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Abstract: Automated tooth segmentation and identification on dental radiographs are crucial steps
in establishing digital dental workflows. While deep learning networks have been developed for
these tasks, their performance has been inferior in partially edentulous individuals. This study
proposes a novel semi-supervised Transformer-based framework (SemiTNet), specifically designed to
improve tooth segmentation and identification performance on panoramic radiographs, particularly
in partially edentulous cases, and establish an open-source dataset to serve as a unified benchmark.
A total of 16,317 panoramic radiographs (1589 labeled and 14,728 unlabeled images) were collected
from various datasets to create a large-scale dataset (TSI15k). The labeled images were divided
into training and test sets at a 7:1 ratio, while the unlabeled images were used for semi-supervised
learning. The SemiTNet was developed using a semi-supervised learning method with a label-guided
teacher–student knowledge distillation strategy, incorporating a Transformer-based architecture. The
performance of SemiTNet was evaluated on the test set using the intersection over union (IoU), Dice
coefficient, precision, recall, and F1 score, and compared with five state-of-the-art networks. Paired
t-tests were performed to compare the evaluation metrics between SemiTNet and the other networks.
SemiTNet outperformed other networks, achieving the highest accuracy for tooth segmentation and
identification, while requiring minimal model size. SemiTNet’s performance was near-perfect for
fully dentate individuals (all metrics over 99.69%) and excellent for partially edentulous individuals
(all metrics over 93%). In edentulous cases, SemiTNet obtained statistically significantly higher tooth
identification performance than all other networks. The proposed SemiTNet outperformed previous
high-complexity, state-of-the-art networks, particularly in partially edentulous cases. The established
open-source TSI15k dataset could serve as a unified benchmark for future studies.

Keywords: tooth segmentation; tooth identification; Transformer neural network; semi-supervised
learning; deep learning

1. Introduction

Automated tooth segmentation and identification on dental radiographs are essential
and fundamental components in establishing digital workflows for diagnosis and treatment
planning across various dental specialties [1–3]. Accurate tooth segmentation and identifi-
cation play a crucial role in the subsequent automated localization of dental diseases (e.g.,
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caries, periapical lesions, and periodontal bone loss) and conditions (e.g., dental fillings,
restorations, and appliances), as well as treatment planning steps [4].

Previous systematic and scoping review articles have documented a range of artificial
intelligence (AI) neural networks designed for tooth detection and segmentation on dental
panoramic radiographs using supervised deep learning approaches [1–3,5]. The majority
of these networks were built based on U-Net, a type of convolutional neural network (CN
N) [6–12] (Supplementary Table S1). Zhao et al. developed a CNN that incorporated global
and local attention modules for tooth segmentation on panoramic radiographs [6]. Hou
et al. proposed a deep learning architecture, Teeth U-Net [7], which enhanced the original
U-Net [13] for automated tooth segmentation. Compared to the original U-Net, Teeth
U-Net integrated several attention mechanisms, resulting in an improved segmentation
performance from Dice metric scores of 92.78% to 94.28%. Wang et al. proposed a multiscale
CNN-based network that further enhanced tooth segmentation accuracy on panoramic
radiographs [8]. Nagaraju et al. and Lin et al. respectively improved tooth segmentation
performance on panoramic radiographs by employing a multi-scale spatial pooling-based
panoptic segmentation technique, and a lightweight deep learning method combined with
the knowledge consistency training strategy [9,10].

Despite their high performance, previous deep learning networks have typically
shown lower accuracies in cases involving multiple missing teeth. These cases represent
the most challenging group for automatic segmentation, yet are frequently encountered in
clinical practices [11,12]. Errors in tooth segmentation and identification for these patients
can propagate downstream in the dental workflow, negatively impacting diagnosis and
treatment planning steps [12]. Additionally, the diverse appearances of edentulous status
on panoramic radiographs necessitate a large volume of training data, which requires im-
practically labor-intensive and time-consuming manual labeling [2]. Furthermore, previous
deep learning networks were built with complex architectures (i.e., multiple subnetworks)
incorporating a multitude of parameters while being trained on relatively small datasets.
This not only increased the risk of overfitting, causing challenges in applying these models
to new, unseen data but also created difficulties in integrating them into existing digital den-
tal workflows. Moreover, these models were evaluated on proprietary, in-house datasets
with limited accessibility, adding challenges to performance comparisons among different
AI models.

