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Abstract: The growing integration of software in healthcare, particularly the rise of standalone
software as a medical device (SaMD), is transforming digestive medicine, a field heavily reliant on
medical imaging for both diagnosis and therapeutic interventions. This narrative review aims to
explore the impact of SaMD on digestive healthcare, focusing on the evolution of these tools and
their regulatory and ethical challenges. Our analysis highlights the exponential growth of SaMD
in digestive healthcare, driven by the need for precise diagnostic tools and personalized treatment
strategies. This rapid advancement, however, necessitates the parallel development of a robust
regulatory framework to ensure SaMDs are transparent and deliver universal clinical benefits without
the introduction of bias or harm. In addition, the discussion highlights the importance of adherence to
the FAIR principles for data management—findability, accessibility, interoperability, and reusability.
However, enhanced accessibility and interoperability require rigorous protocols to ensure compliance
with data protection guidelines and adequate data security, both of which are crucial for effective
integration of SaMDs into clinical workflows. In conclusion, while SaMDs hold significant promise
for improving patients’ outcomes in digestive medicine, their successful integration into clinical
workflow depends on rigorous data protection protocols and clinical validation. Future directions
include the need for adequate clinical and real-world studies to demonstrate that these devices are
safe and well-suited to healthcare settings.

Keywords: software; medical device; gastroenterology; digestive healthcare; artificial intelligence

1. Introduction

A major shift that defines this century has been the increasing reliance on software in all
spheres of life, and healthcare has not been exempt from this movement. The digitalisation of
healthcare has brought major changes, particularly in medical imaging, resulting in significant
benefits. The software used in healthcare may be integral to, or used in, the manufactur-
ing/maintenance of a medical device, or as stand-alone software as a Medical Device (SaMD).
In this manuscript, we will focus on SaMDs, specifically those intended for medical purposes
such as the diagnosis, prevention, monitoring, or treatment of disease [1]. (https://www.fda.
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gov/medical-devices/digital-health-center-excellence/digital-health-terms; https://www.
ema.europa.eu/en/human-regulatory-overview/medical-devices, accessed on 17 July 2024),
with an emphasis on their application in digestive medicine.

There are several examples where SaMDs are making a significant impact in digestive
healthcare, contributing to improved diagnosis, e.g., artificial intelligence (AI) assisted en-
doscopy, virtual colonoscopy software, AI-powered analysis of stool samples, or enhanced
patient treatment and management (monitoring digestive health, dietary management,
telemedicine platforms, for remote consultations) [2–4]. These applications offer the po-
tential for early detection, more personalized care, enhanced patient engagement, and
streamlined workflows [5], providing both patients and healthcare professionals with pow-
erful tools to achieve earlier diagnoses, better treatment options, and, ultimately, improve
patient outcomes [6,7].

The emerging field of AI and big data, marked by a rapid technological advancement,
presents a unique challenge: balancing innovation with ethical considerations, while
ensuring everything operates for the benefit of humanity. Due to the field’s early stage, its
full potential remains speculative, which has made the development of effective regulatory
frameworks inherently complex. The ethical and regulatory problematic should be a key
concern for gastrenterologists, as addressing it will help build ethical oversight while
simultaneously facilitating the continued progress of technological development.

This manuscript provides the first in-depth analysis of the regulatory and ethical
challenges of SaMDs in digestive healthcare, highlighting both the current state of the
art and the complexities of their implementation. The structure of the manuscript is as
follows: we will first describe the evolution of these devices, assess the barriers they must
overcome, revisit key technologies that form the foundation of these devices, discuss their
integration into clinical practice, and examine their potential clinical impact. We will then
explore the regulatory and ethical considerations they must adhere to. Finally, we will
explore future innovations and advancements that may shape the next generation of SaMD
in digestive healthcare.

2. Evolution of SaMDs in Healthcare
2.1. Milestones of SaMDs in Healthcare

The first inclusion of software into the clinical environment likely dates back to the
early 1950s, related to administrative tasks (hospital billing/accounting) and data manage-
ment (recording/storage of patient information). Over time, the latter has evolved into
more sophisticated applications, such as today’s Electronic Health Records (EHRs) [8,9].
Developments in informatics have enabled medical software to evolve dramatically. Since
the introduction of the first EHRs (software designed for laboratory analysis and other
clinical tasks) in the 1980s, medical software has advanced tremendously, now encompass-
ing diagnostic tools and decision support systems, software for image analysis (X-rays,
MRIs, etc.), telemedicine and remote patient monitoring, and even the education and
training of medical professionals.

