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Abstract: Background: This retrospective, cross-sectional study aimed to assess the functional hearing
capacity of individuals with Chronic Otitis Media (COM) using prediction modeling techniques
and the Hearing Handicap Inventory for the Elderly (HHIE) questionnaire. This study investigated
the potential of predictive models to identify hearing levels in patients with COM. Methods: We
comprehensively examined 289 individuals diagnosed with COM, of whom 136 reported tinnitus
and 143 did not. This study involved a detailed analysis of various patient characteristics and HHIE
questionnaire results. Logistic and Random Forest models were employed and compared based
on key performance metrics. Results: The logistic model demonstrated a slightly higher accuracy
(73.56%), area under the curve (AUC; 0.73), Kappa value (0.45), and F1 score (0.78) than the Random
Forest model. These findings suggest the superior predictive performance of the logistic model in
identifying hearing levels in patients with COM. Conclusions: Although the AUC for the logistic
regression did not meet the benchmark, this study highlights the potential for enhanced reliability
and improved performance metrics using a larger dataset. The integration of prediction modeling
techniques and the HHIE questionnaire shows promise for achieving greater diagnostic accuracy and
refining intervention strategies for individuals with COM.

Keywords: HHIE; hearing prediction; chronic otitis media; hearing level

1. Introduction

Chronic Otitis Media (COM) presents a significant clinical challenge as precise diagno-
sis and effective intervention require accurate assessment of functional hearing capacity. In
this era of advanced technology and data-driven healthcare, the integration of prediction
modeling techniques offers promise for enhancing our understanding of the hearing status
of patients with COM. The Hearing Handicap Inventory for the Elderly (HHIE) question-
naire, with its insightful inquiries into the impact of hearing impairment on individuals, is
a valuable tool for this assessment [1–4].

This study attempted to harness the potential of predictive models to elucidate the
nuances of the hearing status of patients with COM. Patients with COM may have pre-
conceived notions about their hearing abilities, which can bias their self-assessments. For
example, they may believe that their hearing is better than it is because of their desire to
avoid acknowledging their hearing problems. Moreover, patients with COM often adapt
to their reduced hearing capabilities by adjusting their communication strategies, such as
increasing television volumes or asking others to repeat themselves. This adaptation can
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create a false sense of adequate hearing as they have developed coping mechanisms to
manage their condition. Consequently, they may underestimate the extent of hearing loss
during the self-assessment.

This study was motivated by the need to provide assistance to COM patients who
may be unable to undergo pure-tone audiometry owing to economic, social, or structural
constraints. This study explored alternative avenues for individuals facing such limitations
using the HHIE questionnaire. Patients who, for various reasons, cannot access tradi-
tional diagnostic methods often find themselves excluded from comprehensive hearing
assessments. To address this gap, our research contemplates the applicability of the HHIE
questionnaire as a viable substitute, offering a practical solution for those for whom eco-
nomic, social, or structural factors render pure-tone audiometry impractical. Previous
studies have suggested a correlation between HHIE and pure-tone threshold average
(PTA) [5–7]. These studies demonstrate an association between HHIE and hearing ability,
proving that HHIE can serve as an objective tool. While previous studies have established
the objectivity of HHIE in assessing hearing impairment, our study sought to advance
this understanding by testing a new prediction model based on HHIE. This model aims
to provide a more nuanced and accurate assessment of hearing status in patients with
COM, potentially improving both the diagnostic process and subsequent interventions.
By leveraging the strengths of HHIE in conjunction with predictive analytics, this study
endeavored to create a robust tool that could bridge the gap for patients who are otherwise
unable to access traditional hearing assessments, such as PTA.

Through a meticulous examination of a diverse cohort of individuals diagnosed
with COM, we explored not only the quantitative aspects of their hearing but also the
qualitative facets of their experiences. Several factors affect the prediction of hearing loss
using the questionnaire [8–11]. We investigated the intricate interplay of variables that
influence hearing outcomes, including the presence or absence of tinnitus, demographic
characteristics, and the rich tapestry of responses collected through the HHIE questionnaire.

