Modern Approach to Diabetic Retinopathy Diagnostics
Abstract
:1. Introduction
2. Advancements in Diagnosing Diabetic Retinopathy
2.1. Teleophthalmology
2.2. Handheld Photography
2.3. Widefield and Ultra-Widefield Imaging
2.4. UWF Fluorescein Angiography, Optical Coherence Tomography, and OCT Angiography
2.5. Artificial Intelligence and Machine Learning in DR
2.6. Nanotechnology
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | Diabetes mellitus |
DR | Diabetic retinopathy |
PDR | Proliferative diabetic retinopathy |
DME | Diabetic macular edema |
SBP | Smartphone-based photography |
AI | Artificial intelligence |
DL | Deep learning |
CFP | Color fundus photography |
FFA | Fundus fluorescein angiography |
OCT | Optical coherence tomography |
OCTA | OCT angiography |
WFP | Widefield photography |
SLB | Slit-lamp biomicroscopy |
SBFP | Smartphone-based fundus photography |
UWFI | Ultra-widefield imaging |
WFI | Widefield imaging |
mtmDR | More-than-mild DR |
UWF-C | Ultra-widefield Colour |
UWF | Ultra-widefield |
FA | Fluorescein angiography |
FOV | Field of view |
NV | Retinal neovascularization |
WF-OCTA | Widefield OCTA |
NVE | NV elsewhere |
SS-OCTA | Swept-source OCTA |
RGB | Red–Green–Blue |
RG | RedºGreen |
PPLs | Predominant peripheral lesions |
ETDRS | Early Treatment Diabetic Retinopathy Study |
NPDR | Non-proliferative DR |
ML | Machine learning |
IRMAs | Intraretinal microvascular abnormalities |
UWF-SS-OCTA | Ultra-widefield swept-source OCTA |
DM-NoDR | Diabetic patients without clinical DR |
NPA | Non-perfusion areas |
UWF-CI | UWF-C imaging |
CNN | Convolutional neural network |
AEYE-DS | AEYE diagnostic screening |
RDR | Referable DR |
VTDR | Vision-threatening DR |
AUC | Area-under-receiver operating curve |
PEI-NHAc-FS | Polyethyleneimine particles with fluorescein sodium |
FS | Fluorescein sodium |
MF | Metabolic fingerprints |
HIF-1 | Hypoxia-inducible factor-1 |
NPs | Nanoparticles |
PSA | Polysebacic acid |
PEG | Polyethylene glycol |
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Prac. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Wong, T.Y.; Cheung CM, G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Lundeen, E.A.; Burke-Conte, Z.; Rein, D.B.; Wittenborn, J.S.; Saaddine, J.; Lee, A.Y.; Flaxman, A.D. Prevalence of Diabetic Retinopathy in the US in 2021. JAMA Ophthalmol. 2023, 141, 747. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gibbons, C.H.; Giurini, J.M.; Hilliard, M.E.; Johnson, E.L.; et al. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S231–S243. [Google Scholar] [CrossRef]
- Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef]
- Pieczynski, J.; Kuklo, P.; Grzybowski, A. The Role of Telemedicine, In-Home Testing and Artificial Intelligence to Alleviate an Increasingly Burdened Healthcare System: Diabetic Retinopathy. Ophthalmol. Ther. 2021, 10, 445–464. [Google Scholar] [CrossRef]
- Rani, P.K.; Khanna, R.C.; Ravindrane, R.; Yeleswarapu, S.C.; Panaganti, A.K.; Thakur, V.S.; Sharadi, V.; Iype, V.; Rathi, V.M.; Vaddavalli, P.K. Teleophthalmology at a primary and tertiary eye care network from India: Environmental and economic impact. Eye 2024, 38, 2203–2208. [Google Scholar] [CrossRef]
- Weng, C.Y.; Maguire, M.G.; Flaxel, C.J.; Jain, N.; Kim, S.J.; Patel, S.; Smith, J.R.; Kim, L.A.; Yeh, S. Effectiveness of Conventional Digital Fundus Photography-Based Teleretinal Screening for Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmology 2024, 131, 927–942. [Google Scholar] [CrossRef]
- Li, L.; Jin, Y.; Wang, J.H.; Wang, S.S.; Yuan, F.X. Potency of teleophthalmology as a detection tool for diabetic retinopathy. Sci. Rep. 2023, 13, 19620. [Google Scholar] [CrossRef]
- Dahlan, K.; Suman, P.; Rubaltelli, D.; Shrivastava, A.; Chuck, R.; Mian, U. In a Large Healthcare System in the Bronx, Teleretinal Triaging Was Found to Increase Screening and Healthcare Access for an Underserved Population with a High Incidence of T2DM and Retinopathy. Int. J. Environ. Res. Public Health 2023, 20, 5349. [Google Scholar] [CrossRef] [PubMed]