Efficient training strategies, such as semi-supervised learning, could be a potential
solution to this issue [14]. Previous studies have reported the potential benefits of semi-
supervised methods in other dental radiology applications [15,16]. Compared to U-Net and
its variants, Transformer-based architectures have shown superiority in capturing global
dependencies. These architectures allow each position in the feature sequence to attend to
all other positions, enabling robust feature extraction across various scales and potentially
suitable for tooth segmentation and identification for partially edentulous patients, where
recognizing global patterns and relationships is crucial. Nonetheless, it has not been
investigated whether Transformer-based architectures developed using a semi-supervised
learning method could have the potential to improve automated tooth segmentation and
identification on panoramic radiographs, especially for partially edentulous patients.

Therefore, this study aims to (i) propose a novel semi-supervised Transformer-based
framework (SemiTNet) using a label-guided teacher–student knowledge distillation strat-
egy for automated tooth segmentation and identification on panoramic radiographs,
(ii) compare the performance of SemiTNet with five state-of-the-art deep learning ap-
proaches on the independent test set, for both fully dentate and partially edentulous
individuals, as well as for fully dentate individuals and partially edentulous individuals
separately, and (iii) establish an open-source dataset (TSI15k) from existing public datasets
as a standardized and publicly available benchmark for future studies to compare the
performance of different methods on related tasks.

The key contributions of this study can be summarized as follows: (i) The findings
demonstrate that the teacher–student knowledge distillation training framework allows
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better generalizability for tooth segmentation on panoramic radiographs compared to
conventional supervised training techniques. This reduces the risk of overfitting without
requiring a significant increase in the volume of labeled training data. (ii) Introducing
Transformer modules into the proposed SemiTNet contributes to a statistically significant
increase in tooth identification accuracy, especially for partially edentulous cases. (iii) The
established open-source TSI15k dataset, which includes a total of 16,317 panoramic ra-
diographs from both fully dentate and partially edentulous patients, serves as a unified
benchmark for future studies to fairly compare the performance of different novel methods
on related tasks.

2. Materials and Methods
2.1. Training and Testing Datasets (Benchmark TSI15k)

Publicly available dental panoramic radiograph datasets were systematically searched
and compiled. Duplicate images from the same institution across different datasets were
excluded. Panoramic radiographs with tooth segmentation annotations and teeth labeled
using the Federation Dentaire Internationale (FDI) tooth numbering system by experts
from previous studies or medical imaging AI challenges were included as the first cohort.
Additionally, panoramic radiographs without segmentation annotation and labeling were
included as the second cohort. Images from the first cohort were randomly divided into
training and test sets at a 7:1 ratio, creating a unified evaluation benchmark with a total
of 35,000 boxes and masks. Images from the second cohort were merged into the training
set for semi-supervised learning to reduce overfitting to the labeled samples and enhance
model robustness. Eventually, a total of 16,317 images were compiled to create the open-
source dataset (TSI15k) [16–18], consisting of 16,126 training images (1398 labeled and
14,728 unlabeled images) and 191 testing images (Table 1). The TSI15k dataset comprises
images with a resolution of approximately 2000 × 1000 pixels, representing individuals
with a wide range of dental conditions. This includes patients with fully dentate or
partially edentulous, crowded dentition, endodontically treated teeth, dental fillings, and
restorations, to name a few.

Table 1. The distribution of training and test images in the TSI15k dataset.

TSI15k Dataset
Training Set Test Set

Cohort 1 Labeled images 1398 191
Cohort 2 Unlabeled images 14,728 0

2.2. Network Architecture

The network gradient episodic memory (GEM) [19], previously designed and investi-
gated by our team for segmentation tasks in the domain of natural images, was applied
for tooth segmentation and identification due to its outstanding performance in feature
extraction and object segmentation. The GEM adopts a Transformer-based encoder-decoder
architecture consisting of an image encoder, a simple feature pyramid, a query initializa-
tion unit, and a mask decoder, as shown in Figure 1. The image encoder was a ViT-Tiny
architecture [20] with the MobileSAM pre-trained model [21] that was used to extract the
features of panoramic radiographs. To boost the performance for tooth segmentation and
identification, the multi-scale feature maps were produced by using the last feature map
from the image encoder via a simple feature pyramid following ViTDet [22]. Specifically,
the feature maps of scales 1/8, 1/4, and 1/32 were generated using deconvolution of strides
2 and 4 and max-pooling of strides 2, respectively. The feature map of scale 1/4 is directly
appointed as the role of the pixel embedding map, which is used to produce the final
predictions.
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2.3. Semi-Supervised Learning 

