Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Data Collection and Preprocessing
2.2. Machine-Learning Algorithm Model and Model Development
2.3. Model Training, Validation and Testing
2.4. Model Performance Evaluation
3. Results
3.1. Model Training and Validation Results
- Prostatic acinar adenocarcinoma
- Gastric adenocarcinoma, NOS
- Pulmonary adenocarcinoma, NOS
- Basal cell carcinoma
- Invasive breast carcinoma, ductal type
- Hepatocellular carcinoma
- Invasive breast carcinoma, lobular type
- Small cell neuroendocrine carcinoma
- Squamous cell carcinoma
- Serous carcinoma
- Urothelial carcinoma
- Cholangiocarcinoma
- Glioblastoma
- Melanoma
- Kaposi sarcoma
- Undifferentiated pleomorphic sarcoma
- Colorectal mucinous adenocarcinoma
- Endometrioid carcinoma
- Invasive breast carcinoma, other types
3.2. Model Testing Results
3.3. Model Performance Evaluation
- Strengths:
- ○
- High precision and recall for several common cancer types, making it valuable for early and accurate diagnosis.
- ○
- Consistent performance across different cancer types, essential for handling class imbalances in clinical datasets.
- Areas for Improvement:
- ○
- The increased misclassification rate in the validation data indicates the need for more comprehensive training data, especially for rare cancer types.
- ○
- Incorporating additional diagnostic markers or advanced feature-engineering techniques could improve the model’s ability to differentiate between similar cancer types, thereby reducing misclassification rates.
4. Discussion
4.1. State-of-the-Art Machine-Learning Algorithms for Histopathology
4.2. Performance Metrics and Generalization
4.3. Challenges, Limitations, and Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Matos, L.L.; Trufelli, D.C.; de Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an Important Tool in Biomarkers Detection and Clinical Practice. Biomark. Insights 2010, 5, 9–20. [Google Scholar] [CrossRef]
- Werner, B.; Campos, A.C.; Nadji, M.; Torres, L.F.B. Uso prático da imuno-histoquímica em patologia cirúrgica. J. Bras. Patol. Med. Lab. 2005, 41, 353–364. [Google Scholar] [CrossRef]
- DeYoung, B.R.; Wick, M.R. Immunohistologic Evaluation of Metastatic Carcinomas of Unknown Origin: An Algorithmic Approach. Semin. Diagn. Pathol. 2000, 17, 184–193. [Google Scholar]
- Dabbs, D. Diagnostic Immunohistochemistry, 3rd ed.; Elsevier Ltd.: Philadelphia, PA, USA, 2010; pp. 1–3. [Google Scholar]
- Kandalaft, P.L.; Gown, A.M. Practical Applications in Immunohistochemistry: Carcinomas of Unknown Primary Site. Arch. Pathol. Lab. Med. 2016, 140, 508–523. [Google Scholar] [CrossRef]
- Lin, F.; Prichard, J. (Eds.) Handbook of Practical Immunohistochemistry: Frequently Asked Questions, 2nd ed.; Springer: New York, NY, USA, 2015; pp. 17–30. [Google Scholar] [CrossRef]
- Ciriello, G.; Miller, M.L.; Aksoy, B.A.; Senbabaoglu, Y.; Schultz, N.; Sander, C. Emerging Landscape of Oncogenic Signatures across Human Cancers. Nat. Genet. 2013, 45, 1127–1133. [Google Scholar] [CrossRef]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of Somatic Mutation in Human Cancer Genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef]
- Bertsimas, D.; Wiberg, H. Machine Learning in Oncology: Methods, Applications, and Challenges. JCO Clin. Cancer Inform. 2020, 4, 885–894. [Google Scholar] [CrossRef]
