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Abstract: The accurate and efficient segmentation of the spine is important in the diagnosis and
treatment of spine malfunctions and fractures. However, it is still challenging because of large
inter-vertebra variations in shape and cross-image localization of the spine. In previous methods,
convolutional neural networks (CNNs) have been widely applied as a vision backbone to tackle this
task. However, these methods are challenged in utilizing the global contextual information across
the whole image for accurate spine segmentation because of the inherent locality of the convolution
operation. Compared with CNNs, the Vision Transformer (ViT) has been proposed as another vision
backbone with a high capacity to capture global contextual information. However, when the ViT
is employed for spine segmentation, it treats all input tokens equally, including vertebrae-related
tokens and non-vertebrae-related tokens. Additionally, it lacks the capability to locate regions of
interest, thus lowering the accuracy of spine segmentation. To address this limitation, we propose a
novel Vertebrae-aware Vision Transformer (VerFormer) for automatic spine segmentation from CT
images. Our VerFormer is designed by incorporating a novel Vertebrae-aware Global (VG) block into
the ViT backbone. In the VG block, the vertebrae-related global contextual information is extracted
by a Vertebrae-aware Global Query (VGQ) module. Then, this information is incorporated into
query tokens to highlight vertebrae-related tokens in the multi-head self-attention module. Thus,
this VG block can leverage global contextual information to effectively and efficiently locate spines
across the whole input, thus improving the segmentation accuracy of VerFormer. Driven by this
design, the VerFormer demonstrates a solid capacity to capture more discriminative dependencies
and vertebrae-related context in automatic spine segmentation. The experimental results on two
spine CT segmentation tasks demonstrate the effectiveness of our VG block and the superiority of our
VerFormer in spine segmentation. Compared with other popular CNN- or ViT-based segmentation
models, our VerFormer shows superior segmentation accuracy and generalization.

Keywords: Vision Transformer; spine CT segmentation; attention mechanism

1. Introduction

Diagnosing and treating pathological diseases demands accurate spine segmentation
and vertebrae identification. Vertebral segmentation and identification play a vital role
in supporting spine-related clinical workflow, including diagnosing vertebral and spinal
deformities and computer-assisted surgical planning [1]. However, manual segmentation
by surgeons and radiologists is labor-intensive and time-consuming, motivating the devel-
opment of automatic and semi-automatic tools [2]. The intricate nature of spine anatomy,
characterized by its complex geometry and varying tissue intensities, poses significant
challenges to traditional automatic segmentation techniques. However, the advent of
deep learning (DL) algorithms has revolutionized the accuracy and efficiency of spine
segmentation and vertebrae identification tasks [3,4]. Among various DL-based methods,
convolutional neural networks (CNNs) have been widely used, and these CNN-based
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methods are performed for automatic spine segmentation and vertebrae identification in
various medical image modalities, such as Computed Tomography (CT) [5], Magnetic Res-
onance Imaging (MRI) [6], and X-ray imaging [7]. However, spine segmentation by CNNs
from CT images is still challenging. The spine has a complex anatomical structure and
variability in the shape and size of the vertebrae. Additionally, the spine is always located
across the whole CT image. However, due to the intrinsic characteristics of convolutional
operations, CNNs are limited in utilizing image-level global contextual information to
capture vertebrae-aware features. Thus, this lowers the capabilities of CNNs on accurate
segmentation of the spine from CT images.

Unlike CNNs, the Vision Transformer (ViT) can capture and utilize image-level con-
textual information [8]. The significant factor in the success of ViT-based models is the
application of the self-attention module, which enables them to utilize large receptive fields
to capture global contextual information across the entire input image. Thus, this benefits
ViTs in serving as a vision backbone for vertebrae segmentation from CT images, but few
works are proposing ViT-based methods for vertebrae segmentation. To demonstrate the
potential power of ViTs on vertebra and spine segmentation, we propose a ViT-based
segmentation method. However, the standard ViT partitions the whole images into to-
kens and treats these tokens equally as the query in multi-head self-attention modules [8].
Thus, the ViT lacks the capabilities of highlighting vertebrae-related tokens and locating
the region of interest in the spine from CT images, leading to the mis-segmentation or
under-segmentation of the whole spine.

