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Abstract: Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the
intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated
with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic
stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is
associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis
is complex and not entirely known. The identification of novel non-invasive diagnostic markers
and treatment methods that could suppress the progression of this condition is highly required.
Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA),
long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression.
Importantly, these molecules are frequently dysregulated under pathological conditions, which is
associated with enhanced or suppressed expression of their target genes. In this review, we aim
to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of
atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic
and therapeutic targets.
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1. Introduction
1.1. Atherosclerosis

Atherosclerosis describes the condition of the accumulation of fat and fibrous tissue
inside the arterial wall [1]. The disorder is associated with the narrowing of the arterial
lumen, which may eventually lead to organ ischemia. Furthermore, atherosclerotic lesions,
which develop into plaques, can rupture, forming a thrombus that may cause acute is-
chemia [2]. The main factors associated with plaque rapture are thickness of the fibrous
cap, lipid core size, and high macrophage density. During plaque rapture, the fibrous
cap uncovers, particularly, the thrombogenic core [3,4]. The region of the cap which is
the thinnest and the most exposed to macrophage infiltration holds the greatest risk of
rupture [5]. Macrophages secrete many proteolytic enzymes, which are responsible for the
degradation of the cap matrix built mostly with collagen fibers [6,7]. Loss of smooth muscle
cells and collagen in the cap are involved in its thinning, which leads to the rupture [8].
After plaque rupture, thrombogenic factors are released from the cap, and the process of
coagulation begins as activated platelets aggregate and a thrombus begins to form [9]. The
clinical manifestations following plaque rapture depend on size, localization, and severity.
The formation of a thrombus may lead to myocardial infarction or stroke [10]. Therefore,
atherosclerosis is a background disorder of major cardiovascular diseases (CVDs). Impor-
tantly, CVDs remain the main cause of death, with an estimated 19.8 million deaths in
2022 [11,12]. Similarly, large epidemiological studies demonstrated a significant atheroscle-
rosis prevalence and burden. According to a meta-analysis by Song et al., the prevalence
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of carotid plaque presence among patients 30 to 79 years old in 2020 was estimated to be
21.1% [13]. Coronary artery disease (CAD) is an atherosclerotic disease associated with
inflammation. It is one of the major causes of death globally [14]. The American Heart
Association estimates that 15.5 million people over 20 years old experience CAD [15]. In a
study by Sata and colleagues, the authors demonstrated that the measurement of arterial
stiffness and subclinical atherosclerosis parameters were associated with a 10-year absolute
risk of CAD [16]. Among patients who experience transient ischemic attack or minor
ischemic stroke, the presence of atherosclerosis is associated with a significantly elevated
risk of major cardiovascular events in 5 years [17]. The progression and development of
the disease is frequently silent until the occurrence of a major cardiovascular event or sig-
nificant arterial occlusion. Due to the high frequency of patients with the silent disease [18]
and the potential for serious complications, the identification of non-invasive biomarkers of
early disease, as well as the introduction of novel treatment methods that would suppress
atherosclerosis progression, are greatly needed.

1.2. Non-Coding RNA

Non-coding RNA (ncRNA) is a family of RNA molecules that are significantly impli-
cated in the epigenetic regulation of gene expression. Epigenetic mechanisms are heritable
and do not change the DNA sequence [19]. The family of ncRNA involves several sub-
classes, among which microRNA (miRNA), long non-coding RNA (lncRNA), and circular
RNA (circRNA) are frequently investigated in the context of gene expression regulation.
Over the years, researchers identified important roles of these molecules in physiology
and pathophysiology. For instance, ncRNAs play a significant role in organism develop-
ment [20,21]. Furthermore, they are significant elements in intercellular communication.
Due to their regulatory properties in gene expression, the secretion and transport of encap-
sulated ncRNA to other cells change their behavior [22].

Classes of ncRNA molecules differ structurally and functionally. miRNAs are com-
posed of approximately 22 nucleotides, and their classic mechanism of function involves
binding to the 3′ untranslated region (UTR) of their target mRNA, which inhibits translation
or enhances mRNA degradation. However, contrary to their classical role, evidence exists
that demonstrates that these molecules can enhance gene expression [23,24]. Recent studies
largely expanded knowledge about the regulation of miRNA expression. These molecules
can be formed through a few pathways, but the most common and canonical one involves
several RNase enzymes, such as Drosha and Dicer. Various mechanisms that regulate
miRNA biogenesis were identified, such as the modification of microprocessor activity. The
microprocessor, composed of Drosha and its partner DGCR8, plays a crucial role in the
formation of pre-miRNA molecules. The autoregulatory function of the microprocessor,
as well as the enhancement of its functionality through RNA-binding proteins, represent
some of the mechanisms modulating miRNA formation [25].

