct a radiomic signature can render the signature suscepti-
ble to randomness, potentially leading to a significant margin of error in its prognostic or
diagnostic utility. Therefore, ensuring the repeatability of radiomic features is essential for
the development of robust and reliable radiomic signatures.

4.3. Bias: Inter-Observer and Inter-Scanner Variations—A Significant Hurdle to Generalizable
Radiomic Signatures

Variations in the measurement settings of radiomic features can significantly impact
their consistency. These variations can stem from changes in acquisition protocols or cross
scanners, or from segmentations being performed by different observers. It is crucial to
distinguish variations that are not random but are instead attributable to the inherent
biases associated with different scanners or observer practices. Inherent bias refers to
systematic differences that are difficult to replicate during applications. For example, a
radiomic signature developed using data from a specific scanner and radiologist is likely to
underperform in a new institution with a different scanner and radiologist.

Radiomic signatures often demonstrate optimal validation performance within the
clinical settings in which they were developed. However, this performance can deteriorate
when they are applied in different scenarios, such as when using alternative scanner brands
or imaging protocols, or when segmentation is conducted by different observers. The fur-
ther the application deviates from the original clinical setting, the more pronounced the de-
cline in generalizability becomes, as evidenced by diminished discrimination performance.

The impact of inter-observer and inter-scanner variability on the reproducibility
of radiomic features has been the focus of several studies. It has been consistently ob-
served that radiomic features are more vulnerable to variations introduced by different
observers or scanners than to those arising from the same observer or scanner. For example,
Fiset et al. [13] examined the repeatability and reproducibility of MR-based radiomic fea-
tures in the context of inter-scanner and intra-scanner rescans. Their findings indicated that
while 52.1% of radiomic features remained reproducible in the face of intra-scanner variabil-
ity, a mere 14.1% maintained reproducibility when confronted with inter-scanner variability.
A similar pattern emerged when comparing intra-observer and inter-observer variability.
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Understanding the distinction between random effects and bias is imperative for
the reporting of results. The metrics used to measure repeatability and reproducibility
should differ. High repeatability against random effects is typically defined by the absolute
agreement between repeated measures, whereas consistency measures are more appropriate
for defining reproducibility in the presence of bias. Koo et al. [56] provided a practical
guideline for applying the intra-class correlation coefficient (ICC) in assessing test–retest
reliability, inter-rater reliability, and intra-rater reliability. This guideline facilitates the
appropriate use of ICCs to account for both random effects and bias, thereby enhancing the
reliability of radiomic feature measurements.

4.4. Efforts to Mitigate Randomness for Repeatable Radiomic Signatures

The primary goal in mitigating the effects of randomness on radiomic features is to
develop a robust radiomic signature that can consistently deliver the same results, irre-
spective of random fluctuations. To achieve this, two key strategies should be employed.
First, the extraction process should be refined to maximize the number of reproducible
features, which involves optimizing image preprocessing parameters such as interpola-
tions, rounding intensities, and outlier filters. Second, the construction of a radiomic
signature should be based on features that have demonstrated repeatability and resilience
to random variations.

Dewi et al. [47] conducted a study to assess the repeatability of features under various
preprocessing conditions on T2-weighted MR images. They pinpointed a specific set of
preprocessing parameters, namely, a fixed bin count of 64, the absence of signal inten-
sity normalization, and the exclusion of outliers, which resulted in the highest number
of repeatable features. However, this raises a critical question: Is the pure quantity of
repeatable features the most reliable indicator of optimal preprocessing settings, or should
the sensitivity of radiomic features to preprocessing also be taken into account?

Moreover, the construction of radiomic signatures should prioritize the inclusion of
repeatable features. Teng et al. [17] evaluated multiple radiomic signatures by systemati-
cally excluding features with low repeatability, applying ICC thresholds of 0, 0.5, 0.75, and
0.95. Their findings indicated that increasing the threshold for feature repeatability not only
enhanced the repeatability of the radiomic signatures but also maintained their discrim-
inative capability. Similarly, Zhang et al. [52] showed that the exclusion of features with
low repeatability from the signature construction process improved the inter-institutional
generalizability of the radiomic model.

However, assessing the repeatability of radiomic features in the face of randomness
presents a significant challenge, as gold-standard test–retest scans are often not readily
available. The repeatability determined from a limited set of test–retest scans may not
be universally applicable to other datasets. To address this data scarcity, Zwanenburg
et al. [15] introduced a simulation-based approach as an alternative to actual test–retest
scans. This method generates pseudo-test–retest scans by applying transformations such
as rotation, translation, and noise addition to the original images, along with contour
randomizations at the edges of segmentations. The robust features identified through
this simulation technique align with those found to be repeatable in actual test–retest
scenarios. Building on this, Zhang et al. [57] further validated that simulation methods
for identifying repeatable features can lead to the development of generalizable radiomic
signatures comparable to those derived from test–retest scans. This suggested the potential
of simulation-based methods as a viable solution for overcoming the limitations posed by
the scarcity of test–retest data.