To tackle this limitation, we propose a novel and efficient ViT-based model for au-
tomatic spin segmentation from CT images, termed Vertebrae-aware Vision Transformer
(VerFormer). Our method is designed based on employing a novel Vertebrae-aware Global
(VG) block to efficiently and effectively capture vertebrae-related contextual information
and facilitate the ViT to locate the spine from the whole input image, thus improving
segmentation performance. This is achieved in the VG block by incorporating a novel
Vertebrae-aware Global Query (VGQ) module. This VGQ module can capture vertebrae-
aware contextual information with attention mechanisms and inject this information into
query tokens to highlight vertebrae-related tokens based on their attention scores. When
these tokens are encoded in the multi-head self-attention module, vertebrae-related tokens
with higher attention scores are emphasized, and the spine is located. This mechanism
can improve the capabilities of our VerFormer on spine segmentation from CT images.
We evaluate our VerFormer for spine segmentation from CT images on two widely used
public datasets. Our proposed model achieves superior segmentation performance in spine
segmentation compared to other state-of-the-art methods on these two benchmarks. Our
contributions can be summarized as follows.

– We propose a novel Vertebrae-aware Vision Transformer (VerFormer) for automatic spine
segmentation from CT images. It employs the Vision Transformer as the backbone to
utilize image-level global contextual information for accurate spine segmentation.

– We propose a novel Vertebrae-aware Global (VG) block to efficiently and effectively
capture vertebrae-related contextual information and facilitate the ViT to locate the
spine from the whole input image, thus improving segmentation performance.

– We incorporate a novel Vertebrae-aware Global Query (VGQ) module into the Vertebrae-
aware Global (VG) block. This module can highlight vertebrae-related query tokens
based on their attention scores when they are encoded in the multi-head self-attention
module. Emphasizing vertebrae-related tokens empowers our VerFormer to locate the
spine for accurate segmentation.

– We evaluate our VerFormer on two widely used spine segmentation datasets, VerSe
2019 and 2022. It achieves superior performance than other state-of-the-art methods.
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2. Related Work
2.1. Vertebra Segmentation by Convolutional Neural Networks

Before deep learning was widely used in medical image analysis, vertebra segmen-
tation was mainly solved by statistical shape models, including active shape models and
shape-constrained deformable models [9–14]. In addition, some other traditional methods
were proposed for vertebra segmentation, such as atlas-based models [15], level-sets with
shape priors [16], and active contours [17,18].

Recently, deep learning-based models have been proposed for vertebra and spine seg-
mentation. Korez et al. used a convolutional neural network (CNN) to generate probability
maps for the vertebra regions and then used these maps to generate a deformable statistical
model to segment the spine [3]. Sekuboyina et al. used a multi-class CNN to generate
labels for the lumbar vertebrae in 2D spine CT slices [19]. Subsequently, these labels were
used as prior information, and a multi-layer perception (MLP) was applied to generate a
bounding box for the lumbar region and to identify the region of interest from the images.
In subsequent work, Sekuboyina et al. designed a 3D patch-based CNN for vertebra seg-
mentation by performing voxel classification from the whole image [4]. To further boost
the performance by removing false positives outside the region of interest, a 2D network
was used to predict a low-resolution mask for the vertebral region. Lessmann et al. applied
a two-stage iterative approach for accurate vertebra segmentation [20]. Specifically, a CNN
was used to segment vertebrae in downsampled images iteratively. Then, another CNN
was used to analyze the full-resolution images to refine the low-resolution segmentation
results. He et al. presented a dual densely connected U-shaped network (DDU-Net) to
perform the extraction of multi-scale features and segmentation of different sizes of tissues
automatically and precisely for automatic vertebral segmentation in CT images [21]. Liping
et al. proposed a lightweight pyramid attention quick refinement network (LPAQR-Net) for
efficient and accurate vertebra segmentation from biplanar whole spine radiographs [22].

2.2. Vision Transformer for Medical Image Segmentation

The recently proposed Vision Transformer (ViT) shows great success in computer
vision tasks by utilizing a self-attention mechanism to capture long-range dependencies [8].
Because of its promising performance, ViT has been used as a backbone for medical image
segmentation. TransUNet was the first ViT-based medical image segmentation model,
which combines a ViT encoder with a CNN decoder [23]. Swin UNet was proposed as a
pure Transformer-based model for medical image segmentation by incorporating the Swin
Transformer block into a hierarchical architecture [24]. Subsequently, UNETR combined
a Transformer backbone and a CNN architecture for 3D volumetric segmentation [25].
Similarly, Swin UNETR utilized the Swin Transformer in the encoder for brain tumor
segmentation [26]. Following the idea of nnUNet [27], nnFormer was a self-configured
ViT-based segmentation model for brain tumor segmentation [28]. CoTr incorporated a
Deformable Transformer into a CNN architecture for accurate segmentation [29]. Hiformer
was designed as a hierarchical multi-scale ViT-based model for medical image segmenta-
tion [30]. AgileFormer was proposed to capture spatially deformable features to improve
the performance of medical image segmentation [31]. MS-Former employed a dual-branch
Transformer network to encode global contextual dependencies while preserving local
information by extracting two different scaled features [32].