As a result, software has become an essential part of modern medicine, driving more
accurate diagnosis and more effective patient management. Digital imaging, in particular,
has revolutionized the field of medical diagnostics, offering significant advancements in
resolution and image quality. These improvements not only enhance diagnostic efficiency
but also contribute to better patient outcomes. Additionally, the enhanced capacity to store
and share digital images has proven invaluable for training and education. These develop-
ments are particularly relevant to digestive healthcare, a speciality that relies heavily on
imaging techniques for diagnosis and monitoring. Digitalization has introduced advanced
informatics solutions for managing and analysing medical images, further benefiting this
field. Another advantage of digital images is the ability to use semi-automated and even
fully automated analytical software tools, which can be integrated into SaMDs.

https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-terms
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-terms
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-terms
www.ema.europa.eu/en/human-regulatory-overview/medical-devices
www.ema.europa.eu/en/human-regulatory-overview/medical-devices
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2.2. Overview of Significant Breakthroughs Specific to Digestive Health

The most important breakthrough in digestive healthcare occurred in the early
20th century with the development of gastroscopy and colonoscopy. These two procedures
have since become the cornerstone of this specialty, as they enable the direct visualization
of the gastrointestinal (GI) tract, allowing for the detection of lesions and changes in these
tissues [10]. These techniques were further improved by the incorporation of fibre optics,
which enhance image quality, and the advent of laparoscopic surgery towards the end
of the century, which introduced minimally invasive procedures. These advancements
significantly expanded the impact of these innovations in managing digestive problems.

The benefits of minimally invasive interventions have been further enhanced by the
introduction of capsule endoscopy (CE), arguably the most important breakthrough since
the initial development of gastroscopy techniques [11]. CE is a non-invasive and painless
technique that allows the visualization of the entire small intestine, including regions
inaccessible to standard techniques. As an outpatient procedure, CE led to improved
detection rates, particularly for conditions like Crohn’s disease (CD) or obscure GI bleeding
(bleeding from an unknown source) [12–14].

CE also produces digital images with superior resolution, which can be analysed
post-procedure, offering flexible assessment options, and they can be easily stored and
shared. Given the enormous amount of data generated by this technique, its potential can
be maximized by integrating automated image processing and analytical methods into the
CE routine.

The rise in the use of software in digestive healthcare has been further bolstered by the
incorporation of the latest developments in the field, including that of Artificial Intelligence
(AI) [15,16].

2.3. The Rise of Software as a Medical Device (SaMD) in Digestive Healthcare

The incorporation of digital images and the increased use of CE in digestive healthcare
has been accompanied by a rising application of SaMD. SaMD may be incorporated into
the endoscopy apparatus, enabling the control of the capsule or image capture, assisting in
lesion detection, or assessing the quality of bowel preparation—a fundamental factor for
ensuring diagnostic efficiency. The integration of advanced algorithms like SaMD has led
to exciting developments, including significant enhancements in endoscopic procedures.
Among these advancements, the incorporation of AI algorithms—especially machine
learning (ML)—is particularly noteworthy. These AI-driven methods enable real-time
image analysis, thereby improving both accuracy and efficiency [17]. Furthermore, by
reducing dependence on the endoscopist’s experience and visual acuity, which can vary
considerably, these algorithms help standardize and enhance diagnostic precision.

Another exciting development associated with the introduction of specific software
is virtual colonoscopy, where software generates a detailed 3D image of the colon from
X-ray images obtained through a CT scan [18]. This procedure is relatively fast and does
not require sedation. As a non-invasive technique, it is effective at detecting abnormalities
such as polyps or lesions, although it may not be well suited for certain types of lesions.
Moreover, unlike traditional colonoscopy, it is not possible to obtain a biopsy for further
investigation, and the exposure to radiation (albeit low-dose) may not be appropriate in
all cases.

3. Data Science Technological Framework
Description of the Key Technologies Underpinning SaMD—AI, Machine Learning, Big Data
Analytics, Cloud Computing

Since the initial appearance of SaMDs in digestive healthcare, these technologies have
evolved considerably, with perhaps the most important changes in recent years being
the introduction of AI and the advances in computational capacity, particularly in cloud
computing and Big Data analytics (e.g., the vast accumulation of digital images). The term
AI covers a range of disciplines, and in the context of medical imaging it is more specifically
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on the ML class of AI tools most commonly used to recognise patterns in complex datasets
(see Figure 1 [17]). ML initially involves setting up an algorithm (including data preparation,
feature engineering, and the selection of relevant features) to evaluate important elements
in images. The algorithm then identifies the combination of features that best classify the
image or defines a metric for a specific image region.
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Figure 1. (A) The types and hierarchy of AI algorithms suitable for use in digestive healthcare
applications. (B) Software tools applicable in digestive healthcare can be categorized as either Locked
SaMDs (static devices which produce the same result when given the same input—e.g., PillCam’s
Top 100) or AI-based SAMDs (which can learn and adapt, potentially improving their performance
over time—e.g., Medtronic GI Genius).