The lncRNA subgroup includes molecules composed of more than 200 nucleotides.
Due to their ability to bind DNA, RNA, and proteins, they are implicated in numerous
regulatory mechanisms that significantly affect cellular behavior. For instance, they
participate in processes associated with chromatin remodeling, which affects gene ex-
pression [26]. Furthermore, lncRNAs act as competing endogenous RNA (ceRNA) or
sponges that can bind miRNA and suppress their biological functions. lncRNA molecules
play a significant role in regulating the behavior of immune cells, which has implications
for a large number of diseases. These mechanisms were elegantly summarized in a
review by Khan et al. [27]. circRNA molecules are round-shaped molecules that can also
sponge miRNAs [28]. Taking into consideration several regulatory mechanisms exerted
by ncRNAs, dysregulation of their expression can significantly alter gene expression and
disrupt cellular functionality.

ncRNAs are frequently investigated in the field of oncology. The altered expression of
a particular molecule may enhance the expression of oncogenes or inhibit that of tumor
suppressors, which drives the process of tumorigenesis [29]. However, dysregulation
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of ncRNAs is also observed in inflammatory diseases [30,31]. Given their dysregulated
expression, ncRNA molecules can be used as diagnostic biomarkers. Moreover, as they
are significant regulators of gene expression, ncRNAs are involved in the pathogenesis of
diseases. Over the years, researchers have analyzed another important aspect of miRNA
functionality. Single nucleotide polymorphisms (SNPs) are genetic variants that have
been identified as risk factors for various conditions [32,33]. SNPs in the sequences of
miRNAs or their binding genes could disrupt miRNA-mRNA interactions and, thus, alter
miRNA functionality. miRNA SNPs were also found to be correlated with the presence of
diseases [34,35].

Precise mechanisms participating in the pathogenesis of atherosclerosis are unknown,
but several reviews have comprehensively analyzed the current literature [36]. The aim
of this review is to discuss the use of ncRNAs as biomarkers in atherosclerosis and to
present current evidence on the involvement of these molecules in the pathogenesis of
this condition.

To perform this review, we have thoroughly searched the PubMed database. The
following keywords were used: ‘atherosclerosis’, ‘non-coding RNA’, ‘microRNA’, ‘long non-
coding RNA’, ‘circular RNA’, ‘extracellular vesicles’, ‘inclisiran’, ‘olpasiran’, ‘lepodisiran’,
‘SLN360’, ‘muvalapin’, and their combinations.

2. Non-Coding RNA and Atherosclerosis
2.1. MicroRNA

miRNA molecules are being studied in vitro, in vivo, and in clinical settings. The latter
study design offers the opportunity to examine the diagnostic potential of these molecules.
Furthermore, based on the different expressions between patients and healthy controls,
together with the analysis of correlations with lipids and inflammatory mediators, these
studies suggest the involvement of miRNA in pathophysiological processes associated with
atherosclerosis. In vitro and in vivo studies offer a glimpse into direct mechanisms induced
by miRNAs due to the ability to perform gene silencing or overexpression. However, a
limited number of these investigations move into human-based studies.

In recent years, researchers began to investigate a very attractive and non-invasive
liquid biopsy procedure. Using biological fluids, we could potentially diagnose a disease,
gain insight into its advancement of characteristic symptoms, and monitor the progression
and treatment response. ncRNAs represent molecules that could reflect the pathological
conditions of the organism. In the blood, they can be encapsulated in extracellular vesicles
(EVs), structures with bioactive cargo that frequently resembles the property of cells that
secreted them.

Recently, Brandes et al. analyzed serum EV-associated miRNAs and the plaque mate-
rial of atherosclerosis patients treated surgically. Researchers detected seven upregulated
EV-miRNAs in patients with CAD as compared with controls. Moreover, it was also
suggested that the expression of some of the detected molecules is enhanced in carotid
plaques [37]. The simultaneous expression of miRNAs in the plaques and serum may sug-
gest that cells involved in the pathogenesis of atherosclerotic lesions secrete encapsulated
miRNAs. Thus, monitoring these structures in the blood could allow for an early detection
of atherosclerosis and perhaps more rapid treatment. In another study, by Hildebrandt and
colleagues, the authors analyzed serum samples of 157 patients and volunteers to search
for an EV-associated miRNA profile of atherosclerosis. Researchers identified different
RNA molecule profiles for separate diseases caused by atherosclerosis. For instance, dif-
ferentially expressed miR-215-5p, miR-199a-5p, miR-3168, miR-769-5p, and miR-582-3p
were observed in patients with peripheral artery disease. CAD was associated with miR-
409-3p and miR-370-3p, while a relationship between carotid artery stenosis and a group
composed of miR-654-3p, miR-381-3p, miR-335-3p, and miR-493-5p was found [38]. Apart
from diagnostic potential itself, monitoring miRNA levels could also suggest the severity
of atherosclerosis or plaque condition. Peripheral blood concentrations of miR-146a are
increased in patients with carotid atherosclerosis as compared to healthy controls. Impor-
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tantly, its expression increases as the condition becomes more severe, which highlights
the potential of monitoring miR-146a to evaluate stenosis progression. Its expression is
also elevated in patients with more vulnerable plaques, which proved to have a predicting
potential (AUC = 0.64) [39]. Other molecules with elevated expression in patients with
atherosclerosis involve miR-488, miR-27a, miR-133a, and miR-203, among others [40,41].
miR-126-3p, miR-21-5p, miR-29b-3p, and miR-223-3p represent some of the molecules
downregulated in patients with CAD, which also showed potential diagnostic values [42]
(Figure 1). Atherosclerosis is frequently clinically silent until the arterial lesions achieve
certain dimensions. Moreover, the condition represents a common comorbidity in a num-
ber of diseases, such as autoimmune disorders [43]. Recently, monitoring miRNA has
been suggested as a marker of subclinical atherosclerosis in Sjogren’s disease. Zehrfeld
et al. showed a positive correlation between miR-92a-3p levels and carotid intima–media
thickness [44].
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the diagnostic process. Created with BioRender.com.