2.3. Channel and Spatial Attention

Many methods and modules have been proposed to calculate channel attention to fa-
cilitate networks to utilize long-range dependencies. Squeeze-and-Excitation was proposed
to model channel-wise inter-dependencies and use these channel attention values to recali-
brate channel-wise features [33]. Then, another more efficient channel attention module
was proposed to calculate channel attention in an efficient manner [34]. Channel attention
is calculated in these independent modules. However, it is also calculated to improve
convolution layers in CNNs and local-window-based self-attention in hierarchical ViTs.



Diagnostics 2024, 14, 1859 4 of 14

The channel-wise inter-dependencies among features from two convolution layers were
modeled in selective kernel networks [35] and channel attention networks [36]. Similarly,
channel attention is calculated to model inter-dependencies among several convolutional
layers [37]. Several methods have also been proposed to calculate spatial attention to
enhance the capabilities of networks to model spatial-wise global contextual information.
Specifically, spatial-wise attention was modeled in the CBAM [38] and dual attention
networks [39]. The spatial-wise inter-dependencies among features from two convolu-
tion layers were modeled in spatial dynamic networks [40]. The attention gate was also
designed to enable networks to suppress irrelevant regions and highlight salient spatial
features by calculating spatial-wise attention values [41].

3. Methods

In this section, we first introduce the overall architecture of our Vertebrae-aware Vision
Transformer (VerFormer) in Section 3.1. Then, we demonstrate the architecture of the
Vertebrae-aware Global block, which is the basic block of the VerFormer in Section 3.2. This
Vertebrae-aware Global block is built by incorporating the novel Vertebrae-aware Global
Query module into the multi-head self-attention module. In Section 3.3, we introduce the
loss function used for model training.

3.1. Overall Network

The overall architecture of the proposed Vertebrae-aware Vision Transformer (Ver-
Former) is demonstrated in Figure 1. The VerFormer is built as a U-shaped encoder-decoder
architecture and consists of an encoder, a bottleneck, and a decoder. The overall architecture
is designed based on a hierarchical Vision Transformer framework to obtain multi-scale
feature representations. The basic block of our VerFormer is the Vertebrae-aware Global
(VG) block, and two successive blocks are incorporated into each stage. The basic number
of channels is C = 96, and the numbers of channels in the following stages are 192, 384,
and 768. The number of channels in the bottleneck is 768. To extract more features in the
deeper layers, the number of heads in the multi-head self-attention module at each stage is
2, 4, 8, and 16, respectively.

In the encoder, given an input image patch with the resolution H × W × 1, we obtain
overlapping patches with the resolution H

2 × W
2 × 1 by applying a 3 × 3 convolutional

layer with a stride of 2. Subsequently, these patches are projected onto a C-dimensional
embedding space by another 3 × 3 convolutional layer with stride 2. In this convolutional
layer, the dimension of these patches is H

4 × W
4 ×C. The encoder consists of three stages. At

each stage, two successive VG blocks are applied to extract spatial features. Subsequently, a
downsampling layer is applied to decrease the spatial resolution by 2 while increasing the
number of channels by 2 via a 3 × 3 convolutional layer with a stride of 2. The dimensions
of patches in three stage are H

4 × W
4 × C, H

8 × W
8 × 2C, and H

16 × W
16 × 4C, respectively.

The bottleneck employs two successive VG blocks, which are used to learn the deep
feature representations. In the bottleneck, the dimension and resolution of input and output
features are kept unchanged as H

32 × W
32 × 8C.