Deep Learning (DL) is a sub-class of ML based on artificial neural networks, is ex-
tensively applied to image analysis due to its artificial resemblance to neurobiological
processes, and is inspired by the activity of the human visual cortex. DL performs well in
medical applications, accurately detecting and classifying lesions and disease characteris-
tics, thereby enhancing diagnostic efficiency. Multi-layered convolutional neural networks
(CNNs) are the DL algorithms best adapted for analysing clinical images. They use mul-
tiple layers to progressively extract more detailed features from images, excelling in the
analysis, differentiation, and classification of medical images and videos. ML models can
be classified as “supervised” or “unsupervised”, with the former involving attempts to
predict a known output (e.g., protruding lesion in the small bowel) that are more relevant
to current applications in gastroenterology [15,16]. Nevertheless, unsupervised ML holds
significant potential in the field of drug discovery in digestive healthcare, as well as in
leveraging Big Data in pivotal areas like inflammatory bowel disease (IBD). Given the
potential influence of ML in the future, clinicians who rely on medical images in their work
must become familiar with how ML functions.

SaMDs are closely linked to Big Data analytics, primarily due to the large amount of
data that can be collected from patients (e.g., through EHRs, wearable devices, sensors, or
even environmental factors) or through the device itself (e.g., performance metrics, usage
patterns, and real-time readings). Meaningful information can be extracted from such data
using Big Data analytic tools, identifying patterns and trends in patient health, predicting
potential health risks or complications, and optimizing the performance of SaMDs [19,20].
Indeed, Big Data play a crucial role in training ML algorithms used with SaMDs, aiding the
analysis of patient data for disease diagnosis and risk prediction, personalizing treatment
recommendations, or adapting SaMD use based on real-time data analysis [21]. In summary,
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Big Data analytics can significantly enhance the performance of SaMDs, thus improving
patient outcomes.

It is essential to distinguish between locked SaMDs and AI-based SaMDs in this
context. Locked SaMDs are static and produce consistent results from the same inputs,
while AI-based SaMDs are dynamic, capable of learning and adapting over time, and
potentially leading to ongoing improvements in functionality and performance.

4. Clinical Applications and Impact
4.1. Case Studies Illustrating the Clinical Impact of SaMD on Patient Care and
Treatment Outcomes

A fertile area for the recent development of SaMDs in digestive healthcare has been
the design of AI-based tools to analyse endoscopy images, both in real-time and off-line.
This disruptive technology can aid in detecting abnormalities such as polyps or lesions,
offering greater accuracy and sensitivity than traditional methods. It can also leverage
Big Data in conjunction with information from EHRs, generating an unparalleled set of
efficient resources (see Table 1). There is increasing evidence of the potential of AI tools to
enhance the performance and diagnostic accuracy of GI diagnostic procedures, the future
of which will undoubtedly involve ancillary SaMDs.

Table 1. Examples of emerging technologies currently being developed as SaMDs in digestive Healthcare.

Areas of GI Action Challenges AI-Based SaMD Potential Applications

Capsule Endoscopy

The extensive duration of
capsule endoscopy videos
(specifically if considering

capsule panendoscopy) leads to
high reading burden, increasing

the probability of
missed diagnoses

Automated video analysis
software to highlight areas of

interest, reducing manual
review time

Detection of gastrointestinal
bleeding, monitoring

inflammatory bowel disease,
and colorectal cancer (and
panendoscopy) screening

Cholangioscopy

Differentiating benign from
malignant biliary strictures is

complex, with a significant
inter-observer variability and

low biopsy precision, even with
image guidance

Providing real-time malignancy
probability and lesion
localization heatmaps

Improved characterization of
biliary strictures, potentially

aiding in the diagnosis of
high-risk patients (e.g., primary

sclerosing cholangitis)

Endoscopic Ultrasound

Identification and
characterization of pancreatic
lesions are challenging, with

limited accuracy

Real-time diagnostic
suggestions and malignancy

risk assessment

Enhanced evaluation of
pancreatic lesions, potentially
improving treatment planning

Device Assisted
Enteroscopy

Unique diagnostic and
therapeutic properties for
comprehensive GI tract

assessment

Identification and classification
of lesions during the procedure

Facilitates differential diagnosis
and guides therapeutic

interventions

High Resolution
Anoscopy

Assessing benign and
precancerous anal canal lesions
is difficult, requiring significant

expertise and long
learning curve

Real-time detection and
differentiation of high-grade

squamous intraepithelial lesions

Enhances evaluation of anal
canal lesions, making the
treatment of precancerous

lesions more efficient

High Resolution
Manometry

Achieving consistent and
accurate digestive motility

assessments is challenging due
to technical complexity and
varied interpretation skills