The development of atherosclerosis is strongly associated with lipid disturbances.
Specifically, a higher blood concentration of non-HDL lipoproteins is considered a ma-
jor pathophysiology factor associated with the progression of the disease. Low-density
lipoproteins (LDLs) and very low-density lipoproteins (VLDLs) can migrate into the arte-
rial intima, where they undergo modifications, such as oxidation. Modified lipoproteins
then enhance foam cell formation and endothelial dysfunction, leading to the initiation
and progression of atherosclerotic plaques [45]. Recent studies have addressed how inter-
ventions targeting dyslipidemia and atherosclerosis affect miRNA expression. Successes
in this field would allow for the introduction of response biomarkers. Monitoring the
expression or concentrations of these molecules could perhaps lead to a more rapid drug
change, which could eventually result in more personalized treatment methods and better
outcomes. For instance, treatment with a high dose of rosuvastatin is associated with an
improved lipid profile, together with the lower expression of miR-33b-5p in atherosclerotic
plaques obtained through endarterectomy. This observation follows an expected mecha-
nism of action, as miR-33b-5p is one of the molecules that downregulate the expression of
ABCA1 [46]. Analyses of lipids and circulating miRNAs might lead to the identification of
response markers, which has been examined in a study by Mangas and colleagues. The
authors showed that a panel comprising miR-376c-3p, miR-376a-3p, let-7c-5p, let-7d-5p,
and let-7f-5p could be used to detect statin-intolerant patients (AUC 0.936) [47].

The identification of mechanisms and molecules that stimulate dyslipidemia is crucial
to understanding the pathophysiology of atherosclerosis. In vitro and in vivo studies were
performed to search for potential associations between miRNAs and pathways regulat-
ing lipid metabolism. One such molecule is the proprotein convertase subtilisin kexin 9
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(PCSK9), which is a mediator of cholesterol metabolism. Specifically, it stimulates the degra-
dation of LDL receptor (LDLR), which is present in hepatocytes. As a result, circulating
LDLs are less effectively eliminated, and their levels are increased [48]. Targeting PCSK9
with monoclonal antibodies like evolocumab and alirocumab is a known method to lower
LDL concentrations [49]. As miRNAs regulate gene expression by binding to their target
mRNAs, they could potentially downregulate the expression of PCSK9 and induce similar
effects to those observed in PCSK9 inhibitors.

Firstly, Naeli et al. demonstrated that miR-191, miR-222, and miR-224 can bind the
3′UTR region of PCSK9. In HepG2 cells, overexpression of these miRNAs reduced that
of PCSK9 [50]. Using lipid nanoparticles, the stimulation of Ldlr+/− mice with miR-224
was associated with a 15% decrease in circulating LDL [51]. Frequently, miRNAs regulate
the expression of a large number of target genes, being involved in a broad interaction
network. Importantly, this indicates that they mediate the activity of several pathways. As
a result, a single molecule can promote both beneficial and detrimental effects, depending
on the cellular context. Regarding miR-222, Bazan and colleagues suggested that this
miRNA could protect from plaque rupture. Among patients who underwent urgent
carotid endarterectomy, the expression of miR-222 in plaque shoulder was significantly
reduced [52]. However, in a different study, miR-222-5p could stimulate vascular smooth
muscle cell (VSMC) dysfunction [53]. miR-483-5p is another molecule that targets PCSK9.
Its overexpression in HepG2 cells stimulated the uptake of LDL molecules. In humans, the
expression of miR-483-5p was negatively correlated with cholesterol serum levels [54].

By contrast to the molecules described above, other miRNAs can enhance the expres-
sion of PCSK9, thus stimulating LDLR degradation and the progression of atherosclerosis.
miR-27a was found to target molecules involved in LDLR endocytosis, including LDLR-
related protein 6 (LRP6) and LDLR-adapter protein 1 (LDLRAP1). Moreover, the molecule
increased the expression of PCSK9 [55]. Intriguingly, the use of PCSK9 immunogenic pep-
tide in mice was associated with a significant decrease in miR-27a expression [56]. LDLR
plays a very important role in the metabolism of LDL from plasma. It has been shown that
genetic dysfunctions of LDLR are associated with increased cardiovascular risk through an
increase in plasma LDL concentration [57]. Recently, a new LDLR regulator, the (pro)renin
receptor [(P)RR], was identified. Interestingly, Wang et al. proved that miR-148a strongly
affects (P)RR, reducing its expression, which also reduces the concentration of LDLR in
Huh7 and HepG2 cells and ultimately leads to a reduction in cellular LDL uptake [58].
Additionally, there are studies that indicate that obese mice have higher concentrations of
miR-148a in the adipose tissue and liver [59,60]. Furthermore, miR-152 is also associated
with the regulation of (P)RR expression [61]. Another interesting finding is that LDLR
abundance can be modulated by miR-33a-3p. Additionally, the expression of ANGPTL3, an
LPL inhibitor, is directly inhibited by miR-33a-3p, contributing to the reduction in LDL in
plasma [62,63]. Factors that regulate LDLR may also be miR-224 or miR-520d. Overexpres-
sion of these miRs leads to a decrease in LDLR protein and reduced LDL binding [51]. Other
microRNAs involved in LDLR expression include miR-128-1, miR-185, and miR-27a/b [64].
Figure 2 summarizes the involvement of miRNAs in PCSK9 and LDL metabolism.

