Fentanyl and Sudden Death—A Postmortem Perspective for Diagnosing and Predicting Risk
Abstract
:1. KCNH2 Gene or Human Ether-a-Go-Go-Related Gene (hERG) in Sudden Death
Sudden Death, Sudden Cardiac Death, and Sudden Unexpected Death in Epilepsy (SUDEP)
2. hERG and Predicting the Risk
2.1. hERG in Cardiotoxicity
2.2. Electrocardiographic Risk Predictors
2.3. Harm Reduction Using Test Strips
3. Fentanyl and Sudden Death
4. Improving Postmortem Healthcare
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanchez-Conde, F.G.; Jimenez-Vazquez, E.N.; Auerbach, D.S.; Jones, D.K. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front. Mol. Neurosci. 2022, 15, 890368. [Google Scholar] [CrossRef]
- Jain, A.; Stack, O.; Ghodrati, S.; Sanchez-Conde, F.G.; Ukachukwu, C.U.; Salwi, S.; Jimenez-Vazquez, E.N.; Jones, D.K. KCNH2 encodes a nuclear-targeted polypeptide that mediates hERG1 channel gating and expression. Proc. Natl. Acad. Sci. USA 2023, 120, e2214700120. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.R.; Winbo, A.; Abrams, D.; Vohra, J.; Wilde, A.A. Channelopathies that lead to sudden cardiac death: Clinical and genetic aspects. Heart Lung Circ. 2019, 28, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Tschirhart, J.; Li, W.; Guo, J.; Zhang, S. Molecular mechanisms of fentanyl-mediated sudden death. Can. J. Cardiol. 2018, 34, S75–S76. [Google Scholar] [CrossRef]
- Ramalho, D.; Freitas, J. Drug-induced life-threatening arrhythmias and sudden cardiac death: A clinical perspective of long QT, short QT and Brugada syndromes. Rev. Port. Cardiol. 2018, 37, 435–446. [Google Scholar] [CrossRef]
- Bezzina, C.R.; Verkerk, A.O.; Busjahn, A.; Jeron, A.; Erdmann, J.; Koopmann, T.T.; Bhuiyan, Z.A.; Wilders, R.; Mannens, M.M.; Tan, H.L.; et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc. Res. 2003, 59, 27–36. [Google Scholar] [CrossRef]
- Crotti, L.; Lundquist, A.L.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; De Ferrari, G.M.; Vicentini, A.; Yang, P.; Roden, D.M.; George, A.L., Jr.; et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 2005, 112, 1251–1258. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Crotti, L.; Insolia, R. Long-QT syndrome: From genetics to management. Circ. Arrhythm. Electrophysiol. 2012, 5, 868–877. [Google Scholar] [CrossRef]
- Lynge, T.H.; Albert, C.M.; Basso, C.; Garcia, R.; Krahn, A.D.; Semsarian, C.; Sheppard, M.N.; Behr, E.R.; Tfelt-Hansen, J. Autopsy of all young sudden death cases is important to increase survival in family members left behind. Europace 2024, 26, euae128. [Google Scholar] [CrossRef]
- Tsartsalis, D.; Korela, D.; Karlsson, L.O.; Foukarakis, E.; Svensson, A.; Anastasakis, A.; Venetsanos, D.; Aggeli, C.; Tsioufis, C.; Braunschweig, F.; et al. Risk and Protective Factors for Sudden Cardiac Death: An Umbrella Review of Meta-Analyses. Front. Cardiovasc. Med. 2022, 9, 848021. [Google Scholar] [CrossRef]
- Salzillo, C.; Sansone, V.; Napolitano, F. Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Autopsy. Curr. Issues Mol. Biol. 2024, 46, 3313–3327. [Google Scholar] [CrossRef] [PubMed]
- Bidaurrazaga, K.I.; Lucena, J.; Morentin, B. Forensic population study of sudden unexplained death in epilepsy in children and young people during the period 1991–2021. Span. J. Leg. Med. 2024, 50, 22–28. [Google Scholar] [CrossRef]
- Giussani, G.; Falcicchio, G.; La Neve, A.; Costagliola, G.; Striano, P.; Scarabello, A.; Mostacci, B.; Beghi, E.; LICE SUDEP Study Group. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023, 8, 728–757. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Wu, Y.; Wei, H.Q.; Liao, Y.J.; Qu, L.P.; Pan, Y.H.; Liu, L.J.; Bi, W.T. A novel mutation in hERG gene associated with azithromycin-induced acquired long QT syndrome. Mol. Biol. Rep. 2024, 51, 520. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, J.; Zhao, Q. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput. Biol. Med. 2023, 153, 106464. [Google Scholar] [CrossRef]
