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Abstract: Patients with diabetes mellitus (DM) have chronically increased blood glucose and multi-
ple physiologic alterations that place them at elevated risk for vascular disease. Traditionally, this
vascular risk has mainly referred to chronic atherosclerosis and embolic arterial disease. Retro-
spective studies have suggested an increased risk of a pulmonary embolism (PE) and deep vein
thrombosis (DVT), collectively termed venous thromboembolism (VTE), in patients with DM, but
this association has been difficult to demonstrate with comorbidities such as obesity in meta-analysis.
Clinical studies have demonstrated worse outcomes for patients with DM who suffer from VTE.
In vitro studies show multiple physiologic abnormalities with chronic inflammation, endothelial
dysfunction, dysfunction in the coagulation cascade, as well as other changes that drive a vicious
cycle of hypercoagulability. Aggressive medical management of DM can improve vascular outcomes,
and some anti-hyperglycemic therapies may modify VTE risk as well. Anticoagulation strategies are
similar for patients with DM, but with some added considerations, such as high rates of comorbid
renal dysfunction. More research is needed to definitively categorize DM as a risk factor for VTE and
elucidate specific therapeutic strategies.

Keywords: hyperglycemia; diabetes mellitus; venous thromboembolism; pulmonary embolism;
hypercoagulability

1. Introduction

Pulmonary embolism (PE) and deep vein thrombosis (DVT), collectively termed ve-
nous thromboembolism (VTE), are two of the most important causes of morbidity in the
world, affecting over ten million people [1]. PE comprises clots that typically form in the
large veins of the lower extremity that travel to the pulmonary vasculature. PE has a 90-day
mortality of up to 20%, although this is at least partially attributed to comorbidities [2]. Ma-
jor causes of VTE include cancer, surgery, and other pathologies associated with Virchow’s
triad of endothelial dysfunction/injury, stasis, and hypercoagulability. While diabetes
mellitus (DM) and hyperglycemia are known to cause arterial thrombosis and vascular
disease, evidence suggests that they may play a role in an increased risk of VTE as an
additional source of vascular disease. The management and research of DM has typically
focused on the prevention of these microvascular and macrovascular arterial complications,
as the potentially increased risk of VTE has been controversial. Hyperglycemia and insulin
resistance affect platelet count and aggregation, the modification of coagulation factors, and
thrombolysis in vitro [3]. Patients with DM have numerous comorbidities including obesity,
hypertension, and inflammatory and hormonal complications, which are also risk factors
for VTE and thus serve as cofounders when examining the role of DM as an independent
risk factor. DM and acute hyperglycemia may also lead to poorer outcomes in those who
develop VTE. In this review, we will explore the effect of acute and chronic hyperglycemia
on the development of VTE, clinical outcomes, and potential therapies.
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2. Clinical Links between Hyperglycemia and VTE
2.1. DM as an Indepdent Risk Factor

There have been links for multiple years between hyperglycemia and an increased
risk for developing VTE, with conflicting data from observational studies [4,5]. Acute
hyperglycemia in hospitalization and chronic hyperglycemia associated with DM are not
always clearly distinguished, although it is plausible these have separate effects on risk
and outcomes. Diabetes has been known to lead to significant atherosclerotic disease,
and there has been speculation of a link between this and VTE [6]. Early retrospective
studies and meta-analyses showed that DM may be a strong risk factor for VTE, but these
did not control for known confounders of both diseases such as obesity [7]. DM is also a
heterogeneous disease with patients with type 2 DM (T2DM) developing insulin resistance
over years with different comorbidities, compared with type 1 DM (T1DM), which presents
earlier in life in the setting of immune-mediated pancreatic beta cell destruction. Outcomes
from VTE and PE may be affected by DM and acute hyperglycemia that we will also
explore further.