Another molecule highly implicated in lipid metabolism is lipoprotein lipase (LPL).
It is considered to induce both pro- and anti-atherogenic effects, depending on the pres-
ence and cellular origin. LPL present in the arterial wall takes part in the hydrolysis
of triglycerides (TGs) in lipoproteins. Consequently, the production of free fatty acids
(FFAs), together with cholesterol-rich remnant lipoproteins, contributes to atherosclerosis
progression [65]. Similarly to PCSK9, miRNAs also regulate the expression of LPL. Firstly,
administration of miR-590 in apoE−/− mice was associated with reduced atherosclerotic
plaque lesions. Additionally, in these animal models, miR-590 reduced plasma cholesterol
and decreased lipid accumulation in peritoneal macrophages. Mechanistically, the miRNA
molecule downregulated macrophage LPL expression [66]. By contrast, several molecules
stimulate the expression of LPL, thus enhancing lipid accumulation, pro-inflammatory con-
ditions, and the development of atherosclerosis. Stimulation of LPL activity seems to be an
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indirect mechanism induced by miRNAs. One of the molecules linking miRNAs and LPL is
angiopoietin-like 4 (ANGPTL4). Decreased plasma levels of ANGPTL4 in patients suffering
from angina and undergoing coronary angiography were associated with more advanced
coronary stenosis [67]. Injection of ANGPTL4 into ApoE−/− mice fed with a high-fat diet
suppressed the progression of atherosclerosis [68]. Importantly, the protein suppresses the
activity of the LPL through the unfolding of its hydrolase domain [69]. Lan and collabora-
tors found that ANGPTL4 was targeted and downregulated by miR-134. Simultaneously,
it was associated with enhanced activity of LPL. Therefore, miR-134 potentially enhances
plaque formation and atherosclerosis-associated inflammation through ANGPTL4 [70].
In another study, performed by Cheng and colleagues, the authors demonstrated that
miR-182 has pro-atherogenic potential and regulates the activity of LPL. Mechanistically,
it targets histone deacetylase 9 (HDAC9), a negative regulator of LPL. Similarly to the
miR-134/ANGPTL4 axis, the miR-182/HDAC9 pathway enhanced plaque formation in
ApoE−/− mice [71]. Interaction between miR-467b and hepatic LPL was observed in the
context of hepatic steatosis. Downregulation of miR-467b was observed in hepatic tissues
of mice fed with high-fat diets, and was associated with insulin resistance [72]. Hepatic
steatosis is a metabolic condition indirectly associated with atherosclerosis [73,74].
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The development of atherosclerosis is highly correlated with the processes of lipid
accumulation. Scavenger receptors, such as CD36, allow for the uptake of lipoproteins.
Specifically, CD36 present on macrophages can bind to oxidized LDL, which subsequently
is internalized and contributes to foam cell formation [75]. Studies demonstrated that
miRNA molecules regulate the expression of scavenger receptors, thus influencing lipid
accumulation. In a large analysis performed by Rachmawati and collaborators, the authors
analyzed miRNA databases, and identified tens and hundreds of molecules targeting
CD36 [76]. The precise involvement of miRNA in CD36-mediated foam cell formation
was examined in other studies as well. In THP-1-derived macrophages, miR-758-5p was
found to target the 3′UTR region of CD36 and mediate ox-LDL uptake [77]. Like previously
discussed pathways, miRNAs act indirectly and mediate the expression of CD36 as well.
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Peng et al. showed that miR-133a reduces macrophage lipid uptake by targeting testicular
orphan nuclear receptor 4 (TR4), a nuclear receptor that enhances the activity of CD36-
dependent foam cell formation [78].

Another method that is associated with cholesterol transport and atherosclerosis is
cholesterol efflux. This process is mediated by the ATP-binding cassette (ABC) transporters
such as ABCA1. These transporters enhance the secretion of HDL, and the cholesterol
efflux capacity has been associated with lower cardiovascular risk [79,80]. Modulating
the expression of ABC transporters is another mechanism that could be targeted in the
treatment of atherosclerosis. The expression of ABCA1 is also mediated by miRNAs.
miR-320b was found to target ABCA1/G1 transported in macrophages. Accordingly, its
overexpression suppressed cholesterol efflux. Intriguingly, the expression of miR-320b was
upregulated in peripheral blood mononuclear cells (PBMCs) obtained from patients with
CAD [81]. Additionally, 16-week treatment with anti-miR-144 of Ldlr−/− mice fed with a
Western diet increased the protein expression of ABCA1. Simultaneously, the upregulation
of ABCA1 was accompanied by a 20% increase in HDL cholesterol. This treatment was
associated with reduced plaque formation, as compared to animals in different cohorts [82].
Other miRNAs regulating the expression of ABCA1 include miR-30e, miR-92a [83], miR-
19b [84], miR-33a [85], and miR-302a [86], among others. Figure 3 schematically presents
the involvement of miRNAs in lipid uptake and cholesterol efflux. Furthermore, Table 1
summarizes the role of miRNAs in regulating molecules associated with lipid involvement
and transportation.
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As previously mentioned, ncRNA can be encapsulated in extracellular vesicles (EVs),
such as exosomes, to mediate paracrine signaling. Over the years, researchers have shown
the important role of EVs and ncRNAs associated with EVs in the pathogenesis of various
diseases [87,88]. Accumulating studies are being published that examine the involvement
of exosomal miRNA in the pathogenesis of atherosclerosis. To begin with, the activity
of ncRNA-based cargo frequently depends on the type of secreting cells. Macrophages
represent a good example, as these cells are typically classified as the pro-inflammatory M1
and anti-inflammatory M2 phenotypes. In atherosclerosis, the M1 macrophage variants
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are considered enhancers of the disease. Therefore, treatment strategies that can suppress
M1 polarization and enhance that of M2 are considered beneficial in atherosclerosis [89,90].
As the biological effects of exosomes carrying miRNAs seem to resemble the source cells,
vesicles secreted from the M1 macrophages are found to drive the progression of this
arterial condition. Li and colleagues showed that EVs obtained from M1 macrophages
could promote the progression of atherosclerosis by increasing lipid and inflammation
markers in mice. These findings were suggested to occur, at least partly, through the
activity of miR-185-3p, which targets Smad7 [91]. As encapsulated miRNAs take part in
intercellular signaling, macrophages accumulate EVs and are affected by these molecules
as well. Under pro-inflammatory conditions, endothelial cells secrete exosomes that affect
macrophage behavior. Specifically, these structures enhance M1 macrophage polarization
and lipid accumulation. miRNA present in the EVs could mediate these observations.
One hundred four differentially expressed miRNAs have been observed when comparing
endothelial cell exosomes derived under normal and pro-inflammatory conditions [92].