Figure 1. The architecture of the proposed SemiTNet features a streamlined encoder-decoder structure
that includes four main components: an image encoder, a basic feature pyramid, a query initialization
unit, and a mask decoder. The query initialization unit is responsible for identifying foreground
regions within the image, and it uses the associated features to set up the initial queries for the
mask decoder.

Given these hierarchical feature maps, the query in the decoder was first initialized
using a query initialization unit. The hierarchical feature maps were processed by three
prediction heads: classification, detection, and segmentation. Each of these heads was
identical to their corresponding decoder heads. The hierarchical feature maps underwent a
process of aggregation through downsampling and upsampling operations, resulting in the
aggregated feature F. Subsequently, feature-wise classification results were derived from F
using the Softmax operation, which provided confidence scores for each feature. In order
to select the most informative features, all confidence scores were ranked, and the features
corresponding to the top-k scores were chosen as the queries.

The classification score of each token was considered the confidence that was used to
select the top-ranked features. These selected features were then fed into the decoder as
content queries. Additionally, the selected features were used to regress bounding boxes
and perform a dot-product with the pixel embedding map to predict masks. Both the
predicted boxes and masks were supervised by the ground truth and served as initial
anchors for the decoder.

Subsequently, the queries in the decoder were gradually updated through the interac-
tion between the key and the value from hierarchical feature maps as well as the previous
query via the cross-attention operation mechanism in each decoder layer. Eventually, the
final predictions were obtained by dot-producting [23] each query embedding from the
decoder with the pixel embedding map. In summary, a panoramic radiograph I ∈ RH×W×3

was fed to the image encoder, and four-scale feature maps C2, C3, C4, and C5 were obtained
via a simple feature pyramid P, of which the resolutions were 1/4, 1/8, 1/16, and 1/32 of
the input image, respectively. Afterward, the mask decoder took queries Q ∈ RN×256 and
the flattened three high-level feature maps C3, C4, and C5 as inputs and update queries Q.
Nine decoder layers were used in our default experimental settings. Finally, the updated
queries Q were dot-multiplied with the pixel embedding map C2 to obtain a predicted
mask M. The whole process was formulated as follows:

C2, C3, C4, C5 = P(E(I)),
M = C2 ⊗ D(Q, Flatten(C3, C4, C5)),

where ε is the image encoder and D is the mask decoder. The ⊗ indicates the dot production.
Note that the prediction masks are output at each decoder layer.
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2.3. Semi-Supervised Learning

Semi-supervised learning can be used in label-scarce situations by making use of
unlabeled data to boost the model’s performance [24–27]. The label-guided teacher–student
knowledge distillation strategy [14] was employed to effectively leverage unlabeled data
and enhance the model’s performance, which can be divided into three steps:

(i) Teacher pre-training: The teacher model, parameterized by θt, is exclusively trained
on labeled data.

(ii) Enhanced burn-in process: The student model, parameterized by θs, is initialized by
the image encoder of MobileSAM [21] and trained on both labeled and unlabeled data
using pseudo-labels generated by the teacher model in the first pre-training stage.
During this phase, the teacher model remains fixed.

(iii) Distillation stage: In this stage, the student model’s weights are transferred to the
teacher model, and continue training the student on both labeled and unlabeled
data as before. The teacher model is updated using an exponential moving average
(EMA) [28] of the student’s weights. The workflow for this stage is illustrated in
Figure 2.
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Figure 2. Workflow of the distillation stage in the semi-supervised learning strategy. The original
unlabeled panoramic radiographs were fed into the teacher model, while the strongly augmented
unlabeled images were fed into the student model. The student model was updated using both the
supervised loss (Ls) and unsupervised loss (Lu). The teacher model was subsequently updated using
Exponential Moving Average (EMA).