2.2. T2DM and VTE Risk

T2DM has been proposed as a significant risk factor for the development of VTE but is
difficult to demonstrate conclusively due to multiple cofounders including obesity and a
sedentary lifestyle, among other factors. A recent retrospective study involving a British
cohort of patients with T2DM revealed a slight increase in risk of VTE by hemoglobin
A1c level > 7.0%, but only in women with a A1c in the last 90 days with an OR 1.55
(95% CI: 1.08–2.24). There was no linear correlation between risk and higher A1c levels,
and no overall correlation in the full population. The study did take in to account such
confounders as BMI [8]. Another retrospective case–control from an Austrian cohort found
that individuals with T2DM had 1.4 times higher risk of developing VTE compared to those
without the condition OR 1.4 (95% CI: 1.36–1.43). There was a higher risk seen in females
compared to males [9]. The latter was a hospital-based study and was able to correct for
some risk factors such as obesity but not for contraception use.

Although there have been several retrospective studies suggesting links between
chronic hypoglycemia, major meta-analyses have not been positive. Several were per-
formed from 2016 through 2023 with different inclusion criteria and failed to find a sig-
nificant link between T2DM and VTE [10–12]. One meta-analysis that did find a positive
examined patients with gestational DM and found a positive association RR 1.28 (95%
CI: 1.13–1.46) [13]. Gestational DM is a disease that affects a unique patient population.
Pregnancy itself is a prothrombotic condition, which may be modified by hyperglycemia.
Overall, it appears, however, that type 2 DM is unlikely to be a significant independent risk
factor for VTE. The likely main confounder addressed by meta-analyses is body mass index
(BMI), which correlates closely with T2DM [14]. An elevated BMI is a classic cardiovascular
risk factor correlating strongly with VTE and has multiple metabolic effects separate from
T2DM, including circulating lipid levels, which could act as confounders [15,16].

2.3. T1DM and VTE Risk

Patients with T1DM lack insulin production, have fewer options for controlling insulin,
and experience poorer cardiovascular outcomes than those with T2DM. T1DM patients
are typically less obese and have different comorbidities. Autoimmunity underlies this
condition, so patients may suffer from chronic inflammation separate from that seen in
T2DM and have a different risk profile for VTE [17]. Few studies specifically examine
T1DM or separate type 1 from type 2 when studying DM. One British study analyzed the
conditions separately and found that only T2DM was associated with an increased risk of
VTE with an HR of 1.46 (95% CI: 1.11–1.92), while T1DM was not with an HR of 1.06 (95%
CI: 0.98–1.14) [18]. One large retrospective study looking at VTE specifically in patients
with T1DM, after adjusting for comorbidities, established a strong association between
T1DM and VTE with an adjustment HR of 5.33 (95% CI: 3.57–7.96) [19]. More studies are
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needed to assess this risk and delineate potential differences in thrombotic risk between
T1DM and T2DM.

2.4. Hyperglycemia and VTE Outcomes

While an unclear risk factor for VTE formation, DM and hyperglycemia may also
influence outcomes. In a single-center study, multivariate analysis revealed that for patients
undergoing knee surgery, a preadmission blood glucose (BG) level of at least 200 mg/dL
independently increased the risk of PE by 3.19 times (p = 0.015) compared to those with a
BG level of less than 110 mg/dL [20]. In patients with acute PE, elevated admission BG
is a common finding and has been independently associated with increased short-term
mortality [21]. This observation underscores the critical impact of glycemic control on the
prognosis of acute PE [21]. An observational study of around 500 patients demonstrated
that even in patients without a prior diagnosis of DM, markedly elevated arterial BG levels
upon hospitalization for VTE correlate with higher mortality rates. The paper defined an
arterial BG of 111–140 as mildly elevated, 141–180 mg/dL as moderately elevated, and
>180 mg/dL as markedly elevated, and found hazard ratios of 1, 6, 2.3, and 4.7 for increased
mortality, respectively, with increasing BG [22]. Even more transient stress hyperglycemia
in a small study was associated with a larger size of PE, more proximal location, and higher
severity index per PESI (Pulmonary Embolism Severity Index), a commonly used risk
calculator to determine expected mortality and long-term morbidity based on a variety of
PE risk factors [23].