Table 1. A summary of the roles of selected microRNAs in mediating the progression of atherosclerosis.

miRNA Molecule Study Design Target Associated with
Atherosclerosis

Potential Mechanisms Associated with
Atherosclerosis Regulation References

miR-191 In vitro PCSK9 Targeting PCSK9 in hepatocytes can improve the
expression of LDLR. [50]

miR-222 In vitro PCSK9 Targeting PCSK9 in hepatocytes can improve the
expression of LDLR. [50]

miR-224 In vitro
In vivo PCSK9

Targeting PCSK9 in hepatocytes can improve the
expression of LDLR.

Application of miR-224 to Ldlr+/− mice was
associated with a 15% decrease in

circulating LDL.

[50,51]

miR-483-5p In vitro PCSK9 Overexpression of miR-483-5p enhanced
LDL uptake. [54]

miR-27a In vivo LRP6, LDLRAP1
miR-27a disrupts LDLR endocytosis by targeting
molecules involved in this process. Moreover, it

increases the expression of PCSK9.
[55]

miR-590 In vivo LPL
Through downregulating macrophage LPL

expression, miR-590 could reduce atherosclerotic
plaque formation.

[66]

miR-134 In vivo AGPTL4 By targeting ANGPTL4, miR-134 stimulates the
activity of LPL and enhances plaque progression. [70]

miR-182 In vivo HDAC9
miR-182 enhances the activity of LPL and

atherosclerosis progression by targeting HDAC9,
which negatively regulates LPL.

[71]

miR-467b In vivo LPL

miR-467b was found to target LPL in hepatocytes,
and downregulation of this molecule was

associated with hepatic steatosis and
insulin resistance.

[72]

miR-758-5p In vitro CD36 miR-758-5p was found to mediate cholesterol
accumulation by THP-1-derived macrophages. [77]

miR-133a In vitro TR4
By targeting nuclear receptor TR4, miR-133a
indirectly suppresses lipid uptake mediated

by CD36.
[78]
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Table 1. Cont.

miRNA Molecule Study Design Target Associated with
Atherosclerosis

Potential Mechanisms Associated with
Atherosclerosis Regulation References

miR-320b In vitro
In vivo ABCA1/G1 miR-320b targeted ABC transporters and reduced

cholesterol efflux from macrophages. [81,82]

miR-144 In vivo ABCA1

Treatment of Ldlr−/− mice fed with a Western
diet with miR-144 inhibitor increased ABCA1

expression and HDL cholesterol levels and
decreased atherosclerotic plaque lesions.

[82]

By contrast, exosomes derived from naïve or anti-inflammatory macrophages induce
different effects. EVs obtained from naïve bone marrow-derived macrophages significantly
reduce the extent of plaque necrotic core in ApoE−/− mice. Moreover, treatment with
exosomes obtained from macrophages stimulated with IL-4, which enhances the M2 phe-
notype, reduces areas infiltrated by macrophages and simultaneously increases the M2
markers in residual cells. Treatment with IL-4 alters miRNA cargo of exosomes and in-
creases the presence of anti-inflammatory molecules [93]. Interestingly, miRNAs associated
with EVs take part in the pathogenesis of atherosclerosis in other models as well. Recently,
endothelial cell-derived exosomal miR-126 and miR-212 were suggested to be involved in
the activation of monocytes in the irradiation model of atherosclerosis [94]. Thus, these
lines of evidence demonstrate a crucial role of exosome-mediated communication between
endothelial cells and macrophages. However, EV-associated miRNAs secreted by other
cells are also involved in the pathophysiology of atherosclerosis. For instance, steatotic
hepatocytes secrete EVs containing miR-1, which stimulate inflammatory responses in
endothelial cells and are involved in the pathogenesis of atherosclerosis [95]. ncRNAs
could be used as diagnostic molecules. A recently published study by Blaser and colleagues
further confirms this hypothesis. Using disease-specific proteomics, the authors analyzed
carotid endarterectomy specimens and demonstrated 80 differently enriched extracellular
vesicle-associated miRNAs between artery atherosclerosis and valve stenosis [96].

2.2. Long Non-Coding RNA

Similarly to mRNA, lncRNA is transcribed by polymerase II, but its expression is lower
in tissues [97]. It is composed of over 200 nucleotides and is linear, which distinguishes it
from other ncRNAs [98]. The lncRNA class includes overlapping sense lncRNAs, antisense
RNAs, and intergenic noncoding RNAs (lincRNAs) [99]. Unusual lncRNA structures
influence gene expression through various mechanisms, including regulating transcription
and translation, acting as sponges for miRNAs, controlling interactions between proteins,
regulating signaling pathways, and modulating chromatin through histone modification,
among others [100]. Recent reports draw attention to the association of lncRNAs in the
development of atherosclerosis. As previously mentioned, atherosclerosis occurs as a
result of the disruption of many biological processes, such as inflammation, apoptosis,
angiogenesis, adipogenesis, and arterial endothelial function [101].