- Nguyen, H.; Glaaser, I.W.; Slesinger, P.A. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front. Physiol. 2024, 15, 1386645. [Google Scholar] [CrossRef]
- Qiu, Q.; Yang, M.; Gong, D.; Liang, H.; Chen, T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen. Res. 2024, 20, 1258–1276. [Google Scholar] [CrossRef]
- Krantz, M.J.; Palmer, R.B.; Haigney, M.C.P. Cardiovascular Complications of Opioid Use: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 205–223. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, S.; Bhat, M.; Gill, K.; Zaid, M.; Kumar, S.; Shakya, A.; Tantray, J.; Jose, D.; Gupta, R.; et al. New drug discovery of cardiac anti-arrhythmic drugs: Insights in animal models. Sci. Rep. 2023, 13, 16420. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B.; On behalf of the American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Drug-Induced Arrhythmias: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e214–e233. [Google Scholar] [CrossRef]
- El Mazloum, R.; Snenghi, R.; Zorzi, A.; Zilio, F.; Dorigo, A.; Montisci, R.; Corrado, D.; Montisci, M. Out-of-hospital cardiac arrest after acute cocaine intoxication associated with Brugada ECG patterns: Insights into physiopathologic mechanisms and implications for therapy. Int. J. Cardiol. 2015, 195, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Montisci, M.; Thiene, G.; Ferrara, S.D.; Basso, C. Cannabis and cocaine: A lethal cocktail triggering coronary sudden death. Cardiovasc. Pathol. 2008, 17, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Andersen, F.D.; Joca, S.; Hvingelby, V.; Arjmand, S.; Pinilla, E.; Steffensen, S.C.; Simonsen, U.; Andersen, C.U. Combined effects of quetiapine and opioids: A study of autopsy cases, drug users and sedation in rats. Addict. Biol. 2022, 27, e13214. [Google Scholar] [CrossRef]
- Khokhar, M.A.; Rathbone, J. Droperidol for psychosis-induced aggression or agitation. Cochrane Database Syst. Rev. 2016, 12, CD002830. [Google Scholar] [CrossRef] [PubMed]
- El Sherbini, A.; Liblik, K.; Lee, J.; Baranchuk, A.; Zhang, S.; El-Diasty, M. Opioids-induced inhibition of HERG ion channels and sudden cardiac death, a systematic review of current literature. Trends Cardiovasc. Med. 2024, 34, 279–285. [Google Scholar] [CrossRef]
- Terho, H.K.; Tikkanen, J.T.; Kentta, T.V.; Junttila, J.M.; Aro, A.L.; Anttonen, O.; Kerola, T.; Rissanen, H.A.; Knekt, P.; Huikuri, H.V. Electrocardiogram as a predictor of sudden cardiac death in middle-aged subjects without a known cardiac disease. Int. J. Cardiol. Heart Vasc. 2018, 20, 50–55. [Google Scholar] [CrossRef]
- Hauwanga, W.N.; Yau, R.C.C.; Goh, K.S.; Ceron, J.I.C.; Alphonse, B.; Singh, G.; Elamin, S.; Jamched, V.; Abraham, A.A.; Purvil, J.; et al. Management of Long QT Syndrome: A Systematic Review. Cureus J. Med. Sci. 2024, 16, e62592. [Google Scholar] [CrossRef]
- Pasero, E.; Gaita, F.; Randazzo, V.; Meynet, P.; Cannata, S.; Maury, P.; Giustetto, C. Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events. Sensors 2023, 23, 8900. [Google Scholar] [CrossRef]
- Huang, M.; Liao, Z.; Li, X.; Yang, Z.; Fan, X.; Li, Y.; Zhao, Z.; Lang, S.; Cyganek, L.; Zhou, X.; et al. Effects of Antiarrhythmic Drugs on hERG Gating in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Short QT Syndrome Type 1. Front. Pharmacol. 2021, 12, 675003. [Google Scholar] [CrossRef]