DM has also been linked to increased hospitalization and mortality in patients who
develop PE. [24] A large study of almost 1.2 million PE patients in Germany found in-
creased in-hospital mortality, even when adjusted for age and comorbidities (OR 1.21, 95%
CI: 1.20–1.23). In this cohort, there was increased bleeding, the use of thrombolytics, and
shock in patients with DM [24]. Another large study based on a Spanish national database
suggested an increased diagnosis of PE for those with DM and in-hospital mortality for men
with OR 1.22 (95% CI: 1.12–1.32) and women with a OR of 1.24 (95% CI: 1.15–1.33) [25]. Diez
and associates from the same group later conducted a multinational matched cohort study
based on a VTE registry and found that patients with DM undergoing anticoagulation
therapy exhibited higher mortality rates compared to their non-diabetic counterparts with
a HR of 1.45 (95% CI: 1.25–1.67). This was at least in part due to other arterial ischemic
events such as stroke, with DM not identified as an independent risk factor for mortality
with PE [26]. This increased mortality in diabetic patients suggests that the presence of
DM exacerbates the severity and the complications associated with PE, although these are,
again, potentially impacted by comorbidities. The interplay between hyperglycemia, a
pro-inflammatory state, and the hypercoagulable conditions in DM likely contribute to
poorer clinical outcomes overall. Therefore, managing DM with tighter glycemic control
could be vital in reducing mortality and improving overall prognosis in PE patients.

Post-thrombotic disease could also be affected by DM. Using a large data set of patients
with acute PE, several risk factors were identified, and a claims-based risk model has been
developed to predict the risk of chronic thromboembolic pulmonary hypertension (CTEPH)
following a PE event. DM was one factor identified as causing an increased risk of CTEPH
following PE (OR 1.07, 95% CI: 1.02–1.11) [27]. This suggests that PE patients with DM
need to be followed closely after the event to make sure that they do not develop CTEPH,
which can be a lethal condition. Interestingly, in a smaller case–control study comparing
CTEPH patients with those with idiopathic pulmonary hypertension (IPAH), DM was more
strongly associated with IPAH [28]. These results do not imply however that DM does
not increase the risk of CTEPH in the general population, just that it appeared to be more
strongly associated with IPAH in the cohort. Clearly more research is needed to separate
confounders, but current evidence suggests that DM and hyperglycemia affect and possibly
lead to worse outcomes with VTE in terms of mortality and long-term complications
(Table 1).



Diagnostics 2024, 14, 1994 4 of 12

Table 1. Summary of major studies examining the association of DM and hyperglycemia with risk of
developing VTE and risk of adverse outcome.

Retrospective Studies Study Type Country; Year(s) Number of Patients Results

Peng et al., 2020 [19] Cohort Taiwan; 2003–2011 24,835 Positive association between T1DM
and VTE: HR 5.33 (95% CI 3.57–5.87)

Charlier et al., 2022 [8] Case–
Control

Switzerland, USA;
1995–2019

2653 VTE cases,
10,612 controls

No association in men between VTE
and Hemoglobin bA1c

Female T2DM patients with HbA1c
levels > 8% slight increased risk OR

1.29 (95% CI 1.02–1.63)

Deischinger et al.,
2022 [9]

Case–
Control Austria; 1997–2014

180,034 DM cases,
540,102 matched
non-DM controls

Positive association between DM and
VTE OR 1.4 (95% CI 1.36–1.43)

Meta-Analysis # of Studies
Included Country Number of Patients Results

Gariani et al., 2015 [11] 24 studies Multiple ~1.3 million No association between DM and VTE.
Adjusted HR 1.1 (95% CI 0.77–1.56);

Bai et al., 2015 [29] 15 studies Multiple 803 million Positive association between DM and
VTE. HR 1.35 (95% CI 1.17–1.55)

Bell et al., 2016 [10] 19 studies Multiple ~300,000 No association between DM and VTE:
RR 1.1 (95% CI 0.94–1.29)

Xie et al., 2022 [13] 15 studies Multiple ~8 million
pregnant women

Positive association between
gestational DM and VTE: RR 1.28 (95%

CI 1.13–1.46)

Ding et al., 2023 [12] 50 studies Multiple 5.8 million

No association between DM and VTE
when adjusted for BMI: OR 1.04 (95%
CI 0.94–1.15). DM patients with VTE
associated with worse mortality OR

1.58 (95% CI 1.26–1.99)