Streamlines diagnostic protocol
execution, and interprets

motility patterns with accuracy

Improves diagnosis and
management of digestive

motility problems

Taking CE as an example, while AI shows promise for lesion detection, challenges re-
main in real-time analysis and balancing sensitivity and specificity, as higher sensitivity may
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lead to more false positives. Nonetheless, the future looks promising for AI integration in
CE. Indeed, AI applications addressing a variety of issues in this area have been evaluated,
such as the detection and classification of various types of lesions (e.g., ulcers/erosions,
vascular lesions, protruding lesions, and blood), not only in the small bowel but also in
the colon [22–24]. Furthermore, DL approaches have been employed to develop scoring
systems that help stratify risk, and predict prognosis or response to treatment, for example
by predicting patient survival after hepatocellular carcinoma resection [25] or identifying
which IBD patients might benefit from biological therapies [26]. Similarly, AI can be used
to evaluate parameters such as the quality of bowel preparation or of the endoscopic im-
ages obtained. As a proof of concept, a pioneering AI solution was developed to detect,
differentiate, and stratify the haemorrhagic risk of SB lesions in CE images, marking an
important step towards the incorporation of AI in CE. It should be noted at this point that
the possible use of AI algorithms for the automated analysis of endoscopy images recently
led to the approval of the first system for clinical use by regulatory agencies [3,27].

Recent interest has also emerged for whether SaMDs can be used to analyse images of
stool samples, flagging potential issues like blood or parasites for more rapid diagnosis
and perhaps enhancing diagnostic accuracy. Indeed, a system was recently proposed
to detect occult blood and analyse the gut microbiome through stool samples collected
from toilets [28]. Software can be trained with large datasets of stool images to identify
these abnormalities, which can then analyse user-uploaded images and flag potential
issues. Significantly, such tools might facilitate remote stool analysis, improving access
to healthcare in underserved areas. The recent FDA approval of a SaMD in the GI space,
Geneoscopy’s ColoSense test of RNA markers for colorectal cancer screening, paves the
way for future AI-based tools for stool analysis [29].

Virtual colonoscopy already uses software to analyse the 3D model of the colon gen-
erated from CT scans, which can then be examined for the presence of polyps and other
abnormalities, e.g., Siemens Healthineers syngo.CT Colonography [29] and the Vitrea
Workstation by Canon Medical Systems [30]. This approach is fast, avoiding the need
for sedation, with a lower risk of bleeding or perforation. It may also be a better option
for patients with some health conditions that make traditional colonoscopy risky. How-
ever, virtual colonoscopy may miss some polyps, especially flat ones, and a conventional
colonoscopy will still be necessary to confirm potential alterations and to obtain tissue
biopsies if required.

4.2. The Integration of SaMDs into Clinical Workflows and Healthcare Systems

In terms of GI diseases, there is clear evidence that incorporating SaMDs into the
clinical workflow can improve patient diagnosis, treatment, and management. There
are several ways this can occur, and these methods are constantly being explored and
improved, with some SaMDs being currently in use in the clinical practice as part of
imaging systems, as explained above. A notable area reflecting this is the development of
mobile apps to monitor digestive health [31]. These apps allow patients to track symptoms,
bowel movements, and medication adherence, empowering patients to manage their health.
SaMDs can also help create personalized meal plans, promoting gut health and managing
digestive issues like IBD.

SaMD-based telemedicine platforms facilitate remote consultations with gastroenterol-
ogists, improving patient access to care, especially for those who are far from specialized
settings or have limited mobility. As a result, these tools can help reach more accurate
and rapid diagnoses or earlier interventions, potentially leading to more personalised
treatment options and enhance their outcomes. These apps generally incorporate edu-
cational software, empowering individuals to take a more active role in managing their
digestive healthcare, and they can be readily coupled to AI-powered chatbots for symptom
evaluation and triage.

In addition, the use of SaMDs to manage administrative tasks and data handling at
healthcare facilities should not be ignored, as this can also improve clinical outcomes and
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reduce costs. Overall, SaMDs represent powerful tools for healthcare professionals and
patients that are revolutionizing digestive healthcare, leading to earlier diagnoses, better
treatments, and, hence, improved patient outcomes. In the near future, we are likely to see
many advances in this field, including tools designed to perform microbiome analysis to
optimize personalized gut health [32].

4.3. Technical Considerations in Designing SaMDs for Digestive Health—User Interface,
Interoperability, Data Management

Several aspects must be considered when designing SaMDs, the first of which is the
need for privacy and safety by design, while usability is essential for acceptability and
adequate usage. Requirements should be defined with those in mind.