- Lieng, M.K.; Emami-Naeini, P.; Lee, S.C.; Alber, S.; Yiu, G. Teleophthalmology provides earlier eye care access for patients with newly-diagnosed diabetes. Heliyon 2024, 10, e25845. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira JA, E.; Nakayama, L.F.; Zago Ribeiro, L.; De Oliveira TV, F.; Choi SN, J.H.; Neto, E.M.; Cardoso, V.S.; Dib, S.A.; Melo, G.B.; Regatieri, C.V.S.; et al. Clinical validation of a smartphone-based retinal camera for diabetic retinopathy screening. Acta Diabetol. 2023, 60, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yuan, X.-J.; Li, J.; Wang, W.; Zhang, H.-Q.; Hu, Y.-Y.; Ye, S.-D. Application of non-mydriatic fundus photography-assisted telemedicine in diabetic retinopathy screening. World J. Diabetes 2024, 15, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Mohammed, R.; Vengatesan, K.; PramodKumar, T.A.; Venkatesan, U.; Usha, M.; Arulmalar, S.; Prathiba, V.; Mohan, V. Wide-field imaging with smartphone based fundus camera: Grading of severity of diabetic retinopathy and locating peripheral lesions in diabetic retinopathy. Eye 2024, 38, 1471–1476. [Google Scholar] [CrossRef]
- Sivaraman, A.; Nagarajan, S.; Vadivel, S.; Dutt, S.; Tiwari, P.; Narayana, S.; Rao, D.P. A Novel, Smartphone-Based, Teleophthalmology-Enabled, Widefield Fundus Imaging Device with an Autocapture Algorithm. Transl. Vis. Sci. Technol. 2021, 10, 21. [Google Scholar] [CrossRef]
- Han, Y.S.; Pathipati, M.; Pan, C.; Leung, L.-S.; Blumenkranz, M.S.; Myung, D.; Toy, B.C. Comparison of Telemedicine Screening of Diabetic Retinopathy by Mydriatic Smartphone-Based vs Nonmydriatic Tabletop Camera-Based Fundus Imaging. J. Vitr. Dis. 2021, 5, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Malerbi, F.K.; Nakayama, L.F.; Melo, G.B.; Stuchi, J.A.; Lencione, D.; Prado, P.V.; Ribeiro, L.Z.; Dib, S.A.; Regatieri, C.V. Automated identification of different severity levels of diabetic retinopathy using a handheld fundus camera and single-image protocol. Ophthalmol. Sci. 2024, 4, 100481. [Google Scholar] [CrossRef]
- Toy, B.C.; Myung, D.J.; He, L.; Pan, C.K.; Chang, R.T.; Polkinhorne, A.; Merrell, D.; Foster, D.; Blumenkranz, M.S. Smartphone-Based Dilated Fundus Photography and Near Visual Acuity Testing as Inexpensive Screening Tools to Detect Referral Warranted Diabetic Eye Disease. Retina 2016, 36, 1000–1008. [Google Scholar] [CrossRef]
- Russo, A.; Morescalchi, F.; Costagliola, C.; Delcassi, L.; Semeraro, F. Comparison of Smartphone Ophthalmoscopy with Slit-Lamp Biomicroscopy for Grading Diabetic Retinopathy. Am. J. Ophthalmol. 2015, 159, 360–364.e1. [Google Scholar] [CrossRef]
- Sengupta, S.; Sindal, M.D.; Baskaran, P.; Pan, U.; Venkatesh, R. Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy. Ophthalmol. Retin. 2019, 3, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Arulmalar, S.; Usha, M.; Prathiba, V.; Kareemuddin, K.S.; Anjana, R.M.; Mohan, V. Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening. PLoS ONE 2015, 10, e0138285. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Subashini, R.; Anjana, R.M.; Mohan, V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 2018, 32, 1138–1144. [Google Scholar] [CrossRef]
- Wroblewski, J.J.; Sanchez-Buenfil, E.; Inciarte, M.; Berdia, J.; Blake, L.; Wroblewski, S.; Patti, A.; Suter, G.; Sanborn, G.E. Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study. J. Diabetes Sci. Technol. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Myers, F.; Reber, C.; Loury, P.; Loumou, P.; Webster, D.; Echanique, C.; Li, P.; Davila, J.R.; Maamari, R.N.; et al. A Smartphone-Based Tool for Rapid, Portable, and Automated Wide-Field Retinal Imaging. Transl. Vis. Sci. Technol. 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Salongcay, R.P.; Aquino LA, C.; Salva CM, G.; Saunar, A.V.; Alog, G.P.; Sun, J.K.; Peto, T.; Silva, P.S. Comparison of Handheld Retinal Imaging with ETDRS 7-Standard Field Photography for Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmol. Retin. 2022, 6, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Zennaro, L.; Lapo, C.; Torresin, T.; Midena, G.; Pilotto, E.; Frizziero, L. Handheld Fundus Camera for Diabetic Retinopathy Screening: A Comparison Study with Table-Top Fundus Camera in Real-Life Setting. J. Clin. Med. 2022, 11, 2352. [Google Scholar] [CrossRef]