- Robertson, S.; Azizpour, H.; Smith, K.; Hartman, J. Digital Image Analysis in Breast Pathology—From Image Processing Techniques to Artificial Intelligence. Transl. Res. 2018, 194, 19–35. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Alirezazadeh, P.; Hejrati, B.; Monsef-Esfahani, A.; Fathi, A. Representation Learning-Based Unsupervised Domain Adaptation for Classification of Breast Cancer Histopathology Images. Biocybern. Biomed. Eng. 2018, 38, 671–683. [Google Scholar] [CrossRef]
- Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep Learning for Magnification Independent Breast Cancer Histopathology Image Classification. In Proceedings of the International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; pp. 2440–2445. [Google Scholar] [CrossRef]
- Gandomkar, Z.; Brennan, P.C.; Mello-Thoms, C. MuDeRN: Multi-Category Classification of Breast Histopathological Image Using Deep Residual Networks. Artif. Intell. Med. 2018, 88, 14–24. [Google Scholar] [CrossRef]
- Lesaffre, E.; Lawson, A.B. Bayesian Biostatistics, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 15–18. [Google Scholar]
- Yacouby, R.; Axman, D. Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Online, 12 November 2020; pp. 79–91. [Google Scholar] [CrossRef]
- Buckland, M.; Gey, F. The Relationship between Recall and Precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Amato, F.; López, A.; Peña Méndez, E.M.; Vaňhara, P.; Hampl, A.; Havel, J. Artificial Neural Networks in Medical Diagnosis. J. Appl. Biomed. 2013, 11, 47–58. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Bahadir, C.D.; Omar, M.; Rosenthal, J.; Marchionni, L.; Liechty, B.; Pisapia, D.J.; Sabuncu, M.R. Artificial Intelligence Applications in Histopathology. Nat. Rev. Electr. Eng. 2024, 1, 93–108. [Google Scholar] [CrossRef]
- Chen, R.J.; Chen, C.; Li, Y.; Chen, T.Y.; Trister, A.D.; Krishnan, R.G.; Mahmood, F. Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Springenberg, M.; Frommholz, A.; Wenzel, M.; Weicken, E.; Ma, J.; Strodthoff, N. From Modern CNNs to Vision Transformers: Assessing the Performance, Robustness, and Classification Strategies of Deep Learning Models in Histopathology. Med. Image Anal. 2023, 87, 102809. [Google Scholar] [CrossRef]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep Learning in Cancer Pathology: A New Generation of Clinical Biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole Slide Images Based Cancer Survival Prediction Using Attention Guided Deep Multiple Instance Learning Networks. Med. Image Anal. 2020, 65, 101789. [Google Scholar] [CrossRef]
- Hashimoto, N.; Fukushima, D.; Koga, R.; Takagi, Y.; Ko, K.; Kohno, K.; Nakaguro, M.; Nakamura, S.; Hontani, H.; Takeuchi, I. Multi-Scale Domain-Adversarial Multiple-Instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Mi, H.; Bivalacqua, T.J.; Kates, M.; Seiler, R.; Black, P.C.; Popel, A.S.; Baras, A.S. Predictive Models of Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer Using Nuclear Morphology and Tissue Architecture. Cell Rep. Med. 2021, 2, 100287. [Google Scholar] [CrossRef]