An lncRNA called ANRIL is located on chromosome 9p21 and is an antisense gene
for cyclin-dependent kinase inhibitor 2B (CDKN2B). Recent studies suggested that AN-
RIL could be a component of the TNF-α/NF-κB pathway, which is strongly associated
with inflammatory responses of cells implicated in atherosclerosis progression. An in-
crease in ANRIL expression leads to endothelial dysfunction through the TNF-α-NF-
κB-ANRIL/YY1-IL6/8 axis. TNF-α stimulates the activity of NF-κB, which upregulates
ANRIL. Importantly, ANRIL interacts with YY-1, which is an important transcription factor
involved in inflammatory processes by increasing the expression of interleukins and COX2
genes [102]. Additionally, ANRIL increases the expression of several molecules involved
in the metabolism of glycolipids, potentially leading to the development of atherosclero-
sis [103]. Moreover, it has been suggested that the ANRIL rs4977574 gene polymorphism
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may influence the occurrence of atherosclerosis. The rs4977574 intron locus genotype is
involved in the regulation of the production of circular and linear ANRIL. Circular ANRIL
promotes the activation of the p53 protein, which leads to an increase in apoptosis, while
linear ANRIL inhibits the apoptosis process by repressing CDKN2A and CDKN2B, which
are tumor suppressors. It has been proven that the rs4977574-GG genotype increases the
risk of atherosclerosis, which may be related to the predominance of linear ANRIL [104,105].
ANRIL inhibits let-7b, which leads to increased human umbilical vein endothelial cell (HU-
VEC) proliferation and angiogenesis. Mechanistically, ANRIL regulates the let-7b/TGF-βR1
signaling pathway. Reducing the expression of TGF-βR1 may lead to the formation of
neointima, which mediates the formation of atherosclerotic plaques [106].

lncRNA growth arrest-specific 5 (GAS5) is another molecule that is suggested to be
involved in the progression of atherosclerosis [107]. For instance, it stimulates lipid accumu-
lation in macrophages, thus contributing to the formation of foam cells [108]. lncRNA GAS5
was found to be implicated in several mechanisms associated with atherosclerosis. Li et al.
described how GAS5 can induce atherosclerosis through the GAS5/miR-194-3p/TXNIP
pathway. The authors showed that the expression of GAS5 was elevated in rats with
atherosclerosis. The molecule regulated the expression of TXNIP by acting as a sponge
for miR-194-3p [109]. Interestingly, it has been proven that ANXA2, a calcium-regulated
protein that binds phospholipids and belongs to the annexin X family, is a target for GAS5
in macrophages. ANXA2 deficiency in mice inhibited the development of atherosclerosis
and endothelial cell proliferation. It regulates several mechanisms, including the transduc-
tion of inflammatory cell signaling, thus mediating the proliferation of macrophages into
plaques. Moreover, ANXA2 increases the release of TNF-α, IL-1β, and IL-6 by binding
to the TLR4 receptor located on macrophages [110–112]. In another study, Meng et al.
described that GAS5 binds to the enhancer of zeste homolog 2 (EZH2), which is a his-
tone methyltransferase. Mechanistically, GAS5 enhanced EZH2 activity, which negatively
regulated ABCA1 expression. Consequently, the axis enhanced intracellular lipid accu-
mulation [108]. Shen et al. pointed out that GAS5 can act as a sponge of miR-135a, which
affects the molecule Janus kinase 2 and toll-like receptor 4 (TLR4). Consequently, a lower
expression of miR-135a indicates a higher risk of plaque formation by disturbing lipid
metabolism in macrophages [113]. Additionally, GAS5 has been shown to inhibit the ex-
pression of miR-21, which enhanced that of PDCD4 proteins. PDCD4 proteins promote the
development of atherosclerosis by increasing the apoptosis of HUVEC. Increased PDCD4
expression was also found in macrophage-derived foam cells [114]. Therefore, due to the
potential involvement in the pathogenesis of atherosclerosis, GAS5 could be a promising
target in the diagnosis and therapy of this arterial condition (Figure 4).

As is widely known, large amounts of amino acids in the diet increase the risk of
atherosclerotic plaque formation. Qu et al. proved that increased amino acid supply in mice
activates mTORC1 signaling in macrophages. This leads to the disruption of processes such
as autophagy and lipid biosynthesis. lncRNA Gpr137b-ps disrupts the interactions between
G3BP and HSC70, the presence of which has been proven in macrophages. Disruption
of the interaction of G3BP with HSC70 leads to the activation of mTORC1 signaling,
which disturbs macrophage autophagy. Disturbed autophagy leads to the formation of
necrotic cores and contributes to the formation of atherosclerotic plaques by modulating
the inflammatory response. Interestingly, increased autophagy leads to the destruction of
atherosclerotic plaques by breaking down lipids in foam cells [115].