- Lupidi, M.; Danieli, L.; Fruttini, D.; Nicolai, M.; Lassandro, N.; Chhablani, J.; Mariotti, C. Artificial intelligence in diabetic retinopathy screening: Clinical assessment using handheld fundus camera in a real-life setting. Acta Diabetol. 2023, 60, 1083–1088. [Google Scholar] [CrossRef]
- Doğan, M.E.; Bilgin, A.B.; Sari, R.; Bulut, M.; Akar, Y.; Aydemir, M. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Eye 2024, 38, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Shang Ruan, Y.L.; Shang Ruan, Y.L. A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening. Int. J. Ophthalmol. 2022, 15, 620–627. [Google Scholar] [CrossRef]
- Nunez Do Rio, J.M.; Nderitu, P.; Bergeles, C.; Sivaprasad, S.; Tan GS, W.; Raman, R. Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening. J. Clin. Med. 2022, 11, 614. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Fundus Photographic Risk Factors for Progression of Diabetic Retinopathy. Ophthalmology 1991, 98, 823–833. [Google Scholar] [CrossRef]
- Duncan, N.; Barrett, N.; Schildroth, K.; Chang, J.S.; Channa, R.; Rickels, K.; Domalpally, A.; Blodi, B. Comparison of Standard 7-Field, Clarus, and Optos Ultrawidefield Imaging Systems for Diabetic Retinopathy (COCO Study). Ophthalmol. Sci. 2024, 4, 100427. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Cavallerano, J.D.; Sun, J.K.; Noble, J.; Aiello, L.M.; Aiello, L.P. Nonmydriatic Ultrawide Field Retinal Imaging Compared with Dilated Standard 7-Field 35-mm Photography and Retinal Specialist Examination for Evaluation of Diabetic Retinopathy. Am. J. Ophthalmol. 2012, 154, 549–559.e2. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Cavallerano, J.D.; Haddad NM, N.; Kwak, H.; Dyer, K.H.; Omar, A.F.; Shikari, H.; Aiello, L.M.; Sun, J.K.; Aiello, L.P. Peripheral Lesions Identified on Ultrawide Field Imaging Predict Increased Risk of Diabetic Retinopathy Progression over 4 Years. Ophthalmology 2015, 122, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Cavallerano, J.D.; Tolls, D.; Omar, A.; Thakore, K.; Patel, B.; Sehizadeh, M.; Tolson, A.M.; Sun, J.K.; Aiello, L.M.; et al. Potential Efficiency Benefits of Nonmydriatic Ultrawide Field Retinal Imaging in an Ocular Telehealth Diabetic Retinopathy Program. Diabetes Care 2014, 37, 50–55. [Google Scholar] [CrossRef]
- Rasmussen, M.L.; Broe, R.; Frydkjaer-Olsen, U.; Olsen, B.S.; Mortensen, H.B.; Peto, T.; Grauslund, J. Comparison between Early Treatment Diabetic Retinopathy Study 7-field retinal photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser ophthalmoscopy for assessment of diabetic retinopathy. J. Diabetes Complicat. 2015, 29, 99–104. [Google Scholar] [CrossRef]
- Wessel, M.M.; Aaker, G.D.; Parlitsis, G.; Cho, M.; D’Amico, D.J.; Kiss, S. Ultra–Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy. Retina 2012, 32, 785–791. [Google Scholar] [CrossRef]