The interfaces of SaMDs must be straightforward and easy to navigate, even for those
with limited experience. This can be achieved by using intuitive icons in a logical layout,
clearly understood terms, and by avoiding the presentation of excessive information on the
screen. The clarity of the interface can be enhanced by allowing the user to customize what
they see according to their needs. User research—the process of understanding the needs,
behaviours, and attitudes of users to inform the design and development of products or
services—can have a crucial role in defining functionalities and interfaces. Regarding safety,
prompts and warnings should be used to avoid common and critical mistakes. In addition
to back-end security, access to the interface, data storage, and recall must be controlled.
Mechanisms must also be in place through the interface that can overcome or limit the
problems associated with the system, software, or networking malfunctions.

Interoperability is a crucial feature of a SaMD because it allows these apps or devices
to work seamlessly with different devices and systems. Therefore, SaMDs should use
standard communication protocols, data formats (contents), and clinical codification (ter-
minologies) systems that enable them to exchange and use information safely, securely,
and reliably across various platforms. This standardization reduces errors and prevents
adverse events (AEs), while ensuring that the datasets used are more varied and better
reflect the population as a whole. Sharing data to ensure interoperability also increases the
need for strong data security measures. Ensuring that SaMDs can work across systems in-
volves many stakeholders, including governing bodies like the EMA (European Medicines
Agency) and the FDA (U.S. Food and Drug Administration), hospitals, healthcare providers,
manufacturers, standards development organizations, and other interested parties.

In 2017, the FDA issued guidance (Design Considerations and Pre-market Submission
Recommendations for Interoperable Medical Devices) on creating safe, effective, and interop-
erable medical devices [33]. This document outlines design considerations for interoperability
and specifies information required for premarket submission and labelling. Reliable interoper-
able SaMDs necessitate standardized methods that function effectively across all healthcare
environments. These harmonized standards may be specific to healthcare, such as the DI-
COM standard (National Electrical Manufacturers Association (NEMA) PS 3.1—2011 Digital
Imaging and Communications in Medicine) for medical imaging and related data [34]. Ad-
ditionally, they can be more broadly applicable standards that extend beyond imaging and
data management, including FHIR and HL7 (Fast Healthcare Interoperability Resources and
Health Leven Seven, respectively—comprehensive guidelines for data exchange), OMOP
(Observational Medical Outcomes Partnership—standardizes data for observational research),
and IHE (Integrating the Healthcare Enterprise—integration and interoperability between
different healthcare systems—https://www.ihe.net/, accessed on 26 June 2024). CDIS (Clin-
ical Data Interchange Standards Consortium—https://www.cdisc.org/about, accessed on
26 June 2024) also plays a critical role by establishing standards for clinical research data.

As indicated above, in terms of data management and handling, it is critical that the
issue of security and privacy is taken into account when designing SaMDs. These tools
may collect and store sensitive patient information, images, and/or data from EHRs, which
are not only easy to reproduce but also vulnerable to remote access and to manipulation.
This is particularly relevant given the economic incentives for cyberattacks on health-

https://www.ihe.net/
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related organisations. Hence, robust cybersecurity measures must be implemented to
protect patient data [35]. Measures like de-identification should help maintain privacy,
despite the ease with which de-identified data can be re-identified [36]. However, the
widespread introduction of SaMDs inherently carries a privacy risk, which might be more
acceptable if the benefits of these tools were equally distributed, which is not currently
the case. The user interface is a component with increased risk, requiring strong security
measures like encryption and access controls. In this sense, the FAIR principles for data
management (findability, accessibility, interoperability, and reusability) should be adhered
to [37]. Indeed, the ability to track user actions and data changes within the SaMD through
adequate log recording is crucial for maintaining a clear record and ensuring accountability.
In addition to these measures, communications and centralized databases also represent
high-risk areas. To mitigate risks associated with centralized databases, techniques like
pseudo-anonymization can be useful.

Another important issue associated with all SaMDs is the need for transparency and
traceability. The algorithms that drive these devices must be clear and transparent so that
the way they reach their decisions can be readily understood, thereby facilitating trou-
bleshooting when necessary. The traceability of data when using SaMDs and during their
development is also a mainstay in terms of their accountability. The need for transparency
and traceability places significant demands on data management practices. Personal data
used by SaMDs need to be managed safely and securely, and obtaining consent to access
and use personal data is a key issue. This is especially challenging given the large volumes
of data used to train and validate DL tools. Standard consent models, like opt-in (users
actively agree to data use) or opt-out (users must actively decline data use), may not be
sufficient given the volume and complexity of the data involved [38]. To introduce AI tools
into healthcare effectively, especially in areas like digestive healthcare, novel data protection
approaches may be necessary. Traditional data protection methods may not be adequate
due to the dynamic and large-scale nature of the data involved. For example, it may be
possible to perform certain data processing tasks using non-identifiable or pseudonymized
data within centralized databases, or by employing federated models (including federated
learning), which reduce the need for direct communication of individual data across diverse
healthcare entities.