4.5. Efforts to Address Bias for Generalizable Radiomic Signatures

To ensure the generalizability of a radiomic model, it is critical that it retains its dis-
criminative ability across diverse clinical settings. This entails maintaining performance
despite potential variations, such as differences in scanner brands, raw data acquisition
protocols, and the methodologies employed by radiologists or physicians in delineating
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regions of interest. While these factors are not inherently random, they are often difficult to
control when applying radiomic signatures in practice. Thus, the approach to mitigating
these issues parallels that of addressing randomness, namely, identifying and utilizing
radiomic features that are robust to the variations likely to be encountered in real-world
application scenarios. Hoebel et al. [58] reported that normalization and intensity quan-
tization can affect the level of repeatability of radiomic features. Moradmand et al. [26]
evaluated various combinations of preprocessing steps for multi-parametric MR images
and found that a sequence of bias field correction followed by noise filtering produced the
most reproducible radiomic features.

Three primary sources of variation must be considered: the scanner used, the image
acquisition protocol, and inter-observer variability in contouring. Of these, inter-observer
variability can be mitigated by involving multiple observers in the segmentation process
and selecting features that consistently perform well despite differences in observer input.
Variations arising from different scanners and acquisition protocols are more challenging
to address and typically require repeated scans for thorough evaluation. Unfortunately,
the limited availability of repeated scan data often restricts the ability to assess the repro-
ducibility of radiomic features in a dataset-specific manner.

A review of the literature may provide insights into which features are reproducible.
However, the transferability of feature repeatability across different studies is not always
clear, and the absence of a standardized repeatability index for individual features can
complicate the identification of robust features. Additionally, calibration of a radiomic
model before its application in new clinical settings is strongly recommended to enhance
its adaptability and performance.

In summary, the development of a generalizable radiomic model requires careful
consideration of potential variations and the selection of features that are resistant to these
changes. By incorporating robust preprocessing steps, involving multiple observers in
segmentation, and calibrating the model for different settings, researchers can improve the
reliability and applicability of radiomic signatures across various clinical environments.

4.6. Enhancing the Reporting of Repeatability and Reproducibility in Radiomic Feature Studies

While research into the repeatability and reproducibility of radiomic features has
significantly enhanced our understanding of their sensitivity to random effects and biases,
leveraging this knowledge to bolster the repeatability and reproducibility of radiomic sig-
natures is paramount. In the developmental stages of radiomic signatures, the feasibility of
conducting supplementary test–retest scans for dataset-specific assessments is often limited.
Therefore, it becomes crucial for studies focusing on repeatability and reproducibility to
explore whether their findings can aid other researchers in evaluating the repeatability
and reproducibility of their own radiomic models, especially in scenarios where additional
test–retest scans are not available. To support this endeavor, we propose the following
specific recommendations:

(1) Detailed Reporting of Variation Sources: Authors should meticulously document
any sources of variation encountered across different measurement settings. These
include, but are not limited to, changes in scanner types, imaging protocols, and
segmentation processes. Such detailed reporting will provide valuable context for
understanding the conditions under which the radiomic features were assessed.

(2) Transparent Disclosure of Calculation Parameters: It is imperative to transparently
disclose all parameters used in the calculation of radiomic features. This transparency
ensures that other researchers can accurately replicate the feature extraction process,
facilitating a more reliable comparison of results across different studies.

(3) Careful Selection of a Suitable Reliability Index: Choosing an appropriate relia-
bility index is critical for assessing the repeatability and reproducibility of radiomic
features. Researchers should select indices that most accurately reflect the nature of
the variations.
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(4) Comprehensive Reporting of Reliability Metrics: The reliability metrics for indi-
vidual features should be thoroughly reported. This comprehensive reporting will
allow other researchers to discern which features are most stable and reliable across
different datasets and conditions, thereby informing the selection of features for their
own radiomic signatures.

By adhering to these recommendations, researchers can facilitate a more precise
evaluation of the repeatability and reproducibility of radiomic signatures, even in scenarios
where direct test–retest data are unavailable. This approach not only advances the field of
radiomics by ensuring the development of more robust and reliable signatures, but also
fosters a culture of transparency and reproducibility within the research community.

Positron emission tomography (PET) is another crucial imaging modality in radiology.
Unlike CT and MRI, which provide anatomical images with clear tissue boundaries, PET is
a functional imaging technique that relies on the type of radiopharmaceutical tracer used.
PET is also significant in radiomic research [59]. The concepts discussed in this review can
be applied to identify highly repeatable PET features.

5. Conclusions

In conclusion, the exploration of repeatability and reproducibility in radiomic features
has significantly deepened our understanding of their susceptibility to both random effects
and systematic biases. This knowledge is indispensable for the advancement of radiomic
research, particularly in the development of robust and reliable radiomic signatures that
can withstand the variability inherent in clinical settings. However, the practical challenges
of conducting additional test–retest scans for dataset-specific evaluations highlight the
necessity of a standardized approach in reporting and assessing the repeatability and
reproducibility of radiomic features.

To address these challenges, we have proposed a set of recommendations aimed
at enhancing the transparency and reliability of radiomic studies. These include the
detailed reporting of sources of variation, transparent disclosure of feature calculation
parameters, careful selection of reliability indices, and comprehensive reporting of reliability
metrics for individual features. Adherence to these guidelines will not only facilitate more
accurate evaluation of radiomic signatures in the absence of extensive test–retest data but
also contribute to the broader goal of achieving generalizable and clinically applicable
radiomic models.
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