- Vandenberg, J.I.; Perry, M.D.; Perrin, M.J.; Mann, S.A.; Ke, Y.; Hill, A.P. hERG K+ channels: Structure, function, and clinical significance. Physiol. Rev. 2012, 92, 1393–1478. [Google Scholar] [CrossRef]
- Lamothe, S.M.; Guo, J.; Li, W.; Yang, T.; Zhang, S. The Human Ether-a-go-go-related Gene (hERG) Potassium Channel Represents an Unusual Target for Protease-mediated Damage. J. Biol. Chem. 2016, 291, 20387–20401. [Google Scholar] [CrossRef]
- Matthews, A.; Timothy, K.; Golden, A.; Gonzalez Corcia, M.C. International Cohort of Neonatal Timothy Syndrome. Neonatology 2024, 121, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Chang, Y.; Kang, J.; Kim, Y.; Ryu, S. Electrocardiogram Risk Score and Prevalence of Subclinical Atherosclerosis: A Cross-Sectional Study. J. Pers. Med. 2022, 12, 463. [Google Scholar] [CrossRef]
- Shang, M.; Thiel, B.; Jawa, R. Fentanyl Test Strip Guide. Unpublished work, 2023.
- Arndt, C.; Huestis, M.A.; Jarvis, H.C.; Gray, T.R. Assessment of urine drug screen utility at autopsy to predict laboratory postmortem blood toxicology. J. Forensic Sci. 2024, 69, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Beaucham, G. Tox in Ten. ACMT Highlights Episode 55: X-Factor—Xylazine. Available online: https://toxinten.libsyn.com/acmt-highlights-episode-55-x-factor-xylazine (accessed on 27 July 2024).
- Habib, A.; Ali, T.; Fatima, L.; Nazir, Z.; Hafiz, A.I.; Haque, M.A. Xylazine in Illicit Drug Mixtures: A Growing Threat and Overlooked Danger. Ann. Med. Surg. 2024, 86, 3816–3819. [Google Scholar] [CrossRef] [PubMed]
- Sisco, E.; Nestadt, D.F.; Bloom, M.B.; Schneider, K.E.; Elkasabany, R.A.; Rouhani, S.; Sherman, S.G. Understanding sensitivity and cross-reactivity of xylazine lateral flow immunoassay test strips for drug checking applications. Drug Test. Anal. 2023. [Google Scholar] [CrossRef]
- Gozdzialski, L.; Louw, R.; Kielty, C.; Margolese, A.; Poarch, E.; Sherman, M.; Cameron, F.; Gill, C.; Wallace, B.; Hore, D. Beyond a spec: Assessing heterogeneity in the unregulated opioid supply. Harm Reduct. J. 2024, 21, 63. [Google Scholar] [CrossRef]
- Cogan, J.K. The United States Takes Actions to Combat International Fentanyl Trafficking. Am. J. Int. Law 2024, 118, 183–191. [Google Scholar]
- Ludwig, Z. Fentanyl and Medication for Opioid Use Disorder (MOUD); Bradford Health Systems: Birmingham, AL, USA, 2024. [Google Scholar]
- Misailidi, N.; Papoutsis, I.; Nikolaou, P.; Dona, A.; Spiliopoulou, C.; Athanaselis, S. Fentanyls continue to replace heroin in the drug arena: The cases of ocfentanil and carfentanil. Forensic Toxicol. 2018, 36, 12–32. [Google Scholar] [CrossRef]
- Griffiths, P.N.; Seyler, T.; De Morais, J.M.; Mounteney, J.E.; Sedefov, R.S. Opioid problems are changing in Europe with worrying signals that synthetic opioids may play a more significant role in the future. Addiction 2024, 119, 1334–1336. [Google Scholar] [CrossRef]
- Ballotari, M.; Truver, M.T.; Dhoble, L.R.; Kinsey, A.M.; Hoyer, J.L.; Chronister, C.W.; Goldberger, B.A. A Postmortem Case Report involving Fentanyl, Desalkylgidazepam and Bromazolam. J. Anal. Toxicol. 2024, bkae059. [Google Scholar] [CrossRef] [PubMed]
- Hikin, L.J.; Coombes, G.; Rice-Davies, K.; Couchman, L.; Smith, P.R.; Morley, S.R. Post mortem blood bromazolam concentrations and co-findings in 96 coronial cases within England and Wales. Forensic Sci. Int. 2024, 354, 111891. [Google Scholar] [CrossRef]
- European Commission. Commissioner Johansson’s Statement at the Press Point with Alexis. Goosdeel on the European Drugs Report 2023. Available online: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_23_3330 (accessed on 10 July 2024).