We design a symmetric decoder as the encoder for dense prediction. The decoder also
consists of three stages. At each stage in the decoder, we first apply an upsampling layer to
increase the spatial resolution and decrease the channel number by 2 via a 2 × 2 transposed
convolutional layer with a stride of 2. The dimension of patches is H

16 × W
16 × 4C. Then, the

upsampled features are concatenated with features from the encoder via skip connections.
Subsequently, a 1 × 1 convolutional layer is used to decrease the number of channels by
2 as H

16 × W
16 × 4C. In this stage, two successive VG blocks are applied to extract spatial

features. The dimensions of patches in three stages are H
16 × W

16 × 4C, H
8 × W

8 × 2C, and
H
4 × W

4 × C, respectively. To recover the feature to the original dimension of H × W × C, a
final projection layer consisting of two transposed convolution layers with the kernel of
2 × 2 and a stride of 2 is used. Finally, a 1 × 1 convolutional layer is applied to produce the
pixel-wise segmentation prediction.
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Figure 1. The overall architecture of the VerFormer. It consists of an encoder, a bottleneck, and a
decoder. Both the encoder and the decoder consist of three stages, and in each stage, two successive
VG blocks are used for learning feature representations. Two successive VG blocks are used in the
bottleneck. A 3 × 3 convolutional layer with a stride of 2 is used for downsampling in each stage, and
a 2 × 2 transposed convolutional layer with a stride of 2 is used for upsampling in each stage. Two
3 × 3 convolutional layers with a stride of 2 are used for the patch partition. Two 2 × 2 transposed
convolution layers with a stride of 2 are used in the final projection.

3.2. Vertebrae-Aware Global Block

Figure 2 demonstrates the architecture of our Vertebrae-aware Global (VG) block. Our
VG block is the basic block that is used in our VerFormer to capture vertebrae-aware global
contextual features. The multi-head self-attention module is followed by a 2-layer MLP
module with GELU non-linearity in between. A Layer Normalization (LN) layer is applied
before each self-attention module and each MLP module, and a residual connection is
applied after each module.

3.2.1. Vertebrae-Aware Global Query Module

Each VG block employs a Vertebrae-aware Global Query (VGQ) module to extract
vertebrae-aware contextual information based on attention mechanisms. Then, this atten-
tion information can be utilized to highlight vertebrae-related tokens and suppress non-
vertebrae-related tokens. Figure 2 demonstrates the architecture of our Vertebrae-aware
Global Query (VGQ) module. Figure 3 demonstrates the mechanism of our Vertebrae-aware
Global Query (VGQ) module. In our VGQ module, a channel attention-based module and
a spatial attention-based module are both used to extract vertebra-related contextual infor-
mation. This channel attention-based module cascades a 3 × 3 depth-wise convolutional
layer (DWConv), a GELU activation function, a Squeeze-and-Excitation (SE) module [33],
and a 1 × 1 convolutional layer (Conv). This SE module consists of an average pooling
(AvgPool) layer and two fully connected (FC) layers with a ReLU activation function in
between. This channel attention-based module can be formulated as Equation (1).

x̂ = DWConv(x),

x̂ = SE(GELU(x̂)),

x̂ = Conv(x̂) (1)
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LN

MHSA

LN

MLP Module

VGQ 
Module

AvgPool

FC

DWConv

GELU

SE

Conv7

Conv

FC

ReLU

Channel 
Attention

Spatial 
Attention

Figure 2. The overall architecture of the Vertebrae-aware Global (VG) block. In the VG block, a VGQ
module is utilized to extract vertebrae-aware contextual information to highlight vertebrae-related
query tokens. Then, these tokens are encoded in the multi-head self-attention (MHSA) module. In
the VGQ module, two parallel paths are employed to extract global vertebrae-aware contextual
information, including a channel attention path and a spatial attention path. In the channel attention
path, an SE layer is used by cascading an average pooling (AvgPool) layer, a fully connected (FC)
layer, a ReLu activation function, and a fully connected (FC) layer.

VGQ 
Module

Channel 
Attention

Input query tokens Highlighted query tokens 
by the VGQ module

Spatial 
Attention

Figure 3. The mechanism of the Vertebrae-aware Global Query (VGQ) module. The input image
is partitioned into patches, and these patches are converted into input query tokens. The VGQ
module is utilized to extract vertebrae-aware contextual information by channel and spatial attention
mechanisms. Then, vertebrae-related patches or tokens are highlighted by this contextual information.
Thus, the VGQ module can leverage global information to locate the spine across the whole image,
improving the segmentation capabilities of our VerFormer on the spine from CT images.