Retrospective Studies
of Outcomes of DM
Patients with VTE

Study Type Country Number of Patients Results

Schmitt et al., 2022 [24] Case–Control Germany 1.1 million
Positive association between DM and
mortality with PE: Adjusted OR 1.21

(95% CI 1.20–1.23)

Akirov et al., 2016 [22] Cohort Israel 567

Positive association between
hyperglycemia and increased

mortality with PE: HR 2.3 (95% CI
1.2–4.5)

de Miguel-Díez et al.,
2019 [26] Cohort Spain 6027

No association between DM and
mortality with PE when adjusted for

comorbidities: HR 1.26 (95% CI
0.97–1.63)

Kanwar et al., 2021 [27] Case–Control Canada 93,428
Positive association between DM and
development of CTEPH: OR 1.07 (95%

CI 1.02–1.11)

Scherz et al., 2012 [21] Case–Control USA 13,621

Positive association between elevated
admission BG and increased mortality
with PE: BG > 240 mg/dL OR 1.6 (95%

CI 1.26–2.03)
HR-Hazard Ratio, OR-Odds Ratio, RR-Relative Risk, CI-Confidence Interval.
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3. Proposed Mechanisms between Hyperglycemia and Hypercoagulability
3.1. ROS, Inflammation and Hyperglycemia

While the increased clinical risk is unclear for VTE in the setting of hyperglycemia, the
in vitro data of prothrombotic risk are stronger through a variety of mechanisms including
hyperinflammatory states, endothelial activation, the alteration of the clotting cascade,
platelet interactions, and impaired fibrinolysis. In hyperglycemic states, the interaction
between advanced glycation end products (AGEs) and their receptor, RAGE (Receptor for
AGEs), plays a critical role in the development of chronic inflammation and hypercoagula-
bility. Elevated levels of BG lead to the formation of AGEs, which are modified proteins or
lipids resulting from non-enzymatic reactions with sugars. These AGEs engage with RAGE,
triggering a cascade of intracellular events that contribute to chronic inflammation and
oxidative stress. In vitro studies have linked RAGE activation to vascular inflammation
and injury, both of which promote clot activation [30]. RAGE inhibition also led to reduced
lung damage in acute respiratory distress syndrome, and activation perhaps promotes
hypercoagulability by allowing the release of coagulation factors through this vascular
permeability [31]. The AGE–RAGE interaction not only promotes inflammation directly,
but also exacerbates the diabetic milieu by inducing the production of reactive oxygen
species (ROS). Elevated glucose levels have been reported to fuel ROS-mediated NF-κB
(nuclear factor kappa B) activation, amplifying the expression of RAGE [32]. The intricate
interplay between AGEs and RAGE contributes to a cascade of events linking high glucose
concentrations to ROS production and subsequent neutrophil-related cell death (NETosis),
which releases neutrophil extracellular traps (NET) [33]. NETs are complex structures
comprised of decondensed chromatin and granules containing degradative enzymes [34].
While the benefits of NETosis in combating infections are well-established, recent research
has uncovered its detrimental effects in autoimmune diseases and diabetes. In the context
of diabetes, characterized by chronic low-grade inflammation, NETosis is activated by
pro-inflammatory cytokines and ROS [33]. NETosis’s main function is to clear pathogens,
but it also appears to play a clear role in thrombus formation through the activation of the
thrombus and acting as a scaffold for fibrin formation [35]. The AGE–RAGE axis serves as
a key link between hyperglycemia, inflammation, and the development of the thrombus,
highlighting its significance as a potential therapeutic target in managing diabetes-related
complications. Hyperglycemia induces mitochondrial damage, collateral glucose routes,
and spontaneous glucose reactions. All processes promote excessive ROS generation lead-
ing to oxidative stress. Looking in the opposite direction, oxidative stress induces the
AGE–RAGE pathway, which then further stimulates mitochondrial impairment, glucose
collateral routes, and insulin resistance, leading to the reinforcement of hyperglycemia [36].
ROS are directly linked to both increased thrombus formation and decreased resolution by
a variety of mechanisms, providing an additional plausible mechanism for the AGE–RAGE
axis to lead downstream to hypercoagulability [37].