- EuropeanUnionDrugsAgency. Drug-Induced Deaths—The Current Situation in Europe (European Drug Report 2023). Available online: https://www.euda.europa.eu/publications/european-drug-report/2023/drug-induced-deaths_en (accessed on 10 July 2024).
- Revol, B.; Willeman, T.; Manceau, M.; Dumestre-Toulet, V.; Gaulier, J.M.; Fouilhe Sam-Lai, N.; Eysseric-Guerin, H.; et Analystes, C.N.D.B.; Abbara, C.; Allorge, D.; et al. Trends in Fatal Poisoning among Drug Users in France From 2011 to 2021: An Analysis of the DRAMES Register. JAMA Netw. Open 2023, 6, e2331398. [Google Scholar] [CrossRef]
- Statista. Number of Overdose Deaths from Fentanyl in the U.S. from 1999 to 2022. Available online: https://www.statista.com/statistics/895945/fentanyl-overdose-deaths-us/ (accessed on 10 July 2024).
- Sutlovic, D.; Definis-Gojanovic, M. Suicide by fentanyl. Arh. Hig. Rada Toksikol. 2007, 58, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Statista. Distribution of Fentanyl Consumption Globally from 2018 to 2022, by Country. Available online: https://www.statista.com/statistics/459497/worldwide-share-of-fentanyl-consumption-by-country/ (accessed on 11 July 2024).
- Tschirhart, J.N.; Zhang, S. Fentanyl-Induced Block of hERG Channels Is Exacerbated by Hypoxia, Hypokalemia, Alkalosis, and the Presence of hERG1b. Mol. Pharmacol. 2020, 98, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Saunders, S.E.; Baekey, D.M.; Levitt, E.S. Fentanyl effects on respiratory neuron activity in the dorsolateral pons. J. Neurophysiol. 2022, 128, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Biancorosso, S.L.; Camp, J.D.; Hailu, S.H.; Johansen, A.N.; Morris, M.H.; Carlson, H.N. “Tranq-Dope” Overdose and Mortality: Lethality Induced by Fentanyl and Xylazine. bioRxiv 2023. [Google Scholar] [CrossRef]
- Garin, D.; Degrauwe, S.; Carbone, F.; Musayeb, Y.; Lauriers, N.; Valgimigli, M.; Iglesias, J.F. Differential impact of fentanyl and morphine doses on ticagrelor-induced platelet inhibition in ST-segment elevation myocardial infarction: A subgroup analysis from the PERSEUS randomized trial. Front. Cardiovasc. Med. 2024, 11, 1324641. [Google Scholar] [CrossRef] [PubMed]
- Council, E. Opioids: A New Drug Threat for Europe. Available online: https://www.consilium.europa.eu/en/policies/opioids-drugs-heroin/ (accessed on 11 July 2024).