The spatial attention-based module cascades a 3 × 3 depth-wise convolutional layer
(DWConv), a GELU activation function, an adaptive pooling (AvgPool) layer, a 7 × 7
convolutional layer (Conv7), and a 1× 1 convolutional layer (Conv). This channel attention-
based module can be formulated as Equation (2).

x̂ = DWConv(x),

x̂ = Conv7(AvgPool(GELU(x̂))),

x̂ = Conv(x̂) (2)
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Features extracted from the channel attention-based module and spatial attention-
based module are combined and then reshaped into tokenized features with the dimension
(h ∗ w)× C. Subsequently, these are repeated and transformed to generate vertebrae-aware
global queries qv with the dimension of B × (h ∗ w)× C. This output of our VGQ module
is fed into the multi-head self-attention module.

3.2.2. Multi-Head Self-Attention Module

Unlike local self-attention in the Swin Transformer, which can only query patches
within a local window [42], our multi-head self-attention (MHSA) module is designed to
query vertebrae-related image regions. These vertebrae-related query tokens are generated
by capturing global channel attention and spatial attention information in the VGQ module.
Specifically, at each stage before the self-attention module, the VGQ module is used to
pre-compute Vertebrae-aware Global Query tokens qv based on global information. Then,
vertebrae-related tokens are highlighted by their attention scores. The multi-head self-
attention module utilizes the extracted vertebrae-aware global queries to interact with the
key and value representations. With this design, our multi-head self-attention module
can effectively utilize global information and capture spatial features. Theoretically, the
Vertebrae-aware Global Query qv has a size of B × C × h × w, where B, C, h, and w denote
batch size, embedding dimension, local window height, and width, respectively. qv is
further reshaped and fed into multi-heads in the self-attention modules, and the value
v and key k are then computed using a linear layer. Since the partitioned windows only
contain local information [42], utilizing rich global contextual information enlarges the
receptive field of the network. Additionally, generating vertebrae-aware global queries
provides an effective way of extracting localization information and related regions of
vertebrae in the input feature maps. The multi-head self-attention module is computed in
Equation (3).

Attention(qv, k, v) = so f tmax(
qvk√

d
+ b)v (3)

where d is a scaling factor and b is a learnable relative position bias term.

3.3. Loss Function

We employ a combo loss function (Equation (4)), which is a combination of dice loss
and cross-entropy loss.

L = λ1LDICE + λ2LCE (4)

The optimal values for λ1 and λ2 are 0.6 and 0.4, respectively. Dice loss [43] is
employed to measure the dissimilarity between the predicted segmentation and the group
truth segmentation of the targeting object (Equation (5)).

LDICE =
2 × P × Y + ϵ

P + Y + ϵ
(5)

Cross entropy loss [44] is employed to measure the error between two probability
distributions of predicted segmentation of the targeting object (Equation (6)).

LCE = − 1
N

[ N

∑
i=1

[
pi log(pi) + (1 − pi) log(1 − pi)

]]
(6)

4. Results
4.1. Datasets

To validate our segmentation methods, we used two publicly available datasets for
automatic vertebra and spine segmentation from CT images, including VerSe 2019 and
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VerSe 2020 [45–47]. These two datasets were prepared as vertebral labeling and segmenta-
tion challenges hosted at the 2019 MICCAI and 2020 MICCAI, respectively. Both datasets
can be used by researchers to evaluate their segmentation models for the segmentation of
the spine with multiple conditions, labeled vertebrae, and field of view from CT images.
Specifically, the VerSe 2019 dataset includes 160 CT scans from 141 patients with metallic
implants or spinal fractures, as well as a combination of isotropic and sagittal reformations.
Centroids and segmented masks are provided for all scans, and these segmentation masks
are used as ground truth in our experiment. The VerSe 2020 dataset consists of 300 CT
scans with manually annotated voxel-wise labels. Scans from this dataset were collected
across multiple centers from four different scanner manufacturers. This dataset was en-
riched with cases that exhibit anatomical variants, such as enumeration abnormalities and
transitional vertebrae.

We implemented several pre-processing techniques for the data from two datasets.
Three-dimensional scans were resampled to the target spacing of 1 × 1 × 1 mm. Subse-
quently, voxel intensities were normalized by implementing the max–min normalization
technique after being truncated by the percentage [5%, 95%]. Finally, normalized 3D vol-
umes were prepared into 2D patches with the patch size of 224 × 224. Before training,
several data augmentation techniques were applied. Specifically, patches were rotated
with [−30, 30] and scaled with [0.8, 1.2] with both a probability of 0.3. Then, patches were
mirrored along the X and Y axes with a probability of 0.5. Gaussian noise with a mean of
zero and a variance of 0.1 was added to these patches with a probability of 0.2. Contrasts
and brightness were added to pixel intensities in patches with a probability of 0.1.