By adopting a multidimensional approach that integrates auditory biomarkers, predic-
tion modeling techniques, and the HHIE questionnaire, this study contributes significantly
to the improved assessment of serviceable hearing in individuals with COM. Through this
comprehensive framework, this study enriches the understanding of hearing impairment
and paves the way for more effective diagnostic and interventional strategies.

2. Materials and Methods
2.1. Patient Selection and Data Collection

In total, 289 patients with COM who underwent mastoidectomy at Korea University
Ansan Hospital between September 2020 and December 2022 were included in this study.
All patients had a history of surgery encompassing three types of procedures: open cavity
(OC), intact canal wall (ICW), and intact-bridge mastoidectomy (IBM). IBM and OC mas-
toidectomy differ anatomically in the management of chronic ear diseases. IBM creates a
bridge between the mastoid and external auditory canals, preserving part of the posterior
canal wall. In contrast, OC completely removes the posterior canal wall, eliminating the
external ear canal and establishing a direct opening to the mastoid. While both enhance
aeration and drainage, IBM is suitable for less extensive mastoid diseases and maintains
external ear canal integrity. OC is chosen when ongoing access and direct observation of
the mastoid are crucial because of its more extensive pathology. The choice depends on the
specific anatomical needs and the extent of disease in each patient [12–14].

Data collection was meticulously conducted using direct preoperative questionnaires
and face-to-face interviews with each patient by an attending physician. This approach
ensured a comprehensive understanding of the preoperative hearing status of each patient.
Additionally, the patients completed the HHIE questionnaire after surgery. This survey
contained 10 items that asked subjects to rate their hearing handicaps under specific
listening conditions, such as “When you meet a new friend, will your hearing loss make you
embarrassed or uneasy?” Each rating was scored as follows: 4 = always, 2 = sometimes,
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and nil for never. A higher total score indicates a greater handicap resulting from hearing
loss [15].

Individuals who lacked the ability to comprehend the questionnaire, such as those
unable to communicate in Korean, or those with difficulties expressing themselves, were
excluded. Additionally, individuals with a history of middle ear or hearing surgery were
excluded because they could not undergo hearing tests. Individuals with incomplete
postoperative follow-ups were excluded.

Given the critical need to assess the hearing status of patients with COM, especially in
regions where PTA may not be readily accessible due to economic or technical limitations,
this study aimed to develop a predictive model using the HHIE questionnaire. While PTA
remains the gold standard for hearing assessment, our model seeks to serve as a practical
alternative for screening patients in resource-limited settings and identifying those who
may require more detailed evaluations. Comprehensive data collected from the patients,
including their chronic conditions and environmental factors, were integral to this analysis
because these variables may significantly influence hearing outcomes.

2.2. Outcome and Other Variables

The main objective of this study was to demonstrate the correlation between HHIE
and PTA using novel prediction models. Within the dataset, we designated the term “better
ear” to signify the ear with a lower threshold between the left and right ears on the PTA.
For the analysis, we considered a “significant event (not better ear, hearing loss)” to have
occurred if the PTA was over 25 dB (the average of the hearing threshold levels at a set of
four frequencies: 500, 1000, 2000, and 3000 Hz); otherwise, we classified it as “normal”. We
also provided descriptions of the participants’ characteristics pertaining to their history of
smoking, hypertension, diabetes mellitus, hyperlipidemia, stroke, chronic kidney disease,
and myocardial infarction.