- Sessa, F.; Esposito, M.; Messina, G.; Di Mizio, G.; Di Nunno, N.; Salerno, M. Sudden Death in Adults: A Practical Flow Chart for Pathologist Guidance. Healthcare 2021, 9, 870. [Google Scholar] [CrossRef]
- Martinez-Barrios, E.; Grassi, S.; Brion, M.; Toro, R.; Cesar, S.; Cruzalegui, J.; Coll, M.; Alcalde, M.; Brugada, R.; Greco, A.; et al. Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death. Front. Med. 2023, 10, 1118585. [Google Scholar] [CrossRef]
- Tomassini, L.; Ricchezze, G.; Fedeli, P.; Lancia, M.; Gambelunghe, C.; De Micco, F.; Cingolani, M.; Scendoni, R. New Insights on Molecular Autopsy in Sudden Death: A Systematic Review. Diagnostics 2024, 14, 1151. [Google Scholar] [CrossRef]
- Lupoglazoff, J.M.; Denjoy, I.; Villain, E.; Fressart, V.; Simon, F.; Bozio, A.; Berthet, M.; Benammar, N.; Hainque, B.; Guicheney, P. Long QT syndrome in neonates: Conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations. J. Am. Coll. Cardiol. 2004, 43, 826–830. [Google Scholar] [CrossRef]
- Wilders, R.; Verkerk, A.O. Long QT Syndrome and Sinus Bradycardia—A Mini Review. Front. Cardiovasc. Med. 2018, 5, 106. [Google Scholar] [CrossRef]
- Williams, R.; Wienroth, M. Social and ethical aspects of forensic genetics: A critical review. Forensic Sci. Rev. 2017, 29, 145–169. [Google Scholar] [PubMed]
- Rohrer, C.T.; Lager, A.M.; Brooks, E.G.; Horner, V.L. Postmortem genetic testing in sudden unexplained death: A public health laboratory experience. J. Forensic Sci. 2023, 68, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Siskind, T.; Williams, N.; Sebastin, M.; Marion, R.; McDonald, T.V.; Walsh, C.; Sampson, B.; Tang, Y.; Clark, B.C. Genetic screening of relatives of decedents experiencing sudden unexpected death: Medical examiner’s office referrals to a multi-disciplinary cardiogenetics program. J. Community Genet. 2022, 13, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.A.; Alswaimil, N.F.; Alammari, A.M.; Al Saeed, W.H.; Menezes, R.G. Postmortem Genetic Testing in Sudden Unexpected Death: A Narrative Review. Cureus 2023, 15, e33728. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.; Ripoll-Vera, T.; Perez-Luengo, C.; Garcia, A.B.; Moyano, S.; Canos, J.C.; Borondo, J.C.; Alvarez, J.; Heine-Suner, D.; Barcelo, B. Diagnostic Yield of Genetic Testing in Sudden Cardiac Death with Autopsy Findings of Uncertain Significance. J. Clin. Med. 2021, 10, 1806. [Google Scholar] [CrossRef]
- Del Duca, F.; Ghamlouch, A.; Manetti, A.C.; Napoletano, G.; Sonnini, E.; Treves, B.; De Matteis, A.; La Russa, R.; Sheppard, M.N.; Fineschi, V.; et al. Sudden Cardiac Death, Post-Mortem Investigation: A Proposing Panel of First Line and Second Line Genetic Tests. J. Pers. Med. 2024, 14, 544. [Google Scholar] [CrossRef]
- Koh, H.Y.; Haghighi, A.; Keywan, C.; Alexandrescu, S.; Plews-Ogan, E.; Haas, E.A.; Brownstein, C.A.; Vargas, S.O.; Haynes, R.L.; Berry, G.T.; et al. Genetic Determinants of Sudden Unexpected Death in Pediatrics. Genet. Med. 2022, 24, 839–850. [Google Scholar] [CrossRef]
- Aschner, A.; Keller, A.; Williams, A.; Whitney, R.; Cunningham, K.; Hamilton, R.M.; Pollanen, M.; Donner, E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front. Neurol. 2024, 15, 1386730. [Google Scholar] [CrossRef] [PubMed]