4.2. Implementation Details

Our VerFormer was implemented based on PyTorch 3.9 and CUDA 11.3. During the
training experiments, we used stochastic gradient descent (SGD) as the optimizer with a
momentum of 0.99. Models were trained for 500 epochs by an initial learning rate of 0.005
with a poly weight decay factor of 3 × 10−5. In all experiments, we adopted a batch size of
16. We trained all models on a single NVIDIA GeForce RTX 3090 GPU from the server of
Shanghai Jiao Tong University (Shanghai, China) with 24 GB of memory. Similar to other
ViT-based segmentation networks [24,26,31], we used the input patches with a resolution of
224 × 224. Five-fold cross-validation was implemented for evaluation to avoid overfitting
and to provide a more accurate estimate of the model’s generalization performance.

4.3. Evaluation Metrics

Five evaluation metrics were used to validate the segmentation performance of our
proposed model. The dice similarity coefficient (DSC) is the most common and useful
evaluation metric for segmentation tasks. It measures the similarity between the prediction
mask and ground truth. The mathematical formula for calculating the DSC is shown as
Equation (7), where P and Y are the predicted image and the ground truth, respectively.

DSC =
2 × (P × Y)

P + Y
(7)

Intersection over union (IoU) is also used to evaluate the performance of our automatic
segmentation methods. It is used to compare a predicted mask with a known mask for
semantic segmentation. The mathematical formula for the IoU is shown as Equation (8).

IoU =
TP

TP + FN + FP
(8)

Precision is calculated by quantifying the total number of correct positive outcomes
made by the proposed model. The mathematical formula for calculating the precision is
shown as Equation (9).

Precision =
TP

TP + FP
(9)
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The recall is calculated as the total true positive divided by the sum of the true positive
and false negative. The mathematical formula for the recall is shown as Equation (10).

Recall =
TP

TP + FN
(10)

The 95% percentile Hausdroff Distance (95HD) is used to measure the maximum
distance of the prediction set to the nearest point in the ground truth set. The mathematical
formula for the 95HD is shown as Equation (11).

95HD = max(max
x∈X

min
y∈Y

||x − y||, max
y∈Y

min
x∈X

||y − x||). (11)

4.4. Experimental Results

We compared our VerFormer with 12 state-of-the-art (SOTA) methods. Four meth-
ods are CNN-based architecture, including U-Net [48], V-Net [49], Attention UNet (Att-
UNet) [50], and nnU-Net [27]. Five methods are hybrid CNN and Transformer architecture,
including TransUNet [23], UCTransNet [51], 3D UNETR [25], Swin UNETR [26], and 3D
UX Net [52]. Among these methods, UNETR, Swin UNETR, and UX Net are 3D models.
Three methods employ pure Vision Transformer as backbones, including Swin UNet [24],
MissFormer [53], and AgileFormer-B [31]. We used the default configurations of these
models provided in their papers.

Table 1 demonstrates the comparison results of the segmentation performance of
our methods and other methods on the VerSe 2019 dataset. In comparison with other
vertebra segmentation methods, our VerFormer outperformed previous methods on spine
segmentation. Specifically, when compared with widely used 2D CNN baselines, U-Net and
VNet, our VerFormer exceeded in performance by over 5% in DSC, IoU, and precision; 6%
in recall; and six points in 95HD. Additionally, our VerFormer showed a better segmentation
performance than 3D CNN-based models, including Att-UNet and nnU-Net, even though
our VerFormer was evaluated as a 2D segmentation method. Moreover, our VerFormer
showed a higher segmentation accuracy than other 2D or 3D CNN-Transformer methods
with over 1–6% improvements in DSC, IoU, precision, recall, and 95HD points. Finally, our
VerFormer had a much higher segmentation accuracy than other Vision Transformer-based
segmentation methods, including Swin UNet, MissFormer, and AgileFormer.

Table 1. Comparison of spine segmentation between VerFormer and SOTA methods on the VerSe
2019. Segmentation performance was evaluated by mean DSC (%), standard deviation (SD) in DSC
(%), IoU (%), precision (%), recall (%), and 95HD (mm). The best segmentation results are in bold.
(*: p < 0.01 with Wilcoxon signed-rank test between our V-Former and each method).