2.3. Statistical Analysis and Modeling

We applied both logistic and Random Forest models, and for each approach, we
established metrics including accuracy, area under the curve (AUC), Kappa, and F1 score.
These data were subsequently divided into training and test sets in a 7:3 ratio. ‘Accuracy’
illustrates the model’s capability to differentiate between normal and abnormal groups,
while AUC offers insight into the model’s ability to predict “significant events”. The Kappa
and F1 scores evaluated the extent of agreement between the two groups, highlighting
the degree to which similar values were observed by chance. Higher values of accuracy,
AUC, and F1 score indicate enhanced performance, whereas a lower Kappa value suggests
a comparatively lower agreement. Our initial steps involved the selection of pertinent
variables for the baseline model using a stepwise logistic regression method, which aided in
identifying significant variables. In the Random Forest model, the selected hyperparameters
were the number of trees and the number of variables randomly sampled as candidates for
each split. For the logistic regression model, hyperparameter tuning was conducted using
penalized maximum likelihood estimation (MLE) to optimize the penalty parameter. After
evaluating the coefficient estimates across different values of the tuning parameter λ, we
employed 10-fold cross-validation to identify the optimal λ that minimized the mean-square
error. Through this process, we conducted a comparison between actual values (labeled as
“Reference”) and predicted values (labeled as “Prediction”), leading to the computation of
accuracy, AUC, Kappa, and F1 score values for both models. This approach allowed us to
comprehensively evaluate the model’s performance and predictive capabilities. R version
4.0.3 (http://www.R-project.org) was used for the statistical analyses.

3. Results
3.1. Patient Baseline Characteristics

Table 1 presents the fundamental characteristics of patients with COM, stratified
based on their hearing levels, categorized as the “better ear” and the “not better ear”. The

http://www.R-project.org
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differentiation criteria between the two categories were determined using PTA levels. An
audiometric value exceeding 25 dB was classified as the “not better ear”, while a value
below 25 dB was categorized as the “better ear”. The cohort comprised 111 and 178 patients
by hearing level, respectively. Notably, a greater percentage of patients did not report
hypertension, diabetes mellitus, hyperlipidemia, stroke, or chronic kidney disease between
the two groups. Figure 1 illustrates the results derived from the HHIE questionnaire used
in this study. Notably, this figure highlights that among the questionnaire items, question
E-4—“Does a hearing problem make you irritable?”—garnered a notably higher percentage
of ‘yes’ responses than the other questions. Similarly, question S-8—“Do you have difficulty
hearing when someone speaks in a whisper?”—elicited a greater proportion of “sometimes”
responses compared to the other questions.

Table 1. Baseline characteristics of the study population stratified by hearing level.

Characteristics Level Not Better Ear
(>25 dB)

Better Ear
(≤25 dB) SMD

Total Number 111 178
Age (mean (SD)) 61.81 (10.52) 49.31 (15.36) 0.95

Height (mean (SD)) 159.29 (8.73) 163.73 (9.09) 0.498
Weight (mean (SD)) 62.54 (10.65) 65.44 (14.09) 0.232

BMI (mean (SD)) 24.60 (3.53) 24.28 (4.18) 0.083

Sex (%)
Female 63 (56.8) 98 (55.1) 0.034
Male 48 (43.2) 80 (44.9)

Surgery Method

OC 49 (44.1) 64 (36.0) 0.219
ICW 59 (53.2) 105 (59.0)
IBM 1 (0.9) 1 (0.6)

Other 2 (1.8) 8 (4.5)

Surgery Direction (%) Left 56 (50.5) 87 (48.9) 0.031
Right 55 (49.5) 91 (51.1)

Tinnitus (%)
No 46 (41.4) 97 (54.5) 0.264
Yes 65 (58.6) 81 (45.5)

Tinnitus Location (%)

Both 16 (14.4) 7 (3.9) 0.42
Left 27 (24.3) 35 (19.7)

None 46 (41.4) 98 (55.1)
Right 22 (19.8) 38 (21.3)

Smoker (%)
Current Smoker 15 (13.5) 33 (18.5) 0.255

Non-smoker 87 (78.4) 120 (67.4)
Ex-smoker 9 (8.1) 25 (14.0)