The high-quality pseudo-label was extracted using a straightforward thresholding
method that considers both the predicted class probability and the size of the predicted.
A predicted mask was selected as a pseudo-label if it meets two criteria: (i) the maximum
class probability is above the class threshold pc ≥ αc, and (ii) the size of the predicted
mask is above the size threshold ∑PH × W σ(ŷ(p)) ≥ αs where σ represents the sigmoid
activation of the binary mask prediction. H and W refer to the height and width of the
image, respectively. In our experimental settings, the class threshold αc is 0.7 and the size
threshold αs is 5.

2.4. Loss Function

During the training phase, the total loss consisted of the supervised (Lsup) and unsu-
pervised (Lunsup) losses, which shared the same loss function, defined as follows:

Ltotal = Lsup + λunsupLunsup
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The unsupervised loss weight λunsup was empirically set to 2 in our experiments. The
loss function is structured as a weighted sum of five loss components, as follows:

Lsup/unsup = λL1LL1 + λgiouLgiou + λ f ocalL f ocal + λceLce + λDiceLDice

Specifically, LL1 and LGiou [29] were employed for box regression, and their mathe-
matical formulas are defined as follows:

LL1 =
1
N

N
∑

i=1
|yi − ŷi|,

LGIoU = 1 − (
|A ∩ B|
|A ∪ B| −

|C − (A ∪ B)|
|C| ),

where yi denotes the predicted coordinates and ŷi refers to the ground truth coordinates. A
represents the predicted bounding box, and B represents the ground truth bounding box. C
represents the smallest enclosing box that contains both the predicted bounding box A and
the ground truth bounding box B.

The L f ocal represents a focal loss [30] designed for classification purposes, and it is
defined as follows:

Lfocal = −α(1 − pt)γ log(pt),

where α is a balancing factor for class imbalance. pt is the predicted probability for the
ground truth class. γ is the focusing parameter that adjusts the rate at easy examples.

The mask prediction aspect utilizes both cross-entropy loss Lce and Dice loss LDice [31],
and they are defined as follows:

Lce = −∑
i

ŷilog(yi),

LDice = 1 − 2∑i ŷiyi

∑i ŷi + ∑i yi
.

2.5. Evaluation Metrics

For the tooth segmentation task, the model’s performance was assessed using the
widely recognized metrics of intersection over union (IoU) and Dice coefficient, while the
tooth identification task was evaluated using the metrics of precision, recall, and F1 score.
These five metrics provide a comprehensive representation of the model’s performance.

The mathematical formulas for these five metrics we used to evaluate models are
demonstrated as follows:

IoU = (Area o f Intersection)
(Area o f Union)

Dice Coefficient = (2∗Area of Intersection)
(Area of Prediction+Area of Truth)

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 score = 2 ∗ Precision∗Recall
Precision+Recall

where TP (true positive), FP (false positive), and FN (false negative) follow the conventional
definition in a confusion matrix

IoU measures the overlap between the predicted segmentation (prediction) and the
ground truth (label). It is calculated as the ratio of the intersection area (the common area
between prediction and ground truth) to the union area (the combined area of prediction
and ground truth). A higher IoU value indicates better segmentation performance, ranging
from 0 to 1 with a value of 1 indicating a perfect overlap. The Dice coefficient is used for
evaluating the similarity between predicted segmentation and ground truth. It is calculated
as the ratio of twice the intersection area to the sum of the areas of prediction and ground
truth. A higher Dice coefficient value indicates better segmentation performance, ranging
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from 0 to 1 with a value of 1 indicating a perfect match. Precision measures the proportion
of correctly identified positive instances out of all instances identified as positive by the
model. Recall measures the proportion of correctly identified positive instances out of all
actual positive instances. The F1 score, which is the harmonic mean of precision and recall,
provides a single metric that balances the trade-off between precision and recall.

2.6. Performance Comparison and Statistical Analysis

The performances of the proposed SemiTNet and five state-of-art deep learning
networks (the CNN-based two-stage framework Mask R-CNN [32] and several recently
emerged Transformer-based frameworks including MPFormer [33], Mask2Former [34],
MaskDINO [35], and GEM [19]) were initially evaluated descriptively for tooth segmenta-
tion and identification on the test set independent from the training set. Their performances
were assessed for both fully dentate and partially edentulous individuals, as well as
separately for the dentate and edentulous groups. Additionally, the differences in the
performance evaluation metrics (IoU, Dice, precision, recall, and F1 score) between SemiT-
Net and other networks were assessed using paired t-tests. Furthermore, the number of
parameters of different models that could reflect their computational complexity (i.e., a
greater number of parameters indicates higher model complexity) were compared.