- Nakhli, R.; Moghadam, P.A.; Mi, H.; Farahani, H.; Baras, A.; Gilks, B.; Bashashati, A. Sparse Multi-Modal Graph Transformer with Shared-Context Processing for Representation Learning of Giga-Pixel Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023; pp. 11547–11557. [Google Scholar]
- Unger, M.; Kather, J.N. A Systematic Analysis of Deep Learning in Genomics and Histopathology for Precision Oncology. BMC Med. Genom. 2024, 17, 48. [Google Scholar] [CrossRef]
- Hage Chehade, A.; Abdallah, N.; Marion, J.-M.; Oueidat, M.; Chauvet, P. Lung and Colon Cancer Classification Using Medical Imaging: A Feature Engineering Approach. Phys. Eng. Sci. Med. 2022, 45, 729–746. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Ye, Z.; Xu, P.; Xia, X.; Guo, M. Prediction of Lung Metastases in Thyroid Cancer Using Machine Learning Based on SEER Database. Cancer Med. 2022, 11, 2503–2515. [Google Scholar] [CrossRef]
- Li, Y.; Shen, S.; Wang, X.; Wang, M.; Zhang, X.; Zhong, B.; Zhan, Q.; Zhang, X.; Ren, H.; Jin, L. Prediction of Lung Cancer Risk in Chinese Population with Genetic-Environment Factor Using Extreme Gradient Boosting. Cancer Med. 2022, 11, 4469–4478. [Google Scholar] [CrossRef]
- Chong, Y.; Han, S.; Kim, H.; Noh, S.; Lee, E.J.; Kang, C.S.; Park, C.K. Diagnosis Prediction of Tumours of Unknown Origin Using ImmunoGenius, a Machine Learning-Based Expert System for Immunohistochemistry Profile Interpretation. Diagn. Pathol. 2021, 16, 19. [Google Scholar] [CrossRef]
- Chong, Y.; Kim, D.C.; Han, S.; Noh, S.; Kang, C.S.; Park, C.K. A Machine-Learning Expert-Supporting System for Diagnosis Prediction of Lymphoid Neoplasms Using a Probabilistic Decision-Tree Algorithm and Immunohistochemistry Profile Database. J. Pathol. Transl. Med. 2020, 54, 462–470. [Google Scholar] [CrossRef]
- Jiao, W.; Atwal, G.; Polak, P.; Karlic, R.; Cuppen, E.; Danyi, A.; de Ridder, J.; van Dyk, E.; Demichelis, F.; Spellman, P.; et al. A Deep Learning System Accurately Classifies Primary and Metastatic Cancers Using Passenger Mutation Patterns. Nat. Commun. 2020, 11, 728. [Google Scholar] [CrossRef]
- Soh, K.P.; Szczurek, E.; Sakoparnig, T.; Beerenwinkel, N. Predicting Cancer Type from Tumour DNA Signatures. Genome Med. 2017, 9, 48. [Google Scholar] [CrossRef]
- Lu, D.; Qiu, Y.; Hu, Z.; Peng, Y.; Wang, X.; Bao, H.; Xiao, Z.; Fan, X. Machine Learning Models to Predict Primary Sites of Metastatic Cervical Carcinoma from Unknown Primary. Front. Genet. 2020, 11, 614823. [Google Scholar] [CrossRef]
- Kang, S.; Li, Q.; Chen, Q.; Zhou, Y.; Park, S.; Lee, G. CancerLocator: Non-Invasive Cancer Diagnosis and Tissue-of-Origin Prediction Using Methylation Profiles of Cell-Free DNA. Genome Biol. 2017, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; et al. DNA Methylation Markers for Diagnosis and Prognosis of Common Cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 7414–7419. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Tamayo, P.; Rifkin, R.; Mukherjee, S.; Yeang, C.H.; Angelo, M.; Ladd, C.; Reich, M.; Latulippe, E.; Mesirov, J.P.; et al. Multiclass Cancer Diagnosis Using Tumor Gene Expression Signatures. Proc. Natl. Acad. Sci. USA 2001, 98, 15149–15154. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Van Hoeck, A.; Cuppen, E. Machine Learning-Based Tissue of Origin Classification for Cancer of Unknown Primary Diagnostics Using Genome-Wide Mutation Features. Nat. Commun. 2022, 13, 4013. [Google Scholar] [CrossRef] [PubMed]