3.2. Hypofibrinolysis and Clot Strength in Hyperglycemia

Individuals with DM form compact fibrin networks that are resistant to fibrinolysis
and have a reduced efficacy in the fibrinolytic system [38]. The two most critical inhibitors
in fibrinolysis are plasminogen activator inhibitor 1 (PAI-1) and alpha-2 plasmin inhibitor
(α2PI, or α2-antiplasmin) [39]. The profound suppression of fibrinolysis in T2DM is primar-
ily mediated by increased levels of PAI-1 [40]. Research shows that elevated concentrations
of fibrinogen and thrombin in DM accelerate the formation of fibrin clots and contribute to
thrombi production with increased fiber density. The highest levels of fibrinogen glycation
were observed under hyperglycemic conditions [41]. The coagulation cascade, activated
through various pathways, culminates in the formation of a stable fibrin clot. This sta-
bility is augmented by covalent cross-links between fibrin molecules catalyzed by factor
XIIIa [42]. The compromised fibrinolysis, coupled with elevated PAI-1, underscores the
hypofibrinolytic characteristic of hyperglycemic conditions, influencing the strength and
stability of blood clots (Figure 1).



Diagnostics 2024, 14, 1994 6 of 12

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 13 
 

 

underscores the hypofibrinolytic characteristic of hyperglycemic conditions, influencing 
the strength and stability of blood clots (Figure 1). 

 
Figure 1. Schematic of influence of glucose concentration on clot strength. To the left, (A) demon-
strates a more delicate fibrin strand network (in green) with lower glucose concentration (in blue); 
to the right, (B) demonstrates a denser fibrin strand network (green) resistant to fibrinolysis in the 
presence of higher glucose concentrations (blue) [38]. 

3.3. Coagulation Cascade and Hyperglycemia 

Hyperglycemia and hyperinsulinemia in DM affect the intrinsic coagulation path-
way, with studies revealing increased factor VIII, IX, and XI levels per mmol/L rise in 
fasting plasma glucose [43,44]. The Netherlands’ Epidemiology of Obesity study demon-
strated that these associations remained significant after adjusting for confounding factors 
such as age, gender, and BMI, among others. Patients with impaired insulin sensitivity 
exhibited heightened synthesis of factor XII, XI, and IX in hepatocytes, coupled with a 
shorter activated partial thromboplastin time, possibly mediated by insulin resistance-in-
duced low-grade inflammation [45]. Other studies have also shown differences in the 
quality and quantity of coagulation factors in diabetic patients [46]. 

A chronic hyperglycemic state leads to high circulating levels of thrombin–an-
tithrombin complexes (TAT), increased tissue factor procoagulant activity (TF PCA), and 
factor VII [47]. TF converts Factor VII to the activated form of VIIA. With rising levels of 
BG and insulin, TF-PCA also proportionally increases. However, when attempting to re-
duce the glucose levels rapidly, TAT levels and TF PCA activity do not appear to reduce 
significantly [48]. In this model, insulin and elevated BG together may play a role in the 
activation of the coagulation cascade (Figure 2). 

Figure 1. Schematic of influence of glucose concentration on clot strength. To the left, (A) demonstrates
a more delicate fibrin strand network (in green) with lower glucose concentration (in blue); to the
right, (B) demonstrates a denser fibrin strand network (green) resistant to fibrinolysis in the presence
of higher glucose concentrations (blue) [38].

3.3. Coagulation Cascade and Hyperglycemia

Hyperglycemia and hyperinsulinemia in DM affect the intrinsic coagulation pathway,
with studies revealing increased factor VIII, IX, and XI levels per mmol/L rise in fasting
plasma glucose [43,44]. The Netherlands’ Epidemiology of Obesity study demonstrated
that these associations remained significant after adjusting for confounding factors such as
age, gender, and BMI, among others. Patients with impaired insulin sensitivity exhibited
heightened synthesis of factor XII, XI, and IX in hepatocytes, coupled with a shorter
activated partial thromboplastin time, possibly mediated by insulin resistance-induced
low-grade inflammation [45]. Other studies have also shown differences in the quality and
quantity of coagulation factors in diabetic patients [46].