5. Regulatory and Ethical Considerations
5.1. Global Regulatory Frameworks for SaMD, with Examples from the FDA, EMA, and
Other Bodies

The regulatory framework for SaMDs is still evolving, as SAMDs have yet to be fully
mature and the regulatory frameworks vary worldwide. The International Medical Device
Regulators Forum (IMDR—https://www.imdrf.org/, accessed on 26 June 2024) is an in-
ternational group working to harmonize SaMD regulation. They develop guidelines to
support innovation and ensure SaMDs are safe and effective globally. IMDRF has estab-
lished guidelines regarding key definitions for SaMDs, a framework for risk categorization,
clinical evaluations, and several other relevant issues.

In the U.S., lower risk SaMDs may go through a more streamlined pre-market notifica-
tion (510(k)) process, while higher-risk devices require more rigorous premarket approval
(PMA) (see Figure 2).

In Europe, regulations from the Medical Device Coordination Group (MDCG—
https://health.ec.europa.eu/document/download/dbb9434c-a5ee-497b-be88-44e15ba3
14e2_pt?filename=md_tor_wg7_nt_en.pdf, accessed on 26 June 2024) also clarify SaMDs
by risk and require specific assessments for medium- and high-risk devices. The Euro-
pean Commission has also developed EUDAMED, an IT system designed to implement
Regulation (EU) 2017/745 on medical devices and Regulation (EU) 2017/746 on in vitro
diagnostic medical devices, which include SaMDs.

https://www.imdrf.org/
https://health.ec.europa.eu/document/download/dbb9434c-a5ee-497b-be88-44e15ba314e2_pt?filename=md_tor_wg7_nt_en.pdf
https://health.ec.europa.eu/document/download/dbb9434c-a5ee-497b-be88-44e15ba314e2_pt?filename=md_tor_wg7_nt_en.pdf
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potential risk they pose to patients. This risk can range from benign to life-threatening, influencing
the level of scrutiny and regulatory demands necessary for approval. Here is a detailed overview
of the different classes and their associated requirements, as well as the underlying logic of these
classifications. We present three systems of categorization, namely the American (US), the European
(EU), and the Canadian systems.

For SaMDs intended for treatment, diagnosis, or driving clinical management, a
notified body must fully certify the device. Specific SaMD regulation in Europe include
MDCG 2019-11, which offers guidance on the qualification and classification of software in
Regulation (EU) 2017/745—MDR, and MDCG 2023-4, which provides guidance on medical
device software intended to work in combination with hardware or hardware components.
There is also a movement in Europe to adopt the principles set out by the IMDRF to regulate
SaMDs, harmonizing these regulations globally.

Unlike traditional locked SaMDs, which do not change with use and always produce
the same result when given the same input, AI-based SaMDs can learn and adapt, po-
tentially improving over time. The transformative potential of such tools led the FDA to
develop a framework for their regulation [39], contemplating an important shift towards a
total product lifecycle (TPLC) approach that permits iterative improvement while ensur-
ing patient safety. EUDAMED similarly addresses the entire lifecycle of medical devices,
including SaMDs. This framework includes:

1. Setting a clear quality standard and best practices throughout the product’s lifecycle;
2. Planning for how changes to the product will be managed;
3. Ensuring transparency and evaluating real-world performance through post-market studies.

5.2. Specific Challenges and Requirements for SaMD in Digestive Healthcare

In digestive healthcare, SaMDs face some unique regulatory challenges and require-
ments relative to traditional medical devices. The specific regulatory requirements for
SaMDs depend on their risk classification, with more stringent requirements applied
to higher-risk devices used to diagnose serious conditions than to lower-risk tools for
monitoring digestive health (see Figure 2 and Table 2). Many SaMDs in digestive health-
care aim to improve diagnostic accuracy and efficiency, and now incorporate AI based
tools. Significantly, most AI-enabled medical devices listed by the FDA and marketed
in the USA focus on lesion detection in the GI tract, having met the FDA’s premar-
ket requirements, which include a review of the devices’ overall safety and effective-
ness (https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices#resources, accessed on
26 June 2024). This novel and rapidly evolving technology requires agile regulatory frame-
works that can adapt to these innovations, placing demands on developers to stay informed
of the latest regulatory updates and guidance documents.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices#resources
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices#resources
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Table 2. Distinction between SaMD categorization classes is based on their purpose, whether for
information management, driving decisions, or treatment/diagnosis.