INKILN, another lncRNA, has potential pro-inflammatory effects in VSMCs. Mech-
anistically, INKILN stabilizes the MKL1 protein, which affects the p65/NF-κB pathway
and leads to the activation of VSMC inflammation. Consequently, this leads to arterial
disease, which may destabilize the atherosclerotic plaque [116]. Interestingly, the lncRNA
PELATON may influence the pathogenesis of atherosclerosis by increasing the expression
of CD36 on macrophage cells, thereby increasing the uptake of dead cells and lipoproteins
and the production of reactive oxygen species [117].
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2.3. Circular RNA

Unlike lncRNA, the structure of circRNA is composed of a closed-loop strand. Thus,
it is an ncRNA with much greater stability due to the lack of a polyadenylated tail and
5′-3′ polarity. The much greater resistance of circRNAs to ribonucleases than lncRNAs
may indicate the potential function of these ncRNAs as disease biomarkers. circRNAs
perform various functions that influence gene expression. They act as sponges for miRNAs,
reducing the level of miRNA-mRNA interactions, and can also act as sponges and scaffolds
for proteins, e.g., the HuR protein [118].

Triska et al. conducted a review of 140 studies from 2016–2022 and showed that as
many as 76.8% of 95 isolated circRNAs are overregulated in patients with atherosclerosis
and 79% of them have pro-atherogenic potential. Interestingly, circHIPK3 has been found
to be both downregulated and upregulated in patients with atherosclerosis. Intriguingly,
only 10 of the 140 studies did not show that circRNA acted as a sponge for miRNA [119].
circRNA-0044073 has become a potential ncRNA that may be associated with the occurrence
of atherosclerosis. It broadly affects the expression and activity of miR-107, JAK1, p-STAT3,
c-myc, and Bcl-2. Mechanistically, circRNA-0044073 can act as a sponge of miR-107, which
affects the molecule JAK1 and p-STAT3. Consistently, higher JAK1 and p-STAT3 expression
is associated with an increase in IL-8 in atherosclerotic cells and with greater vascular cell
adhesion. Additionally, an increase in c-myc and Bcl-2 contributes to the deregulation of
apoptosis in atherosclerotic plaques [120]. circ_102541 regulates the expression miR-296-5p,
which targets PLK1. In atherosclerosis, an increase in circ_102541 expression was demon-
strated, which reduced that of miR-296-5p, stimulating PLK1. Interestingly, transfection
of sh-circRNA_102541 caused the opposite effect, reducing PLK1 in HUVEC cells and
increasing the efficiency of apoptosis [121]. Increased PLK1 expression is associated with
enhanced proliferation of VSMCs in the inner membrane of blood vessels [122]. Due to
its proliferation-inducing effects, the activity of PLK1 is associated with tumorigenesis
as well. Luo et al. showed that treatment of HUVECs with ox-LDL increased levels of
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circRNA-PTPRA. Conversely, the knockdown of this circRNA abolished the pathological
effects of modified lipoprotein, such as an increase in inflammation or a decrease in cell
viability, by regulating miR-671-5p [123].

Atherosclerosis may co-occur with asthma. IgE and mast cells cooperate in this pro-
cess. In a recent report by Yang et al., the authors concluded that through stimulation of
exosomal circRNA CDR1as secreted by mast cells, IgE influences endothelial dysfunction
by dysregulating adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and vas-
cular cell adhesion molecule-1 (VCAM-1) [124,125]. These findings indicate that although
interleukins may be helpful in the treatment of severe asthma, they do not necessarily have
a beneficial effect on the comorbid atherosclerosis in these patients. This sheds new light
on the pathogenesis and potential treatment of both diseases [125].

As we mentioned earlier, linear ANRIL is associated with the development of atheroscle-
rosis. However, what is interesting is that circRNAs can be created as a result of the so-called
back-splicing of linear transcripts. This indicates both differences and similarities in the
action of these two ncRNAs. However, the theory that lncRNAs influence the pathogenesis
of atherosclerosis and circRNAs inhibit this process is confirmed. Ribosome biogenesis
in VSMCs is regulated by circRNAs. circRNA ANRIL binds to the lysine-rich domain of
pescadillo zebrafish homologue 1 (PES1), thereby reducing rRNA maturation, leading to
p53 activation and apoptosis, and protecting against atherosclerosis [126]. In summary,
both lncRNAs and circRNAs have promising diagnostic and therapeutic potential; however,
further research on these molecules is needed (Table 2).

Table 2. A summary of lncRNAs and circRNAs and their mechanisms implicated in the pathogenesis
of atherosclerosis.

lncRNA Study
Design Association with Atherosclerosis Pathophysiology Mechanism of Action/Pathway References

GAS5 In vitro
In vivo

- endothelial damage
- promoting inflammation
- regulation of intracellular lipid accumulation
- disturbance of lipid metabolism in macrophages
- increasing the apoptosis of HUVEC

- GAS5/miR-194-3p/TXNIP
- GAS5-ANXA2
- GAS5-EZH2-ABCA1
- GAS5/miR-135a
- GAS5/miR-21/PDCD4

[108–
110,113,114]

ANRIL In vitro
- endothelial damage
- disturbance of glycolipid metabolism
- neointimal formation

- TNF-α-NF-κB-ANRIL/YY1-IL6/8
- VAMP3, ET-1, ADIPOR1,

C11ORF10
- let-7b/TGF-βR1

[102,103,106]

Gpr137b-ps In vivo - disturbance of macrophage autophagy - G3BP/HSC70/mTORC1 [115]

INKILN In vitro - pro-inflammatory effects in VSMC - MKL1/p65/NF-κB [116]

circRNA Study
Design Target Mechanism Associated with

Atherosclerosis References

circRNA-
0044073 In vitro miR-107 Decrease levels of miR-107 via sponging

and activation of JAK/STAT pathway [120]

circ_102541 In vitro miR-296-5p Regulates miR-296-5p expression, which
targets PLK1 [120]

circRNA-
PTPRA In vitro miR-671-5p

Decrease circRNA-PTPRA expression;
decrease cell viability and inflammation
via miR-671-5p regulation

[123]

3. Potential Clinical Implications

In this paper, we have discussed the involvement of ncRNA in the pathogenesis of
atherosclerosis. Current evidence suggests that the altered expression of these molecules is
involved in the pathophysiology of this arterial condition. Therefore, the development of
agents targeting ncRNA is expected to induce beneficial changes in affected cells.