Backbones Methods Mean
DSC SD DSC IoU Precision Recall 95HD

CNN

UNet [48] 88.14 6.01 87.21 93.56 93.11 11.54
VNet [49] 89.51 5.45 88.03 93.28 92.21 10.63

Att-UNet [50] 89.97 5.36 90.25 93.68 92.74 10.21
nnU-Net [54] 93.53 3.24 94.21 98.60 97.34 8.42

CNN+Transformer

TransUNet [23] 91.58 4.75 90.88 95.76 94.89 9.88
UCTransNet [51] 90.12 4.89 90.42 94.12 93.92 10.02
3D UNETR [25] 94.21 3.11 95.12 98.78 97.92 5.42

Swin UNETR [26] 94.02 3.05 94.34 97.42 97.80 5.78
3D UX Net [52] 94.37 3.02 95.19 98.89 97.96 5.24

Transformer

Swin UNet [24] 90.25 4.66 91.42 96.15 95.85 9.98
MissFormer [53] 93.52 3.25 92.29 97.11 96.13 8.40
AgileFormer [31] 94.15 3.17 93.98 98.88 97.41 5.62
VerFormer (ours) 95.28 * 2.89 95.90 * 99.57 * 98.45 * 4.24 *

Table 2 demonstrates the comparison results of the segmentation performance of our
methods and other methods on the VerSe 2020 dataset. Similar to the results in the VerSe
2019 dataset, our VerFormer outperformed these baseline methods on spine segmentation
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from CT images. Specifically, when compared with widely used 2D CNN baselines, U-Net
and V-Net, our VerFormer still exceeded in performance by over 4% in DSC, 5% in IoU, 4%
in precision points, 5% in recall points, and five points in 95HD. Additionally, our VerFormer
also showed a better segmentation performance than 3D CNN-based models, including
Att-UNet and nnU-Net (+2.5 DSC, +2.5 IoU, +3.5 precision, +4 recall, and +4 95HD),
even though our VerFormer was evaluated as a 2D segmentation method. Moreover, our
VerFormerr showed a higher segmentation accuracy than all CNN-Transformers methods,
including TransUNet, UCTransNet, 3D UNETR, Swin UNETR, and 3D UX Net. Finally, our
VerFormer had a much higher segmentation accuracy than other Vision Transformer-based
segmentation methods, including Swin UNet, MissFormer, and AgileFormer.

Table 2. Comparison of spine segmentation between VerFormer and SOTA methods on the VerSe
2020. Segmentation performance was evaluated by mean DSC (%), standard deviation (SD) in DSC
(%), IoU (%), precision (%), recall (%), and 95HD (mm). The best segmentation results are in bold.
(*: p < 0.01 with Wilcoxon signed-rank test between our V-Former and each method).

Backbones Methods Mean
DSC SD DSC IoU Precision Recall 95HD

CNN

UNet [48] 87.98 6.27 88.45 92.62 92.41 12.56
VNet [49] 88.11 6.32 87.24 93.45 93.04 11.62

Att-UNet [50] 89.45 6.11 90.51 94.18 92.88 10.81
nnUNet [54] 91.45 4.35 91.49 95.04 94.52 9.96

CNN+Transformer

TransUNet [23] 90.44 5.88 91.21 94.32 93.45 9.74
UCTransNet [51] 90.02 5.21 90.12 93.76 93.16 10.36
3D UNETR [25] 92.35 4.87 92.67 97.72 97.46 8.88

Swin UNETR [26] 92.21 4.63 92.35 97.51 97.24 9.02
3D UX Net [52] 92.73 4.52 92.75 97.81 97.66 8.62

Transformer

Swin UNet [24] 90.01 5.97 91.34 96.18 95.98 10.38
MissFormer [53] 92.22 4.66 92.29 97.11 96.13 9.05
AgileFormer [31] 92.64 4.14 92.80 98.02 97.22 8.74
VerFormer (ours) 93.98 * 3.21 94.02 * 99.10 * 98.75 * 5.88 *

5. Ablation Study

In the ablation study, we evaluated how the Vertebrea-aware Global (VG) block
improves spine segmentation accuracy over the standard Vision Transformer block. It
was implemented by comparing our VerFormerr with the standard ViT. Specifically, the
standard ViT was built based on the standard Vision Transformer block by employing the
multi-head self-attention (MHSA) module. Thus, we implemented the ablation study by
deconstructing VerFormer by removing the VGQ module from the VG block.