Class I Class II Class III Class IV

Informs

NA

Only retrieves
information, and

organises and
optimizes data

Serious

Provides important
information, although it

does not lead to
major decisions

Critical

Provides important
information, including

urgent situations

Critical

Provides important
information, including

urgent or
life-threating situations

Drives NA

Non-Serious

Aids decisions for minor
health concerns, without

significant impact

Serious

Aids decisions for
significant, non-life-

threatening concerns

Critical

Aids decisions for
significant,

life-threatening concerns

Treat/Diagnoses NA

Non-Serious

Assists with minor health
concerns

Serious

Assists with significant,
non-life-threatening

concerns

Critical

Assists with urgent,
life-threatening

conditions

Regulatory
Requirements

Mimimal regulatory
oversight Some pre-market review Significant

pre-market review Extensive pre-market

5.3. Ethical Concerns Including Data Privacy, Security, and Patient Consent

The ethical issues faced by SaMDs are pertinent to both AI-enhanced and non-AI
SaMDs, whether used in digestive healthcare or other clinical settings. Data security
and privacy are among the most critical ethical concerns (as mentioned above), given
the sensitive nature of SaMDs’ patient information (images obtained through specific
examinations and data obtained from EHRs). Robust data security measures must be
implemented to protect patient data from unauthorized access, breaches, or manipulation,
and must comply with regulations regarding data protection, such as the EU General Data
Protection Regulation (GDPR 2016/79: https://eur-lex.europa.eu/eli/reg/2016/679/oj,
accessed on 26 June 2024) or the USA Health Insurance Portability and Accountability Act
(HIPAA: https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-
1996, accessed on 26 June 2024).

It is essential to avoid any potential for SaMDs to introduce bias into the clinical
decision-making process. Bias can be introduced during the training of these devices
or through decisions made during their design [40–44]. By nature, ML-based devices
identify patterns in the data used to train and validate them, which shapes their perfor-
mance. Therefore, the value of these tools depends strongly on the quality of the data used
to train. If these datasets are incomplete or unrepresentative, the consequences can be
significant [45,46]. For example, using a diagnostic test on patients who do not correspond
to the target population for which it was designed can introduce spectrum bias [16]. Disad-
vantaged groups may be underrepresented in early-stage evidence-based medicine [47].
Another type of bias to avoid is overfitting, which occurs when models are too finely tuned
to the training data and do not function correctly with other datasets. Using larger and
more diverse datasets for training may help avoid this bias by preventing overtraining and
simplifying the models themselves. Thus, initiatives will be necessary to ensure the SaMD
development complies with ethical standards, such as those aimed at preventing bias in
data and algorithms [48,49].

Transferability to other settings is another critical issue for SaMDs and AI tools [50],
ensuring that an algorithm or device developed in one environment performs equally well
in another, even if it needs to be retrained on data from the new environment. SaMDs must
be carefully designed and validated with consideration for different contexts before they
are used on routine clinical care [51], and there must be transparency regarding the data

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996
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sources used to develop these tools. Clinical validation should demonstrate the accuracy,
safety, and effectiveness of SaMDs for digestive health applications by comparing them to
traditional diagnostic methods already in clinical use. Moreover, SaMDs must integrate
seamlessly with the existing IT environments in hospitals and clinics, which might pose
challenges given the current variation in compatibility and data standards.

Emergent blockchain technologies could provide a solution to issues surrounding
privacy and data handling in healthcare, offering enhanced traceability and efficient man-
agement of clinical information [52]. Blockchain technology enables vast numbers of
medical records to be securely stored in a decentralized and ordered manner [53], over-
coming the barriers to sharing clinical data associated with local storage. The protection
afforded by blockchain technology ensures immutability and can help overcome the frag-
mentation of patients’ medical records, benefiting both patients and clinicians. Indeed, this
could also favour secure communication between healthcare professionals, even across
centres, at a radically lower cost. Blockchain offers trustworthiness, enhanced privacy, and
data traceability. Federated systems, which keep data local and process it in situ, offer an
additional layer of data security and privacy.

6. Challenges and Barriers
6.1. Development Challenges

Some technical challenges must be considered and addressed when developing useful
SaMDs, such as accuracy, reliability, and their dependence on high-quality data. The
primary use of SaMDs in digestive healthcare is for image analysis to identify significant
visual cues. To ensure these tools are sufficiently accurate, they must undergo extensive
validation, particularly using real-world data. This is especially important for ML/DL
models to ensure they are valid and can be applied to new datasets. The accuracy of a SaMD
cannot be defined by a single measure, but is instead a combination of factors assessed
during its development and validation. The primary factor is how well the SaMD fulfils
its intended purpose, such as the accuracy with which a SaMD designed to detect polyps
during colonoscopies identifies such lesions [54]. Clinical validation requires the SaMD to
be tested with real-world data from clinical studies, comparing its outputs to established
diagnostic methods [55]. Specific metrics can be used to assess accuracy, depending on the
SaMD’s function: for image analysis tools, this includes the ability to correctly identify true
positives (sensitivity) and to correctly identify true negatives (specificity) [56]. In addition,
an accurate SaMD should produce consistent results when applied to similar datasets,
regardless of the user or setting. The requirements for accuracy might be established
based on the SaMD’s risk category, with higher-risk SaMDs requiring more stringent
validation and higher thresholds of accuracy. Overall, the accuracy of SaMDs is multi-
faceted, ensuring the software performs its intended medical function reliably and that it
delivers results aligned with established diagnostic methods.