- Sullo, F.; Pasquetti, E.; Patanè, F.; Bianco, M.L.; Marino, S.D.; Polizzi, A.; Falsaperla, R.; Ruggieri, M.; Zanghì, A.; Praticò, A.D. SCN1A and Its Related Epileptic Phenotypes. J. Pediatr. Neurol. 2023, 21, 155–167. [Google Scholar] [CrossRef]
- Cărcăle, V.A. DNA Collection: A Comparative Analysis of Legal Profiles. In Proceedings of the 32nd International RAIS Conference on Social Sciences and Humanities, Princeton, NJ, USA, 8–9 June 2023; pp. 15–24. [Google Scholar]
- Padmanabhan, D.A.S. DNA Evidence and Criminal Investigation: Recent Developments and Legal Issues. Eur. J. Mol. Clin. Med. 2023, 10, 1779–1786. [Google Scholar]
- Grassi, S.; Martínez-Barrios, E.; Cazzato, F.; Cesar, S.; Ortega-Sánchez, M.L.; Barberia, E.; Arbelo, E.; Oliva, A.; Sarquella-Brugada, G.; Campuzano, O. Samples Used in Molecular Autopsy: An Update. In Unlocking the Mysteries of Death-New Perspectives for Post-Mortem Examination; Hakan Dogan, K., Ed.; IntechOpen: London, UK, 2023. [Google Scholar]
- Venz, S.; von Bohlen und Halbach, V.; Hentschker, C.; Junker, H.; Kuss, A.W.; Sura, T.; Krüger, E.; Völker, U.; von Bohlen und Halbach, O.; Jensen, L.R. Global Protein Profiling in Processed Immunohistochemistry Tissue Sections. Int. J. Mol. Sci. 2023, 24, 11308. [Google Scholar] [CrossRef]
- Giudicessi, J.R.; Roden, D.M.; Wilde, A.A.M.; Ackerman, M.J. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing. Circulation 2018, 137, 619–630. [Google Scholar] [CrossRef]
- Kauferstein, S.; Beckmann, B.-M. Postmortem genetic analysis following sudden cardiac death: Background, approach, and future. Herzschrittmachertherapie Elektrophysiologie 2024, 35, 31–38. [Google Scholar] [CrossRef]
- Shendure, J.; Balasubramanian, S.; Church, G.M.; Gilbert, W.; Rogers, J.; Schloss, J.A.; Waterston, R.H. DNA sequencing at 40: Past, present and future. Nature 2017, 550, 345–353. [Google Scholar] [CrossRef]
- Kumar, K.R.; Cowley, M.J.; Davis, R.L. Next-generation sequencing and emerging technologies. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2024. [Google Scholar]
- Dash, H.R.; Elkins, K.M.; Al-Snan, N.R. Next Generation Sequencing (NGS) Technology in DNA Analysis; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Grunert, M.; Dorn, C.; Dopazo, A.; Sánchez-Cabo, F.; Vázquez, J.; Rickert-Sperling, S.; Lara-Pezzi, E. Technologies to Study Genetics and Molecular Pathways. In Congenital Heart Diseases: The Broken Heart: Clinical Features, Human Genetics and Molecular Pathways; Rickert-Sperling, S., Kelly, R., Driscoll, D., Eds.; Springer: Vienna, Austria, 2024; pp. 435–458. [Google Scholar]
- Jolfayi, A.G.; Kohansal, E.; Ghasemi, S.; Naderi, N.; Hesami, M.; MozafaryBazargany, M.; Moghadam, M.H.; Fazelifar, A.F.; Maleki, M.; Kalayinia, S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci. Rep. 2024, 14, 5313. [Google Scholar] [CrossRef]
- Sobo, J.M.; Alagna, N.S.; Sun, S.X.; Wilson, K.L.; Reddy, K.L. Lamins: The backbone of the nucleocytoskeleton interface. Curr. Opin. Cell Biol. 2024, 86, 102313. [Google Scholar] [CrossRef]
- Barefield, D.Y.; Alvarez-Arce, A.; Araujo, K.N. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr. Cardiol. Rep. 2023, 25, 473–484. [Google Scholar] [CrossRef]
- Aborode, A.T.; Olamilekan Adesola, R.; Idris, I.; Adio, W.S.; Scott, G.Y.; Chakoma, M.; Oluwaseun, A.A.; Onifade, I.A.; Adeoye, A.F.; Aluko, B.A.; et al. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024, 927, 148651. [Google Scholar] [CrossRef] [PubMed]