- Talks, S.J.; Manjunath, V.; Steel DH, W.; Peto, T.; Taylor, R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: Implications for diabetic retinopathy screening image analysis. Br. J. Ophthalmol. 2015, 99, 1606–1609. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Suresh, S.; Chendilnathan, C.; Prakash, V.J.; Sivaprasad, S.; Rajalakshmi, R.; Anjana, R.M.; Malik, R.A.; Kulothungan, V.; Raman, R.; et al. Inter-observer agreement in grading severity of diabetic retinopathy in wide-field fundus photographs. Eye 2023, 37, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Stanga, P.E.; Bravo FJ, V.; Reinstein, U.I.; Stanga, S.F.E. New 200° Single-Capture Color Red-Green-Blue Ultra-Widefield Retinal Imaging Technology: First Clinical Experience. Ophthalmic Surg. Lasers Imaging Retin. 2023, 54, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Nagel, I.D.; Heinke, A.; Agnihotri, A.; Kalaw, F.G.P.; Yassin, S.; Borooah, S.; Bartsch, D.G.; Scott, N.; Camp, A.; Cheng, L.; et al. Comparison of a novel ultra-wide field three color scanning laser (Optos Red-Green-Blue) to other retinal imaging modalities in imaging of choroidal or retinal lesions. Investig. Ophthalmol. Vis. Sci. 2024, 65, 6655. [Google Scholar]
- Xiao, Y.; Dan, H.; Du, X.; Michaelide, M.; Nie, X.; Wang, W.; Zheng, M.; Wang, D.; Huang, Z.; Song, Z. Assessment of early diabetic retinopathy severity using ultra-widefield Clarus versus conventional five-field and ultra-widefield Optos fundus imaging. Sci. Rep. 2023, 13, 17131. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Cai, X.; Li, T.; Long, D.; Wu, Q. Optical coherence tomography angiography for the detection and evaluation of ptic disc neovascularization: A retrospective, observational study. BMC Ophthalmol. 2022, 22, 125. [Google Scholar] [CrossRef]
- Stino, H.; Niederleithner, M.; Iby, J.; Sedova, A.; Schlegl, T.; Steiner, I.; Sacu, S.; Drexler, W.; Schmoll, T.; Leitgeb, R.; et al. Detection of diabetic neovascularisation using single-capture 65°-widefield optical coherence tomography angiography. Br. J. Ophthalmol. 2024, 108, 91–97. [Google Scholar] [CrossRef]
- Hirano, T.; Hoshiyama, K.; Takahashi, Y.; Murata, T. Wide-field swept-source OCT angiography (23 × 20 mm) for detecting retinal neovascularization in eyes with proliferative diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 339–344. [Google Scholar] [CrossRef]
- Hamada, M.; Hirai, K.; Wakabayashi, T.; Ishida, Y.; Fukushima, M.; Kamei, M.; Tsuboi, K. Practical Utility of Widefield OCT Angiography to Detect Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy. Ophthalmol. Retin. 2024, 8, 481–489. [Google Scholar] [CrossRef]
- Le Boité, H.; Gaudric, A.; Erginay, A.; Tadayoni, R.; Couturier, A. Is There a Nonperfusion Threshold on OCT Angiography Associated with New Vessels Detected on Ultra-Wide-Field Imaging in Diabetic Retinopathy? Transl. Vis. Sci. Technol. 2023, 12, 15. [Google Scholar] [CrossRef]
- Li, M.; Mao, M.; Wei, D.; Liu, M.; Liu, X.; Leng, H.; Wang, Y.; Chen, S.; Zhang, R.; Zeng, Y.; et al. Different scan areas affect the detection rates of diabetic retinopathy lesions by high-speed ultra-widefield swept-source optical coherence tomography angiography. Front. Endocrinol. 2023, 14, 1111360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, C.; Meng, L.; Cheng, S.; Gu, X.; Chen, Y.; Zhao, X. Central and peripheral changes in the retina and choroid in patients with diabetes mellitus without clinical diabetic retinopathy assessed by ultra-wide-field optical coherence tomography angiography. Front. Public Health 2023, 11, 1194320. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Sun, J.K.; Silva, P.S.; Aiello, L.P. Using Ultrawide Field-Directed Optical Coherence Tomography for Differentiating Nonproliferative and Proliferative Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Mehedi Shamrat, F.M.J.; Shakil, R.; Sharmin Hoque ovy, N.; Akter, B.; Ahmed, M.Z.; Ahmed, K.; MBui, F.; Moni, M.A. An advanced deep neural network for fundus image analysis and enhancing diabetic retinopathy detection. Healthc. Anal. 2024, 5, 100303. [Google Scholar] [CrossRef]
- Huang, X.; Wanh, H.; She, C.; Feng, J.; Liu, X.; Hu, X.; Chen, L.; Tao, Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front. Endocrinol. 2022, 13, 946915. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. K213037 Device Approval Letter, 17 June 2022. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213037.pdf (accessed on 30 April 2024).