A chronic hyperglycemic state leads to high circulating levels of thrombin–antithrombin
complexes (TAT), increased tissue factor procoagulant activity (TF PCA), and factor VII [47].
TF converts Factor VII to the activated form of VIIA. With rising levels of BG and insulin,
TF-PCA also proportionally increases. However, when attempting to reduce the glucose
levels rapidly, TAT levels and TF PCA activity do not appear to reduce significantly [48].
In this model, insulin and elevated BG together may play a role in the activation of the
coagulation cascade (Figure 2).

3.4. Endothelial Dysfunction in Hyperglycemia

Endothelial dysfunction induced by diabetes has a well-established role in arterial
complications in the microvasculature with reduced NO production and availability, al-
terations in VEGF, and high levels of oxidative stress all leading to poor perfusion and
increased thrombosis [49]. However, the direct link between this dysfunction and VTE in
DM clinically has not been clearly demonstrated, but multiple abnormalities of endothelial
dysfunction have been demonstrated in long term in patients who suffer from VTE [50].
The exposure of the vascular endothelium to higher glucose concentrations seems to be
an important precipitant of endothelial dysfunction. The glycocalyx, a protective layer of
proteoglycans on the endothelium, plays a crucial role in maintaining vessel wall integrity.
Elevated levels of hyperglycemia and hyperinsulinemia were shown to potentially disrupt
the glycocalyx, contributing to vascular dysfunction during periods of heightened glucose
levels [51,52].
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Both cardiovascular disease and type 2 diabetes exhibit an inadequate regulation of
the endothelial cell redox environment, marked by an imbalance that leans towards the
excessive production of reactive oxygen species (ROS) by NADPH oxidase (NOX) [53].
Investigations in type 2 diabetes models reveal that this abnormal activation of NOX plays
a significant role in the decoupling of endothelial nitric oxide synthase (eNOS), contribut-
ing to endothelial dysfunction. Given that endothelial dysfunction is a well-established
precursor to cardiovascular disease, NOX emerges as crucial molecular connectors linking
type 2 diabetes to the development of vascular complications 53 (Figure 3).
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4. Treatment Implications VTE with Hyperglycemia
4.1. Effect of Anti-Diabetic Drugs on VTE

Various drugs used to treat diabetes may have differing effects on the modification of
VTE risk, either by improving glycemic control or through having antithrombotic proper-
ties. Metformin has been found to have a variety of effects outside of glycemic control, with
a meta-analysis showing decreased all-cause mortality and fewer cardiovascular events,
compared to other drugs like sulfonylureas [54]. One systematic review, encompassing
observational studies, found a decreased rate of VTE with metformin, with a relative risk
reduction of 22 to 58% associated with use of the drug [55]. Several antithrombotic mecha-
nisms have been demonstrated with metformin use, including decreased platelet function
and activation, a reduction in C reactive protein, decreased Factor VII, and others [56]. In
both normal and diabetic rat models, metformin has been shown to decrease both the size
and formation of arterial and venous thrombi, as well as the incidence of PE [47].

Glucagon-like petide-1 receptor agonist (GLP-1 RA) drugs mimic endogenous hor-
mones released by the gastrointestinal (GI) tract and delay gastric emptying, upregulate
glucose, and downregulate glucagon while increasing insulin response. Several GLP-1 RAs
have become FDA-approved and are popular due to the significant reduction in HbA1c
observed in addition to weight loss. The main side effects reported in trials are GI in na-
ture [57]. Evidence from a meta-analysis including several clinical trials supports improved
cardiovascular outcomes and decreased stroke risk with these drugs [58]. GLP-1 RAs have
consistently shown a reduction in atherothrombotic events, all-cause cardiac mortality, and
the progression of CKD, thus leading to the American Heart Association and other societies
recommending their use [59]. GLP-1 RA therapy does appear to reduce multiple markers
of innate inflammation, in addition to atherosclerotic plaque such as Il-6 and TNF-α, which
may decrease VTE risk [60,61].