2.7. Experiment Settings

All experiments were trained on 8 GeForce V100 32G GPUs (NVIDIA Corporation,
Santa Clara, CA, USA) for 26,250 iterations with a total batch size of 16. The total training
time was 6 h, and the frame per second (FPS) was 0.658. The learning rate was initialized
as 1 ×10−4, and it was decreased by 0.1 after 24,000 and 25,000 iterations, respectively. The
number of queries used in our study was 100. The optimizer AdamW was used to optimize
the model parameters. No direction-related data augmentation strategy was used during
the training and test stages.

3. Results
3.1. Overall Performance

A total of 191 labeled panoramic radiographs from the independent test set were used
to assess the performance of the proposed SemiTNet model and five deep learning networks.
The training loss curve and the precision variation on the test set are illustrated in Figure 3.
The performance metrics of SemiTNet and other networks on the same test set are detailed
in Table 2 and Figure 4. Compared to other networks, the proposed SemiTNet achieved
the highest performance for both tooth segmentation (IoU of 94.41% vs. 91.58–94.16% and
Dice of 95.45% vs. 92.44–95.43%) and identification (precision of 94.74% vs. 90.99–93.96%,
recall of 97.1% vs. 93.63–96.45%, and F1 score of 95.9% vs. 92.29–95.06%) while requiring
the minimal model size (number of parameters: 21.6 M vs. 21.6 M–52.0 M). Paired t-tests
exhibited that SemiTNet achieved statistically significantly higher performance in tooth
identification compared to all other networks while its tooth segmentation performance
was only statistically significantly higher than that of Mask R-CNN and Mask2Former
(Table 2).

Table 2. Performance comparisons of SemiTNet and five deep learning networks on the test set.

Networks
Segmentation Identification

Parameters (M)IoU (%) Dice (%) Precision (%) Recall (%) F1 Score (%)

Mask R-CNN 91.58 *
(p < 0.001)

92.44 *
(p < 0.001)

92.24 *
(p < 0.001)

94.13 *
(p < 0.001)

93.17 *
(p < 0.001) 44.5

MPFormer 93.26 *
(p = 0.002)

94.39 *
(p = 0.006)

90.99 *
(p < 0.001)

93.63 *
(p < 0.001)

92.29 *
(p < 0.001) 43.9

Mask2Former 94.16 95.43 93.70 *
(p = 0.002) 96.45 95.06 *

(p = 0.014) 44.0
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Table 2. Cont.

Networks
Segmentation Identification

Parameters (M)IoU (%) Dice (%) Precision (%) Recall (%) F1 Score (%)

MaskDINO 93.75 94.64 93.74 *
(p = 0.010)

95.81 *
(p = 0.050)

94.76 *
(p = 0.022) 52.0

GEM 93.92 94.75 *
(p = 0.043)

93.96 *
(p = 0.013)

96.04 *
(p = 0.005)

94.99 *
(p = 0.006) 21.6

SemiTNet
(ours) 94.41 95.45 94.74 97.10 95.90 21.6

IoU, intersection over union; M, million. Paired t-tests were performed to compare the evaluation metrics between
SemiTNet and other networks, with p values and asterisk shown only if significant (≤0.05). Paired t-tests exhibited
that SemiTNet achieved statistically significantly higher performance in tooth identification compared to all other
networks while its tooth segmentation performance was only statistically significantly higher than that of Mask
R-CNN and Mask2Former.
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3.2. Performance Comparison between Fully Dentate and Partially Edentulous Cases

The performances of SemiTNet and five deep learning networks on the test images
from fully dentate individuals (n = 40) and partially edentulous (n = 151) individuals
were investigated, separately. Table 3 and Figures 4 and 5 reveal the differences in the
performance of SemiTNet and other networks for fully dentate and/or partially eden-
tulous individuals, respectively. All networks achieved excellent performance in tooth
segmentation and identification for fully dentate individuals with all evaluation metrics
over 99%. In contrast, performances decrease for partially edentulous individuals (IoU of
89.65–93%, Dice of 90.7–94.31%, precision of 89.23–93.44%, recall of 92.51–96.4%, and F1
score of 90.84–94.89%).
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Table 3. Comparison of SemiTNet with five deep learning networks for fully dentate and partially
edentulous cases.