- U.S. Food and Drug Administration. K223357 Device Approval Letter, 16 June 2023. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf22/K223357.pdf (accessed on 20 April 2024).
- U.S. Food and Drug Administration. K221183 Device Approval Letter, 10 November 2022. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf22/K221183.pdf (accessed on 20 April 2024).
- AEYE Health Press Team. AEYE with Aurora. Available online: https://www.aeyehealth.com/ (accessed on 7 May 2024).
- Grzybowski, A.; Brona, P. Approval and Certification of Ophthalmic AI Devices in the European Union. Ophthalmol. Ther. 2023, 12, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, A.E.; Davidson, O.Q.; Lee, C.S.; Lee, A.Y. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes Care 2023, 46, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Luenam, P.; Ran, A.R.; Quadeer, A.A.; Raman, R.; Sen, P.; Khan, R.; Giridhar, A.; Haridas, S.; Iglicki, M.; et al. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Ophthalmol. Retin. 2021, 5, 1097–1106. [Google Scholar] [CrossRef]
- Ryu, G.; Lee, K.; Park, D.; Park, S.H.; Sagong, M. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Sci. Rep. 2021, 11, 23024. [Google Scholar] [CrossRef]
- Murata, T.; Hirano, T.; Mizobe, H.; Toba, S. OCT-angiography based artificial intelligence-inferred fluorescein angiography for leakage detection in retina. Biomed. Opt. Express 2023, 14, 5851. [Google Scholar] [CrossRef]
- Silva, P.S.; Zhang, D.; Jacoba, C.M.P.; Fickweiler, W.; Lewis, D.; Leitmeyer, J.; Curran, K.; Salongcay, R.P.; Doan, D.; Ashraf, M.; et al. Automated Machine Learning for Predicting Diabetic Retinopathy Progression From Ultra-Widefield Retinal Images. JAMA Ophthalmol. 2024, 142, 171. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Gu, Z.; Tan, W.; Kong, H.; Fu, H.; Jiang, Q.; Zhuang, W.; Zhang, S.; Feng, L.; Liu, Y.; et al. Development and Validation of an Automatic Ultrawide-Field Fundus Imaging Enhancement System for Facilitating Clinical Diagnosis: A Cross-sectional Multicenter Study. Engineering 2024, in press. [Google Scholar] [CrossRef]
- Wolf, R.M.; Channa, R.; Liu, T.Y.A.; Zehra, A.; Bromberger, L.; Patel, D.; Ananthakrishnan, A.; Brown, E.A.; Prichett, L.; Lehmann, H.P.; et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: The ACCESS randomized control trial. Nat. Commun. 2024, 15, 421. [Google Scholar] [CrossRef]
- Dow, E.R.; Chen, K.M.; Zhao, C.S.; Knapp, A.N.; Phadke, A.; Weng, K.; Do, D.V.; Mahajan, V.B.; Mruthyunjaya, P.; Leng, T.; et al. Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program. Clin. Ophthalmol. 2023, 17, 3323–3330. [Google Scholar] [CrossRef]
- Dai, L.; Sheng, B.; Chen, T.; Wu, Q.; Liu, R.; Cai, C.; Wu, L.; Yang, D.; Hamzah, H.; Liu, X.; et al. A deep learning system for predicting time to progression of diabetic retinopathy. Nat. Med. 2024, 30, 584–594. [Google Scholar] [CrossRef]
- Rom, Y.; Aviv, R.; Ianchulev, T.; Dvey-Aharon, Z. Predicting the future development of diabetic retinopathy using a deep learning algorithm for the analysis of non-invasive retinal imaging. BMJ Open Ophthalmol. 2022, 7, e001140. [Google Scholar] [CrossRef]