Sodium-glucose cotransporter 2 inhibitors (SGL2) increase glucose excretion in the
kidney and have also consistently shown improved cardiovascular and renal outcomes,
similar to GLP-1 RAs. There was concern that increases in hematocrit may increase blood
viscosity and lead to more VTE. However, a meta-analysis suggests no association between
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SGL2 and VTE—there was no increased incidence of VTE, but there was also no beneficial
effect seen on VTE reduction [62]. Robust cardiac outcomes have been impressive for both
GLP-1 RA and SGL2 drugs, even though they may not have a direct effect on VTE risk
or outcomes.

Even a lifestyle intervention involving weight loss over one year was shown to improve
the coagulation profile, including a reduction in levels of protein C and S, and an increase in
PTT [63]. In a small, randomized trial of coagulation factors after gastric surgery, all patients
had increased fibrinolysis and reduced thrombin generation, but those who underwent
a fitness regimen post-operatively had further increased fibrinolytic activity [64]. It is
unclear if the mechanism by which this intervention works is by generating weight loss
and reducing the thrombotic risk associated with obesity, or by improving glycemic control
to minimize any excess risk attributable to DM.

4.2. Anticoagulation in Patients with VTE and Hyperglycemia

An increased risk of bleeding has been identified in patients with DM undergoing
anticoagulation. In a Chinese study of 536 patients followed prospectively, DM was
identified as an independent risk factor for major bleeding (OR 2.11, 95% CI: 1.10–4.12) with
patients with clinically relevant bleeding having a higher HbA1C [65]. A German study
also identified increased GI and intracerebral bleeding in patients with DM [24]. In Piazza
et al., 2488 VTE patients from the USA were studied and found to have an increased risk of
long-term bleeding complications in those with DM. An increased use of aspirin therapy
(OR 1.59, 95% CI: 1.1–2.3) and chronic kidney disease (OR 2.19, 95% CI: 1.44–3.35), along
with multiple other comorbidities, was seen in patients with DM, which could explain this
increased bleeding risk [66]. Symptomatic atherosclerosis, which is higher in patients with
DM, has been directly linked with higher bleeding risk in patients with PE [67]. Besides
antiplatelet therapy, patients with DM are often at risk for other arterial diseases such
as coronary artery disease or stroke, and for vascular malformations related to chronic
hyperglycemia, which could also increase risk of bleeding [68].

There are no special guidelines regarding anticoagulation for prophylaxis or treatment
in patients with DM, despite these elevated risks of bleeding. Evidence from the literature
for atrial fibrillation trials with direct oral anticoagulants (DOAC) compared to vitamin
K antagonists (VKA) suggests that DOAC are superior in both the primary outcomes of
reduced risk of stroke and major intracranial bleeding [69]. Further data obtained after
the initiation of DOAC showed reduced vascular complications and decreased bleeding in
patients with type 2 DM compared to VKA [70]. In addition, there is concern for worsening
renal function and coronary calcification with the use of VKA in the diabetic population.
VKA drugs are even less desirable, especially with fluctuations in levels based on dietary
intake, warranting strict dietary restrictions and the continued close monitoring of the
INR [71]. Although DOAC therapy is likely superior to VKAs, monitoring renal function is
still extremely important in patients with DM due to the high prevalence of chronic kidney
disease and the partial renal excretion of these DOACs [72].

5. Conclusions

The definitive link between hyperglycemia, DM, and VTE with PE remains incon-
clusive. Recent evidence from in vitro studies supports cellular level disturbances from
hyperglycemia that increase the risk of a prothrombotic state, which may provide biologic
plausibility for a link with VTE. However, clinical implications of these in vitro effects of
hyperglycemia on VTE/PE remain unclear. Clinically, elevated glucose levels increase
mortality and worsen short-term outcomes in affected patients with VTE. Yet, numerous
retrospective studies and meta-analyses have failed to demonstrate that T1DM, T2DM, or
uncontrolled hyperglycemia represent independent risk factors for the development of
VTE. In addition, the role of anti-glycemic therapy or special anticoagulation strategies
in these patients is an important area of uncertainty that warrants further research. The
further elucidation of the underlying mechanisms of VTE and hyperglycemia, and the
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development of novel therapies to address these mechanisms, is necessary to better care
for patients with VTE and hyperglycemia and develop risk reduction strategies to improve
clinical outcomes in the future.
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