- Marquard, A.M.; Eklund, A.C.; Joshi, T.; Krzystanek, M.; Favero, F.; Wang, Z.; Jaiswal, A.; Trifonov, V.; Lindberg, J.; Szallasi, Z.; et al. TumorTracer: A Method to Identify the Tissue of Origin from the Somatic Mutations of a Tumor Specimen. BMC Med. Genom. 2015, 8, 58. [Google Scholar] [CrossRef]
- Moran, J.M.T.; Davids, M.S.; Rodriguez, V.; Girardi, M.; Krauthammer, M.; Mahmood, U. Large Nuclear Size Correlated with Better Overall Survival, Merkel Cell Polyomavirus Positivity, and Terminal Deoxynucleotidyl Transferase Expression in Merkel Cell Carcinoma. J. Am. Acad. Dermatol. 2021, 84, 550–552. [Google Scholar] [CrossRef]
- Faridi, P.; Danyali, H.; Helfroush, M.S.; Jahromi, M.A. An Automatic System for Cell Nuclei Pleomorphism Segmentation in Histopathological Images of Breast Cancer. In Proceedings of the 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 3 December 2016; pp. 1–5. [Google Scholar] [CrossRef]
Class | F1 Score | Accuracy Rate | Misclass. Rate | Precision | Recall | |
---|---|---|---|---|---|---|
Colorectal adenocarcinoma, NOS | Training | 0.8333 | 0.9819 | 0.0181 | 0.7143 | 1.0000 |
Validation | 0.8235 | 0.9705 | 0.0295 | 0.7368 | 0.9333 | |
Colorectal adenocarcinoma, mucinous | Training | 0.3333 | 0.9819 | 0.0181 | 1.0000 | 0.2000 |
Validation | 0.2102 | 0.8921 | 0.1079 | 0.3478 | 0.5333 | |
Prostatic acinar adenocarcinoma | Training | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
Validation | 0.9231 | 0.9950 | 0.0050 | 1.0000 | 0.8572 | |
Gastric adenocarcinoma, NOS | Training | 0.9091 | 0.9910 | 0.0090 | 0.8333 | 1.0000 |
Validation | 0.8889 | 0.9958 | 0.0042 | 0.8000 | 1.0000 | |
Pulmonary adenocarcinoma, NOS | Training | 0.8889 | 0.9910 | 0.0090 | 1.0000 | 0.8000 |
Validation | 0.9090 | 0.9852 | 0.0148 | 0.8333 | 1.0000 | |
Basal cell carcinoma | Training | 0.9524 | 0.9955 | 0.0045 | 0.9091 | 1.0000 |
Validation | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | |
Endometrioid carcinoma | Training | 0.7778 | 0.9819 | 0.0181 | 0.8750 | 0.7000 |
Validation | 0.5454 | 0.9755 | 0.0245 | 0.6000 | 0.5000 | |
Hepatocellular carcinoma | Training | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
Validation | 0.9230 | 0.9902 | 0.0098 | 1.0000 | 0.8571 | |
Invasive breast carcinoma, other types | Training | 0.5714 | 0.9729 | 0.0271 | 1.0000 | 0.4000 |
Validation | 0.5445 | 0.9792 | 0.0208 | 0.6000 | 0.5000 | |
Invasive breast carcinoma, ductal type | Training | 0.8333 | 0.9819 | 0.0181 | 0.7143 | 1.0000 |
Validation | 0.9217 | 0.9626 | 0.0374 | 0.8689 | 0.9815 | |
Invasive breast carcinoma, lobular type | Training | 0.9524 | 0.9955 | 0.0045 | 0.9091 | 1.0000 |
Validation | 0.9333 | 0.9951 | 0.0049 | 0.8750 | 1.0000 | |
Small cell neuroendocrine carcinoma | Training | 0.8000 | 0.9819 | 0.0181 | 0.8000 | 0.8000 |
Validation | 0.7714 | 0.9876 | 0.0124 | 0.6667 | 0.3333 | |
Squamous cell carcinoma | Training | 0.9474 | 0.9955 | 0.0045 | 1.0000 | 0.9000 |
Validation | 0.9523 | 0.9853 | 0.0147 | 0.9091 | 1.0000 | |
Serous carcinoma | Training | 0.9474 | 0.9955 | 0.0045 | 1.0000 | 0.9000 |
Validation | 0.9523 | 0.9853 | 0.0147 | 0.9091 | 1.0000 | |
Urothelial carcinoma | Training | 0.8571 | 0.9864 | 0.0136 | 0.8182 | 0.9000 |