HTN (%)
Yes 46 (41.4) 38 (21.3) 0.443
No 65 (58.6) 140 (78.7)

DM (%)
Yes 10 (9.0) 21 (11.8) 0.091
No 101 (91.0) 157 (88.2)

Hyperlipidemia (%) Yes 11 (9.9) 30 (16.9) 0.205
No 100 (90.1) 148 (83.1)

Stroke (%)
Yes 2 (1.8) 0 (0.0) 0.192
No 109 (98.2) 178 (100.0)

CKD (%)
Yes 2 (1.8) 3 (1.7) 0.009
No 109 (98.2) 175 (98.3)

Body Mass Index, BMI; hypertension, HTN; diabetes mellitus, DM; chronic kidney disease, CKD. Standard mean
deviation, SMD.
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Figure 1. Illustration of the outcomes of the Hearing Handicap Inventory for the Elderly questionnaire
in the patient population.

3.2. Comparison of the Logistic Model and Random Forest Model

Prior to model fitting, pertinent variables were selected from the HHIE questionnaire.
Using stepwise logistic regression, we identified significant variables, as summarized
in Table 2.

Table 2. Significant questionnaire items of Hearing Handicap Inventory for the Elderly (HHIE).

HHIE Questionnaires

E-4. Does a hearing problem make you irritable?
E-5. Does a hearing problem cause you to feel frustrated when talking to members of your family?
E-14. Does a hearing problem cause you to have arguments with family members?
E-24. Does a hearing problem cause you to feel uncomfortable when talking to friends?
E-25. Does a hearing problem cause you to feel left out when you are with a group of people?
S-6. Does a hearing problem cause you difficulty when attending a party?
S-8. Do you have difficulty hearing when someone speaks in a whisper?
S-11. Does a hearing problem cause you to attend religious services less often than you
would like?
S-15. Does a hearing problem cause you difficulty when listening to TV or radio?
S-16. Does a hearing problem cause you to go shopping less often than you would like?
S-21. Does a hearing problem cause you difficulty when in a restaurant with relatives or friends?
S-23. Does a hearing problem cause you to listen to TV or radio less often than you would like?

The confusion matrices of the logistic and Random Forest models for the test set are
shown (Figure 2). When conducting a comparison between the actual values, referred
to as “Reference”, and the anticipated values, denoted as “Predicted”, the logistic model
showcased its prowess by successfully predicting 24 out of 36 events (Figure 2A). In contrast,
the Random Forest model accurately predicted 22 of the 34 events (Figure 2B).
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Figure 2. The confusion matrices of the logistic and Random Forest models for the test set. (A) The
logistic model showcased its prowess through successful predictions. (B) The Random Forest model
exhibited predictive capability through accurate predictions.

In the Random Forest method, we used the number of trees and variables randomly
sampled as candidates for each split as the hyperparameters. Although the default number
of trees is typically set to 500, we reduced this to 100 because of the small sample size to
prevent overfitting. For the number of variables randomly sampled at each split, we used
the square root of the total number of variables, resulting in three variables being used at
each split. The Out-of-Bag (OOB) estimate of the error rate was 24.88%.

For the logistic regression model, we optimized the hyperparameters using penalized
MLE to adjust the penalty. After evaluating the coefficient estimates across different values
of the tuning parameter λ, we conducted 10-fold cross-validation to determine the optimal
λ that minimized the mean-square error. The log(λ) value of approximately −3.45 yielded
the smallest error, and this value was subsequently used to fit the model and evaluate the
performances. This is shown in Figure 3.
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A comprehensive overview of the statistical metrics for the logistic and the Random
Forest models is presented (Table 3). This table summarizes the performance of each model
using key indicators, including accuracy, AUC, Kappa, and F1 scores.

Table 3. Statistical parameters of the logistic model and Random Forest model.