- Xie, Y.; Nguyen, Q.D.; Hamzah, H.; Lim, G.; Bellemo, V.; Gunasekeran, D.V.; Yip, M.Y.T.; Lee, X.Q.; Hsu, W.H.; Lee, M.L.; et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: An economic analysis modelling study. Lancet Digit. Health 2020, 2, e240–e249. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Cheung, C.Y.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations with Diabetes. JAMA 2017, 318, 2211. [Google Scholar] [CrossRef] [PubMed]
- Gargeya, R.; Leng, T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017, 124, 962–969. [Google Scholar] [CrossRef]
- Senapati, A.; Tripathy, H.K.; Sharma, V.; Gandomi, A.H. Artificial intelligence for diabetic retinopathy detection: A systematic review. Inf. Med. Unlocked 2024, 45, 101445. [Google Scholar] [CrossRef]
- Grzybowski, A.; Singhanetr, P.; Nanegrungsunk, O.; Ruamviboonsuk, P. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmol. Ther. 2023, 12, 1419–1437. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, G.; Lakshmi, G. Ethical Issues of Artificial Intelligence in Diabetes Mellitus. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Cai, W.; Chen, M.; Fan, J.; Jin, H.; Yu, D.; Qiang, S.; Peng Cl Yu, J. Fluorescein sodium loaded by polyethyleneimine for fundus fluorescein angiography improves adhesion. Nanomedicine 2019, 14, 2595–2611. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, N. Progress of Nanotechnology in Diabetic Retinopathy Treatment. Int. J. Nanomed. 2021, 16, 1391–1403. [Google Scholar] [CrossRef]
- Vedarethinam, V.; Huang, L.; Zhang, M.; Su, H.; Hu, H.; Xia, H.; Liu, Y.; Wu, B.; Wan, X.; Shen, J.; et al. Vanadium Core–Shell Nanorods Inspect Metabolic Changes of Diabetic Retinopathy. Adv. Funct. Mater. 2020, 30, 2002791. [Google Scholar] [CrossRef]
- Iwase, T.; Fu, J.; Yoshida, T.; Muramatsu, D.; Miki, A.; Hashida, N.; Lu, L.; Oveson, B.; Lima e Silva, R.; Seidel, C.; et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J. Control. Release 2013, 172, 625–633. [Google Scholar] [CrossRef]
Authors & Year | Output Mydriatic (M)/Non-Mydriatic (NM) | Sensitivity/Specificity (%) | Device (with AI System) | |
---|---|---|---|---|
Han et al., 2021 [19] | M | Referable Diabetic Retinopathy (DR) | 95.0/98.0 | Paxos Scope (Verana Health, San Francisco, CA, USA) |
Toy et al., 2016 [21] | M | 91.0/99.0 | ||
Russo et al., 2015 [22] | M | Any DR | 86.0/96.0 | D-EYE (Si14 S.p.A., Padova, Italy) |
Diabetic Macular Oedema (DME) | 81.0/98.0 | |||
Sengupta et al., 2019 [23] Rajalakshmi et al., 2015 [24] | M | Any DR | 93.7/91.8 | Remidio Fundus on Phone FOP (Remidio Innovative Solutions, Bangalore, India) |
92.7/98.4 | ||||
Rajalakshmi et al., 2018 [25] | M | Any DR | 95.8/80.2 | Remidio FOP withEyeArt online(Eyenuk, Inc., Los Angeles, CA, USA) |
Vision-threatening DR | 99.1/80.4 | |||
Wroblewski et al., 2023 [26] | M | Any DR | 94.0/86.0 | Remidio FOP with EyeArtonline |
M | Any DR | 94.0/94.0 | Remidio FOP with Medios offline(Medios Technologies, Singapore) | |