Validation | 0.7778 | 0.9804 | 0.0196 | 0.7000 | 0.8750 | |
Cholangiocarcinoma | Training | 0.8000 | 0.9910 | 0.0090 | 1.0000 | 0.6667 |
Validation | 0.7714 | 0.9884 | 0.0116 | 0.6667 | 0.3333 | |
Glioblastoma | Training | 0.8696 | 0.9864 | 0.0136 | 0.7692 | 1.0000 |
Validation | 0.6667 | 0.9951 | 0.0049 | 1.0000 | 0.5000 | |
Melanoma | Training | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
Validation | 0.9231 | 0.9951 | 0.0049 | 1.0000 | 0.8571 | |
Kaposi sarcoma | Training | 0.8889 | 0.9955 | 0.0045 | 1.0000 | 0.8000 |
Validation | 0.8788 | 0.9833 | 0.0167 | 0.8788 | 0.8788 | |
Undifferentiated pleomorphic sarcoma | Training | 0.7500 | 0.9910 | 0.0090 | 1.0000 | 0.6000 |
Validation | 0.5455 | 0.9755 | 0.0245 | 0.6000 | 0.5000 | |
Other | Training | 0.8247 | 0.9231 | 0.0769 | 0.7843 | 0.8696 |
Validation | 0.8235 | 0.9706 | 0.0294 | 0.7368 | 0.9333 |
Histopathologic Diagnosis | Predicted Label |
---|---|
Squamous cell carcinoma | Squamous cell carcinoma |
Basal cell carcinoma | Basal cell carcinoma |
Prostatic acinar adenocarcinoma | Prostatic acinar adenocarcinoma |
Glioblastoma | Glioblastoma |
Invasive breast carcinoma, ductal type | Invasive breast carcinoma, ductal type |
Squamous cell carcinoma | Squamous cell carcinoma |
Squamous cell carcinoma | Squamous cell carcinoma |
Pancreatic adenocarcinoma | Other |
Gastric poorly cohesive carcinoma | Invasive breast carcinoma, lobular type |
Pulmonary adenocarcinoma, NOS | Other |
Undifferentiated pleomorphic sarcoma | Other |
Small cell neuroendocrine carcinoma | Small cell neuroendocrine carcinoma |
Invasive breast carcinoma, ductal type | Invasive breast carcinoma, ductal type |
Invasive breast carcinoma, ductal type | Invasive breast carcinoma, ductal type |
Kaposi sarcoma | Kaposi sarcoma |
Small cell neuroendocrine carcinoma | Small cell neuroendocrine carcinoma |
Pulmonary adenocarcinoma, NOS | Pulmonary adenocarcinoma, NOS |
Prostatic acinar adenocarcinoma | Prostatic acinar adenocarcinoma |
Small cell neuroendocrine carcinoma | Small cell neuroendocrine carcinoma |
Serous carcinoma | Serous carcinoma |
Endometrioid carcinoma | Other |
Data Type | Micro-Average F Score | Macro-Average F Score | Accuracy Rate | Misclass. Rate | Rows |
---|---|---|---|---|---|
Training | 0.8597 | 0.8446 | 0.8597 | 0.1402 | 481 |
Validation | 0.8137 | 0.8061 | 0.8137 | 0.1862 | 204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.I.; Poalelungi, D.G.; Fulga, A.; Neagu, M.; Fulga, I.; Nechita, A. Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System. Diagnostics 2024, 14, 1853. https://doi.org/10.3390/diagnostics14171853
Neagu AI, Poalelungi DG, Fulga A, Neagu M, Fulga I, Nechita A. Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System. Diagnostics. 2024; 14(17):1853. https://doi.org/10.3390/diagnostics14171853
Chicago/Turabian StyleNeagu, Anca Iulia, Diana Gina Poalelungi, Ana Fulga, Marius Neagu, Iuliu Fulga, and Aurel Nechita. 2024. "Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System" Diagnostics 14, no. 17: 1853. https://doi.org/10.3390/diagnostics14171853
APA StyleNeagu, A. I., Poalelungi, D. G., Fulga, A., Neagu, M., Fulga, I., & Nechita, A. (2024). Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System. Diagnostics, 14(17), 1853. https://doi.org/10.3390/diagnostics14171853