Model Accuracy (95%CI) Sensitivity (%) Specificity (%) AUC Kappa F1

Logistic 73.56% (63.02–82.45%) 76.92% 68.57% 0.73 0.45 0.78
Random Forest 71.26% (60.57–80.46%) 75.00% 62.85% 0.70 0.38 0.75

The ROC curves of the logistic and Random Forest models are shown (Figure 4). In
the logistic model, the accuracy was 73.56% (95% confidence interval [CI]: 63.02–82.45%),
signifying the proportion of correctly predicted outcomes. In addition, the AUC was 0.73,
indicating the capability of the model to discriminate between positive and negative cases.
A Kappa value of 0.45 signified agreement beyond chance, implying a moderate level
of concordance between the observed and predicted outcomes. The F1 score, a blend of
precision and recall, achieved a value of 0.78, reflecting the balance of the model between
accurate positive predictions and the avoidance of false positives.

Diagnostics 2024, 14, x FOR PEER REVIEW 7 of 11 
 

 

precision and recall, achieved a value of 0.78, reflecting the balance of the model between 
accurate positive predictions and the avoidance of false positives. 

 
Figure 3. Mean-Squared Error plot according to log after cross-validation in logistic regression. This 
plot illustrates that the log(λ) around −3.45 provided the smallest mean-square error. 

 
Figure 4. The ROC curve of the logistic model and the Random Forest model. In the logistic model, 
the AUC was 0.73, indicating the capability of the model to discriminate between positive and neg-
ative cases. In contrast, the Random Forest model showed that the AUC was 0.70, indicating com-
mendable discrimination ability. 

Figure 4. The ROC curve of the logistic model and the Random Forest model. In the logistic model,
the AUC was 0.73, indicating the capability of the model to discriminate between positive and
negative cases. In contrast, the Random Forest model showed that the AUC was 0.70, indicating
commendable discrimination ability.

In contrast, the Random Forest model showed an accuracy of 71.26% (95% CI
[60.57–80.46%]), which was slightly lower than that of the logistic model. The AUC was
0.70, indicating commendable discrimination ability. The Kappa value (0.38) suggested a
moderate level of agreement, although it was lower than that of the logistic model. The F1
score was 0.75, indicating harmonized performance in terms of precision and recall.
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The results indicated that the logistic model demonstrated a slightly higher accuracy,
AUC, Kappa value, and F1 score than the Random Forest model. This suggests that
the logistic model has a stronger predictive performance, encompassing both its ability
to differentiate between classes (AUC) and its agreement measure (Kappa), while also
excelling at balancing precision and recall (F1 score), when compared with the Random
Forest model.

4. Discussion

This study makes a useful contribution to the ongoing exploration of HHIE for predict-
ing hearing levels without audiograms. This innovative approach has promising practical
implications, particularly for individuals who face challenges in accessing audiological
services, such as those unable to afford visits to ENT clinics or those residing in resource-
constrained regions. By harnessing the potential of the HHIE questionnaire to predict
hearing levels, we offer a cost-effective and accessible alternative that can aid in the early
identification of hearing impairments and guide appropriate interventions. This not only
extends the reach of audiological assessments to a wider population, but also underscores
the importance of leveraging existing tools and methodologies to address the pressing
healthcare needs of diverse communities.

Previous studies have acknowledged that the HHIE questionnaire is a potent tool for
assessing the impact of hearing impairment on an individual’s quality of life, underscoring
its emotional and social dimensions beyond conventional audiometric measurements [7,16].
Our incorporation of the HHIE questionnaire in this study is part of a broader effort to
comprehensively understand the subjective experiences of patients with COM and their
connection to objective hearing levels.