- González-Garrido, A.; López-Ramírez, O.; Cerda-Mireles, A.; Navarrete-Miranda, T.; Flores-Arenas, A.I.; Rojo-Domínguez, A.; Arregui, L.; Iturralde, P.; Antúnez-Argüelles, E.; Domínguez-Pérez, M. KCNQ1 p. D446E Variant as a Risk Allele for Arrhythmogenic Phenotypes: Electrophysiological Characterization Reveals a Complex Phenotype Affecting the Slow Delayed Rectifier Potassium Current (IKs) Voltage Dependence by Causing a Hyperpolarizing Shift and a Lack of Response to Protein Kinase A Activation. Int. J. Mol. Sci. 2024, 25, 953. [Google Scholar] [CrossRef] [PubMed]
- Pasquetti, E.; Bianco, M.L.; Sullo, F.; Patanè, F.; Sciuto, L.; Polizzi, A.; Praticò, A.D.; Zanghì, A.; Falsaperla, R. SCN1B gene: A close relative to SCN1A. J. Pediatr. Neurol. 2023, 21, 168–172. [Google Scholar] [CrossRef]
- Gu, C.; Wei, X.; Yan, D.; Cai, Y.; Li, D.; Shu, J.; Cai, C. DEPDC5 plays a vital role in epilepsy: Genotypic and phenotypic features in cohort and literature. Epileptic Disord. 2024, 26, 341–349. [Google Scholar] [CrossRef]
Topical Gene | Gene | Associated with Romano–Ward Syndrome | Associated with Jervell–Lange–Nielsen Syndrome | Associated with Andersen (A) or Timothy (T) Syndrome | Frequency (%) |
---|---|---|---|---|---|
KCNQ1 (LQT1) | * | * | 40–55% | ||
* | KCNH2 (LQT2) | * | 30–45% | ||
SCN5A (LQT3) | * | 5–10% | |||
ANKB (LQT4) | * | <1% | |||
KCNE1 (LQT5) | * | * | <1% | ||
KCNE2 (LQT6) | * | <1% | |||
KCNJ2 (LQT7) | A | <1% | |||
CACNA1C (LQT8) | T | <1% | |||
CAV3 (LQT9) | * | <1% | |||
SCN4B (LQT10) | * | <1% | |||
AKAP9 (LQT11) | * | <1% | |||
SNTA1 (LQT12) | * | <1% | |||
KCNJ5 (LQT13) | * | <1% |
Common Name | Location | Frequency of Variations in the Population with a Predisposing Condition | Phenotype | Reference | |
---|---|---|---|---|---|
titin | TTN | 2q31.2 | 20% | Dilated cardiomyopathy | [81] |
lamin A/C | LMNA | 1q22 | 6–8% | Cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlapping syndromes | [82] |
β-myosin heavy chain | MYH7 | 14q11.2 | 30% | Cardiomyopathy | [83] |
cardiac troponin T | TNNT2 | 1q32.1 | 50–60% | Cardiomyopathy (mild or no ventricular hypertrophy) | [84] |
KCNQ1 | 11p15.5-p15.4 | 9–17% | Romano–Ward syndrome (congenital long QT syndrome) | [85] | |
SCN1A | 2q24.3 | >10% | From self-limited and pharmacoresponsive to developmental and epileptic encephalopathies | [86] | |
DEPDC5 | 22q12.2-q12.3 | 3% | A range of epilepsy syndromes | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strenja, I.; Dadić-Hero, E.; Perković, M.; Šoša, I. Fentanyl and Sudden Death—A Postmortem Perspective for Diagnosing and Predicting Risk. Diagnostics 2024, 14, 1995. https://doi.org/10.3390/diagnostics14171995
Strenja I, Dadić-Hero E, Perković M, Šoša I. Fentanyl and Sudden Death—A Postmortem Perspective for Diagnosing and Predicting Risk. Diagnostics. 2024; 14(17):1995. https://doi.org/10.3390/diagnostics14171995
Chicago/Turabian StyleStrenja, Ines, Elizabeta Dadić-Hero, Manuela Perković, and Ivan Šoša. 2024. "Fentanyl and Sudden Death—A Postmortem Perspective for Diagnosing and Predicting Risk" Diagnostics 14, no. 17: 1995. https://doi.org/10.3390/diagnostics14171995
APA StyleStrenja, I., Dadić-Hero, E., Perković, M., & Šoša, I. (2024). Fentanyl and Sudden Death—A Postmortem Perspective for Diagnosing and Predicting Risk. Diagnostics, 14(17), 1995. https://doi.org/10.3390/diagnostics14171995