Kim et al., 2018 [27] | M | Referable DR | 93.3/56.8 | CellScope Retina (not mentioned in the study) |
DME | 49.1/90.7 | |||
Salongcay et al., 2022 [28] | NM | Any DR | 79.0/97.0 | Optomed Aurora (Optomed Ltd, Oulu, Finland) |
DME | 65.0/100.0 | |||
Any DR | 86.0/97.0 | |||
M | DME | 80.0/99.0 | ||
Midena et al., 2022 [29] | M | Any DR | 96.9/94.8 | Optomed Aurora |
DME | 100.0/99.8 | |||
Zhou et al., 2024 [16] | NM | Any DR | 90.9/100.0 | Optomed Aurora |
Lupidi et al., 2023 [30] | M | Any DR | 96.8/96.8 | Optomed Aurora; with Selena + (EyRIS, Pte Ltd. Singapore) |
Doğan et al., 2024 [31] | NM | Vision-threatening DR | 95.12/98.2 | Optomed Aurora; (EyeCheckup) (Ural Telecommunication Inc., Akdeniz University Teknokent, Antalya) |
Ruan et al., 2022 [32] | Referable DR | 88.2/40.7 | Optomed Aurora (Phoebus, Shanghai, China) | |
Salongcay et al., 2022 [28] | NM | Any DR | 80.0/96.0 | SmartScope (Optomed Ltd, Oulu, Finland) |
DME | 72.0/100.0 | |||
Any DR | 80.0/92.0 | |||
M | DME | 75.0/100.0 | ||
Salongcay et al., 2022 [28] | NM | Any DR | 89.0/88.0 | RetinaVue-700 (Welch Allyn, Skaneateles Falls, NY, United States) |
DME | 76.0/99.0 | |||
Any DR | 83.0/97.0 | |||
M | DME | 87.0/98.0 | ||
Salongcay et al., 2022 [28] | M | Any DR | 91.0/53.0 | iNview (Volk Optical Inc, Mentor, OH, United States) |
DME: | ungradable rate | |||
de Oliveira et al., 2023 [15] | M | Vision-threatening DR | 90.6/80.8 | The Eyer |
87.3/82.7 | ||||
Nunez do Rio et al., 2022 [33] | NM | Referable DR | 72.08/85.65 | Zeiss Visuscout with VISUHEALTH-AI DR (Software version 1.8) (Carl Zeiss Meditec, Jena, Germany) |
Rajalakshmi et al., 2024 [17] | M | Vision-threatening DR | 92.7/96.6 | Remidio Vistaro |
Study | Imaging Method | Key Findings |
---|---|---|
Silva et al., 2015 [37] | Optos P200MA (Optos plc, Dunfermline, UK) |
|
Duncan et al., 2024 [35] | Zeiss Clarus, Optos Colour UWF |
|
Talks et al., 2015 [41] | WFI Optos Optomap P2000 |
|
Wessel et al., 2012 [40] | UWFA using Optos Optomap Panoramic 200A imaging system |
|
Rajalakshmi et al., 2024 [17] | UWF Optos Daytona Plus (Optos Inc, Marlborough, MA, USA) |
|
Srinivasan et al., 2023 [42] | UWF Digital Imaging Daytona Plus |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kąpa, M.; Koryciarz, I.; Kustosik, N.; Jurowski, P.; Pniakowska, Z. Modern Approach to Diabetic Retinopathy Diagnostics. Diagnostics 2024, 14, 1846. https://doi.org/10.3390/diagnostics14171846
Kąpa M, Koryciarz I, Kustosik N, Jurowski P, Pniakowska Z. Modern Approach to Diabetic Retinopathy Diagnostics. Diagnostics. 2024; 14(17):1846. https://doi.org/10.3390/diagnostics14171846
Chicago/Turabian StyleKąpa, Maria, Iga Koryciarz, Natalia Kustosik, Piotr Jurowski, and Zofia Pniakowska. 2024. "Modern Approach to Diabetic Retinopathy Diagnostics" Diagnostics 14, no. 17: 1846. https://doi.org/10.3390/diagnostics14171846
APA StyleKąpa, M., Koryciarz, I., Kustosik, N., Jurowski, P., & Pniakowska, Z. (2024). Modern Approach to Diabetic Retinopathy Diagnostics. Diagnostics, 14(17), 1846. https://doi.org/10.3390/diagnostics14171846