The performance of our VerFormer and ViT was compared on two datasets, VerSe
2019 and VerSe 2020, and the results are shown in Table 3. In both datasets, our VerFormer
demonstrated much better segmentation performance than the ViT. In these two datasets,
our VerFormer outperformed the ViT by over four points in DSC, IoU, precision, and 95HD
and five points in recall. Thus, our VerFormer improves the ViT on spine segmentation
from CT images by incorporating VG block into it and utilizing the VGQ module to capture
vertebrae-aware contextual information for spine localization. Figure 4 demonstrates the
segmentation results from our VerFormer and global query tokens from the VGQ module.

Table 3. Comparison of spine segmentation between VerFormer and ViT on the VerSe 2019 and
VerSe 2020 datasets. Segmentation performance was evaluated by DSC (%), IoU (%), precision (%),
recall (%), and 95HD (mm). The best segmentation results are in bold. (*: p < 0.01 with Wilcoxon
signed-rank test between our V-Former and ViT).

Datasets Methods DSC IoU Precision Recall 95HD

VerSe 2019
ViT [8] 90.17 91.12 95.95 95.87 9.99

VerFormer (ours) 95.28 * 95.90 99.57 98.45 4.24
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Table 3. Cont.

Datasets Methods DSC IoU Precision Recall 95HD

VerSe 2020
ViT [8] 89.86 91.25 96.01 95.72 10.52

VerFormer (ours) 93.98 94.02 99.10 98.75 5.88

Raw images Segmentation Raw images Segmentation Raw images Segmentation

A

B

Figure 4. The visualization of segmentation results from our VerFormer. (A) The visualization
of segmentation results from our VerFormer on the VerSe 2019 dataset. (B) The visualization of
segmentation results from our VerFormer on the VerSe 2020 dataset.

6. Discussion

Our VerFormer was developed as a 2D ViT-based segmentation model for lower com-
putational complexity. Our VerFormer cannot be developed as a 3D network because of
the high computational complexity of multi-head self-attention. Our VerFormer generates
tokens from the whole input image to capture image-level global contextual information.
Then, features are extracted from these tokens in the multi-head self-attention (MHSA)
module. If our VerFormer is designed as a 3D network, 3D tokens will be utilized in the
MHSA module, thus leading to high computational complexity and high memory com-
putation. Other 3D ViT-based networks, such as the Swin Transformer [26,42], utilize the
local window and create 3D tokens within the window to avoid high computational com-
plexity. However, employment of the local window limits these networks from capturing
global information, thus lowering segmentation performance. Additionally, although our
VerFormer is designed as a 2D model, it has achieved superior segmentation performance
than other 3D methods, such as Att-UNet [41], 3D UNETR [25], Swin UNETR [26], and 3D
UX Net [52].

Our VerFormer has high generalizability. It was evaluated on two datasets for spine
segmentation from CT images. It can also be employed to spine CT images from other
datasets since it is designed to extract data-driven features and can be trained end-to-
end. Our VerFormer can also generalize across various medical image modalities. Our
VerFormer can be applied to segment organs or lesions from 3D medical image modalities,
such as CT and MRI. Additionally, it can also be used for other 2D medical images, such as
X-rays and microscopy images. Thus, this 2D configuration improves the generalizability
of our VerFormer over various medical image modalities.

The potential limitation of our VerFormer originates from the intrinsic characteristics
of the ViT backbone. ViT extracts tokens of a fixed size from input images, and the VGQ
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module highlights vertebrae-related tokens. Thus, these fixed-sized tokens may limit our
VerFormer from learning multi-scale features, and the size of the tokens may influence the
segmentation performance. In future work, VerFormer can be improved by employing
a dual path that extracts tokens of different sizes. Additionally, VerFormer can also be
improved by utilizing an adaptive mechanism to find the optimal size of tokens based on
input images.

7. Conclusions

In this paper, we proposed a Vertebrea-aware Vision Transformer, VerFormer, for auto-
matic spine segmentation from CT images. Our VerFormer is designed by incorporating
a novel Vertebrae-aware Global (VG) block into the ViT backbone. In the VG block, the
vertebrae-related global contextual information is extracted by a Vertebrae-aware Global
Query (VGQ) module. Then, this information is incorporated into query tokens to highlight
vertebrae-related tokens in the multi-head self-attention module. Thus, this VG block can
leverage global contextual information to effectively and efficiently locate spines across the
whole input, thus improving the segmentation accuracy of VerFormer. We evaluate our
VerFormer on two spine CT segmentation tasks, and experimental results demonstrate its
superiority over other state-of-the-art methods.
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