Importantly, several RNA-based drugs have been developed for the treatment of
dyslipidemia and other conditions. Firstly, apart from miRNA, small interfering RNAs
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(siRNAs) are another group of molecules involved in the mechanisms known as RNA inter-
ference (RNAi). siRNA molecules depend on a 100% complementarity, and siRNA-based
therapeutics such as patisiran and givosiran represent a breakthrough in drug develop-
ment [127]. Inclisiran is an siRNA-based therapeutic targeting PCSK9 approved in the EU
for the treatment of primary hypercholesterolemia. In hepatocytes, inclisiran binds to the
PCSK9 mRNA and suppresses translation [128]. The efficacy and safety of inclisiran were
evaluated in the ORION clinical trials. In a recently published analysis of the ORION-11
trial, which evaluated the use of siRNA-based drugs in patients without prior cardiovas-
cular events, inclisiran significantly reduced LDL-C levels. Regarding the safety analysis,
more patients in the study group experienced adverse events (AEs; 92.9% vs. 83.8%) and
serious AEs (20.4% vs. 12.4%) [129]. Furthermore, a pooled analysis of ORION-10 and
ORION-11 trials also proved the efficacy of inclisiran in reducing atherogenic lipoproteins
in patients after myocardial infarction [130]. In in vivo experiments, the drug was directly
demonstrated to reduce atherosclerotic plaque formation [131]. Intriguingly, inclisiran was
found to be superior in combination with statins in suppressing LDL-C concentrations, as
compared to the cohort receiving the usual care [132]. Olpasiran is another RNA therapeutic
examined in the context of atherosclerosis. Its mechanism of action involves the inhibition
of the expression of the apolipoprotein (a) gene, which in turn disrupts the formation of
lipoprotein(a) in the liver. According to the recently published results of the OCEAN[a]-
DOSE clinical trial by O’Donoghue et al., researchers analyzed the use of olpasiran in
patients with a history of atherosclerotic CVD. The authors observed a significant decrease
in lipoprotein(a) concentrations in the study group. Furthermore, reduced levels of LDL-C
and apolipoprotein-B were noted. Importantly, the AE rates were found to be similar
between the cohorts [133]. Lepodisiran (LY3819469) is another siRNA-based therapeutic
that reduces the levels of lipoprotein(a). A clinical trial that included patients with elevated
levels of lipoprotein(a) and without cardiovascular events revealed that treatment with
lepodisiran dose-dependently substantially reduced lipoprotein(a) concentrations. As it
was a phase 1 trial, whose primary outcome was the analysis of safety, researchers observed
that the treatment was well tolerated [134]. Similar results were observed in other phase
1 studies examining siRNA therapeutics, SLN360 and muvalaplin [135,136]. Thus, current
evidence shows promising results regarding the use of siRNA-based therapeutics. More
phase 2 and 3 clinical trials are greatly needed to further analyze the efficacy and safety
of these therapies on larger cohorts of patients. Perhaps, these agents could be used in
primary or secondary cardiovascular prevention. Interestingly, miRNA-based therapeutics
are also being designed and examined. For instance, the use of an miR-34a mimic was eval-
uated in cancer settings [137], while miravirsen, an oligonucleotide targeting miR-122, was
evaluated in hepatitis C virus infection [138]. If this new generation of RNA-based drugs
will prove their efficacy and safety, a new era of individualized treatment might emerge.

4. Conclusions and Future Perspectives

To conclude, ncRNAs are involved in a broad number of interactions with molecules
regulating lipid metabolism and transportation, inflammatory mediators, as well as other
members of the other ncRNA classes. Current evidence suggests that members of the
ncRNA family contribute to lipid metabolism by regulating the expression of PCSK9, LPL,
scavenger receptors, and ABCA1 transporters. Consequently, the abnormal expression of
ncRNAs is associated with lipid levels and foam cell formation. Moreover, due to their
immunoregulatory properties, they also mediate inflammatory responses in cells involved
in the pathogenesis of atherosclerosis.

Over the years, accumulating evidence has been collected on the involvement of
ncRNA in the pathophysiology of atherosclerosis. However, the precise responses in-
duced by these molecules remain unknown. Future studies should try to identify the
complex network of interactions, as ncRNA frequently affects various signaling pathways.
Published studies demonstrated that ncRNAs are dysregulated in animal models and
patients with atherosclerosis. Due to the subclinical character of early processes of plaque
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formation, the use of ncRNAs as biomarkers of early atherosclerosis might eventually
prevent major cardiovascular events. Furthermore, studies should examine if monitoring
RNA expression could help in identifying treatment responses to drugs used in patients
with dyslipidemia. Moreover, understanding the ncRNA-dependent regulatory mecha-
nisms involving lipid accumulation might result in the implementation of novel treatment
methods in the future. Several siRNA-based therapeutics are being currently examined
in patients with dyslipidemia. Future clinical trials should further investigate their effi-
cacy and safety in combination with other lipid-lowering agents. Perhaps, more miRNA-,
lncRNA-, or circRNA-based therapeutics might be developed that will show benefits in
patients with atherosclerosis.
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