Fully Dentate Individuals (n = 40) Partially Edentulous Individuals (n = 151)

Network
Segmentation Identification Segmentation Identification

IoU
(%)

Dice
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

IoU
(%)

Dice
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

MaskR-CNN 98.84 *
(p = 0.033)

98.98 *
(p = 0.040) 99.04 99.36 99.20 89.65 *

(p < 0.001)
90.70 *

(p < 0.001)
90.44 *

(p < 0.001)
92.74 *

(p < 0.001)
91.57 *

(p < 0.001)
MPFormer 99.24 99.32 97.64 *

(p = 0.004)
97.82 *

(p = 0.002)
97.73 *

(p = 0.003)
91.67 *

(p = 0.004)
93.09 *

(p = 0.011)
89.23 *

(p < 0.001)
92.51 *

(p < 0.001)
90.84 *

(p < 0.001)
Mask2Former 99.47 99.59 99.26 99.57 99.41 92.24 93.33 92.28 *

(p = 0.003) 94.82 93.53 *
(p = 0.018)

MaskDINO 99.53 99.64 99.45 99.64 99.55 92.74 94.31 92.18 *
(p = 0.017) 95.61 93.86 *

(p = 0.034)
GEM 99.84 99.86 99.65 99.65 99.65 92.35 93.39 *

(p = 0.038)
92.46 *

(p = 0.013)
95.09 *

(p = 0.006)
93.76 *

(p = 0.006)
SemiTNet (ours) 99.76 99.78 99.69 99.72 99.70 93.00 94.30 93.42 96.40 94.89

IoU, intersection over union. Paired t-tests were performed to compare the evaluation metrics between SemiTNet
and other networks, with p values and asterisk shown only if significant (≤0.05). Paired t-tests exhibited that
SemiTNet obtained statistically significantly higher performance in tooth identification for partially edentulous
cases compared to all other networks.

The proposed SemiTNet achieved near-perfect results for fully dentate individuals
with all metrics exceeding 99.69%, and excellent performance for partially edentulous
individuals with all metrics over 93%. In the edentulous cases, SemiTNet outperformed
the other five networks, achieving an increased IoU of up to 3.35%, Dice of up to 3.60%,
precision of up to 4.19%, recall of up to 3.89%, and F1 score of up to 4.05%. Paired t-tests
confirmed that SemiTNet achieved statistically significantly higher performance in tooth
identification for partially edentulous cases compared to all other networks (Table 3).

4. Discussion

This study proposed a novel semi-supervised Transformer-based framework (SemiT-
Net) for automated tooth segmentation and identification on panoramic radiographs and
established an open-source dataset (benchmark TSI15k) consisting of 1598 labeled and
14,728 unlabeled images. The SemiTNet not only showed superior performance compared
to existing state-of-the-art networks (with an IoU of 94.41%, Dice score of 95.45% for tooth
segmentation, and a precision of 94.74%, recall of 97.1%, and an F1 score of 95.9% for
tooth numbering) but also significantly reduced the model size, with 21.6 M parameters
compared to up to 52 M in other models. In addition, this study’s findings indicate that the
teacher–student knowledge distillation training framework allows better generalizability
for tooth segmentation on panoramic radiographs compared to conventional supervised
training techniques. This reduces the risk of overfitting without necessitating a significant
increase in the volume of labeled training data, which is particularly crucial considering
the limited scale of dental data (ranging from hundreds to thousands) compared to natural
images that can have up to millions of labeled images [1,36]. In this study, SemiTNet was
able to exploit a large quantity of unlabeled panoramic radiographs (n = 14,728), which is
significantly more than the number of training images (ranging from 500 to 1500) used in
previous studies [5–7,12,37]. This approach alleviates the need for extensive labeling of all
included data.