Drawing on existing research, we extracted valuable insights into the significance
of this study and its implications for clinical practice [17,18]. Our study highlights the
intricate relationship between data volume and predictive performance metrics, which is a
growing concern in otolaryngology. In recent years, prediction modeling techniques such as
machine learning have gained traction for predicting hearing loss across diverse domains.
For instance, predictive models have successfully estimated hearing loss among workers
exposed to complex industrial noise, as evidenced in prior studies [19]. Furthermore,
machine learning models have been developed to predict hearing outcomes in cases of
idiopathic sudden sensorineural hearing loss, highlighting the expanding applications of
machine learning in audiology [20–22]. The application of machine learning in predicting
noise-induced hearing loss has also been explored, highlighting its growing relevance to
hearing-related research [23]. Recent investigations have focused on predicting hearing
outcomes following tympanoplasty, indicating its utility in clinical scenarios [24]. In addition
to hearing loss prediction, the potential of prediction modeling techniques such as machine
learning for diagnosing ear diseases has gained prominence in recent studies [25–29].

Our study emphasizes the importance of recognizing that in situations with limited
data availability, the full potential of predictive performance metrics may remain underuti-
lized. One potential limitation is the reliance on a relatively modest dataset of 289 patients
with COM. This study acknowledges the importance of data volume in predictive modeling,
and the observed limitations in data availability may affect the full realization of predictive
performance metrics. A larger and more diverse dataset could enhance the accuracy and
reliability of the predictive model, providing a more robust foundation for the integration
of simple machine learning techniques with the HHIE questionnaire. Additionally, the
study acknowledges the potential of dataset augmentation to address this limitation, but
the extent to which this can be achieved and its impact on model improvement remain
areas for further exploration and consideration.

The focal point of our research, the relationship between data volume and predictive
performance metrics, aligns with earlier findings, highlighting the critical role of robust
datasets in predictive modeling. Our study reinforces the need for larger and more diverse
datasets to fully reveal the predictive potential of prediction models using simple machine
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learning techniques, aligning with previous research demonstrating the value of extensive
data in enhancing the accuracy and reliability of predictive models.

5. Conclusions

Our study introduces a pioneering approach to predict hearing levels in patients with
COM using the HHIE questionnaire and machine learning techniques. The integration of
the HHIE with logistic regression and Random Forest models revealed notable findings
regarding the predictive performance of hearing outcomes.

The results highlight that the logistic regression model outperformed the Random
Forest model across key performance indicators, including accuracy, AUC, Kappa, and
F1 score. This suggests that the logistic regression model is more effective in predicting
hearing levels, balancing precision and recall, and achieving a higher agreement between
the observed and predicted outcomes.

Although the logistic regression model’s AUC fell slightly short of the desired bench-
mark, future efforts to expand and diversify the dataset present opportunities to further
enhance the model’s performance. This advancement may lead to more reliable predictive
capabilities and effective clinical assessment tools for patients with COM.

However, it is important to acknowledge the potential biases inherent in our approach.
The selection bias introduced by the specific patient population may limit the generalizabil-
ity of our findings. Additionally, the use of self-reported data from the HHIE questionnaire
introduces the risk of measurement bias, which could affect the accuracy of our predictions.
Furthermore, model bias stemming from the assumptions of the logistic regression model
and complexity of the Random Forest model may have affected the interpretability and
reliability of the results. These biases underscore the need for a cautious interpretation of
our findings and highlight the importance of future research to mitigate these limitations.
By expanding our dataset, incorporating more diverse patient populations, and exploring
advanced modeling techniques, we can further enhance the robustness and applicability of
our predictive models. As we continue to explore the untapped potential of the HHIE, ad-
dressing these biases will be critical for developing a more inclusive and effective approach
to hearing level assessment. This will ultimately benefit individuals globally and foster
greater equity in healthcare access, paving the way for a more precise and comprehensive
assessment of hearing in patients with COM.

In summary, our study successfully illustrated the potential of the HHIE questionnaire
combined with machine learning techniques to predict hearing levels without relying on
traditional audiograms. These results highlight the innovative nature of our approach and
its potential for advancing the field of otology. Continued exploration and refinement of
this method will contribute to more inclusive and effective hearing assessments, benefiting
patients globally and promoting greater equity in healthcare access.
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