It has been observed that the previously developed CNN models were more likely to
misdetect teeth and misidentify tooth sites for partially edentulous patients on panoramic
radiographs, resulting in a high false positive rate of 11.54% [12,37]. This issue could be
attributed to both the network structure and the lack of training data. CNNs rely heavily
on convolutional operations, which may struggle to capture long-range dependencies
across an image. Compared to U-Net, Transformer-based architectures excel in capturing
global dependencies by allowing each position in the feature sequence to attend to all
other positions, enabling robust feature extraction across various scales. Consequently,
Transformer-based architectures are particularly suitable for tasks that require understand-
ing the relationships between distant elements. This capability is especially critical in cases
involving multiple missing teeth, where recognizing global patterns and relationships is
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crucial for the accurate identification of tooth sites. In this study, we introduced Transformer
modules, which are especially accustomed to learning inter-patch correlations, into the
proposed SemiTNet. SemiTNet not only achieves near-perfect tooth segmentation and
identification performance for fully dentate individuals (with over 99.6% across all metrics)
but also demonstrates excellent performance for partially edentulous individuals (with all
metrics over 93%). In terms of tooth identification performance, the proposed SemiTNet
outperformed the other five deep learning networks and achieved statistically significantly
higher results in the edentulous cases, achieving an increased IoU of up to 3.35%, Dice of
up to 3.6%, precision of up to 4.19%, recall of up to 3.89%, and F1 score of up to 4.05%.
Despite SemiTNet’s performance in the edentulous group alone being inferior compared to
its performance in fully dentate cases, it is on par with or even higher than the performance
of many previously developed deep learning models on a mixed set of fully dentate and
partially edentulous patients.

A key feature of the GEM architecture, which the proposed SemiTNet was built on,
is the integration of the segment anything model (SAM) [21]. SAM is a visual foundation
model known for its precise segmentation capabilities. This integration eliminates the
computationally intensive encoder layer, a fundamental component in Transformer-based
architectures. In this study, the backbone and encoder layers in most typical Transformer-
based models were replaced with MobileSAM, a specific type of SAM designed for efficient
operation on mobile or edge devices while maintaining good performance on semantic
segmentation tasks. This replacement reduced the required number of parameters and
computational complexity of the model. The results showed that the proposed SemiTNet
obtained the highest accuracy for both tooth segmentation and identification tasks with a
parameter of 21.6 M, which is considerably lower than the up to 52 M parameters required
for other state-of-the-art deep learning networks. The lower complexity of SemiTNet,
compared to other networks, makes it a more realistic choice for implementation in systems
and integration into digital dental workflows.

There is currently a lack of subjective benchmarks for comparison between the per-
formance of AI models on panoramic radiographs. Specifically, directly comparing the
performance of AI models on different test sets with, in particular those with different
portions of edentulous patients, can be misleading due to variations in data distribution
and quality. To ensure consistent and standardized assessment, this study collected dental
panoramic radiographs from various publicly available datasets and established the TSI15k
dataset, which includes a total of 16,317 panoramic radiographs from both fully dentate
and partially edentulous individuals. The open-source TSI15k dataset can serve as a unified
benchmark for future studies to fairly compare the performance of different novel methods
on related tasks.

This study has some limitations. One such limitation is that this study did not evaluate
SemiTNet’s performance separately for teeth with specific conditions, such as endodon-
tically treated teeth, residual roots, teeth with fillings, crowns, bridges, or orthodontic
appliances. The impact of these dental conditions on the tooth segmentation and identifica-
tion accuracy of deep learning networks should be investigated in future studies specifically
designed for comparative analysis. Additionally, the feasibility and cost-effectiveness of in-
tegrating the proposed SemiTNet into a GPU server equipped with a user-friendly interface
for real-time image analysis should be further investigated.

5. Conclusions

This study proposed a novel semi-supervised Transformer-based framework designed
for automated tooth segmentation and identification on panoramic radiographs. By imple-
menting a semi-supervised learning approach with a label-guided teacher–student knowl-
edge distillation strategy and incorporating the GEM architecture, SemiTNet achieved
excellent performance in tooth segmentation and identification for both fully dentate and
partially edentulous individuals. It outperformed previously proposed high-complexity,
state-of-the-art deep learning networks, particularly in partially edentulous cases. The
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established open-source TSI15k dataset could serve as a unified benchmark for future
studies. The code and dataset are available, respectively, at https://github.com/isbrycee/
SemiTNet (accessed on 4 August 2024) and https://huggingface.co/datasets/Bryceee/
TISI15k-Dataset/blob/main/TISI15k-Dataset.tar (accessed on 4 August 2024).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/diagnostics14171948/s1, Table S1. Previous deep learning networks
were proposed for tooth segmentation and identification on panoramic radiographs.
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