When considering the reliability of SaMDs, it is necessary to contemplate different
issues to ensure SaMDs perform as expected and minimize risks to patients. SaMDs must
perform consistently, repeatedly producing the same result for a given input, regardless
of the user or environment [57]. In addition, a reliable SaMD should have a low failure
rate, rarely malfunctioning or producing incorrect outputs, and it must be available for use
when needed, with minimal downtime for maintenance or due to technical issues [33,58].
Along similar lines, reliability also involves recovery mechanisms, with minimal data loss
or disruption to patient care in the case of failure, possibly through automatic back-ups or
fail-safe modes to ensure data integrity even in the case of errors [57]. Indeed, regulatory
bodies establish accuracy and reliability requirements based on the SaMD’s risk classi-
fication, with stricter demands placed on higher-risk devices (those involved in critical
diagnoses or treatment decisions) [56,59]. These features must be anticipated in the design
and testing phases [33,56], and SaMDs must incorporate robust cybersecurity to protect
from cyberattacks that could compromise functionality or patient data integrity [35,60]. In
addition, the common lack of interoperability in clinical systems necessitates the devel-
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opment of mapping between various standards, or even proprietary systems, to facilitate
data access.

6.2. Clinical Barriers Including Clinician Adoption, Training Needs, and Patient Acceptance

Beyond development/technical issues, several other challenges may hinder SaMD
uptake into clinical workflows. One challenge is related to their ability to communicate
and integrate with different systems used to store and access clinical data (e.g., EHRs),
and even their capacity to communicate and integrate with other SaMDs. A failure in
this sense can make it challenging to gain a full vision of patient health, necessary to
achieve the maximum benefit from these tools [33,58]. The development of harmonized
and interoperable frameworks and protocol is mandatory to ensure the effective integration
of SaMDs and HER in clinical practice.

Beyond interpretability [41,42,61,62], explainability [63,64] is also important when
implementing SaMDs. An explainable device can be readily understood [65], avoiding
“black-box medicine” when it is unclear how clinical decisions are made [66]. The re-
sponsibility of clinicians for their decisions implies they can usually provide coherent
explanations as required. Some lack of explainability can be tolerated in medicine—aspirin,
for example, was prescribed as an analgesic for almost a hundred years without the full
understanding of its mechanism [67]. This raises the question: can SaMDs be used without
fully understanding how they reach a conclusion? As patients become more involved in
their own healthcare, the demands on clinicians to be able to explain recommendations
increases, especially as shared decision-making becomes more frequent. Moreover, some
level of understanding is needed for physicians to recognize the limits of these tools and
when they might be acting irregularly. Explainable AI models can be important to the
physician’s understanding of which region is most likely to contain a lesion or be classified
into a specific category [45,68].

The introduction of SaMDs and AI tools into medicine also impacts the attribution
of responsibility for treatment and adverse outcomes [45]. There is currently a gap in the
determination of legal responsibility if SaMD use causes harm [69], making it difficult to
establish autonomy and agency [70], and whether errors or failures have occurred. Respon-
sibility when using SaMDs is typically shared between physicians and their institutions,
but what about the developers? While the physician may be held accountable, perhaps no
one acted improperly, or the SaMD behaved unexpectedly. In cases where SaMD performs
its tasks reliably, but still fails, the clinician may be forced to take responsibility for decisions
they did not directly make. This uncertain responsibility may affect the patient’s trust
in their clinician [71], particularly as clinicians increasingly rely on SaMDs, shifting trust
towards the tool itself [45]. Additionally, implementing these tools may raise concerns
about the clinician’s role and fears that they will be “replaced” by technology [72], although,
ideally, clinicians should leverage these advances to enhance their practice.

SaMDs have the potential to optimize personnel organization [73], and to free-up
clinicians [50] or enhance their capacity to attend to patients. However, the question
arises: should we look to use fully automated SaMDs? Could negative findings from
GI examinations with these tools be directly communicated to the patient? These issues
challenge the patient–clinician relationship and may contribute to the dehumanization of
healthcare, which could be detrimental given the therapeutic value of human attention and
empathy [74,75]. While automated systems may enable clinicians to spend more time with
patients, their ability to interpret endoscopy images or identify more complex changes or
subtle changes may be compromised (also known as “de-skilling”) [65]. On the other hand,
clinicians might review more images with the aid of automated workflows, thus rapidly
fine-tuning their skills through exposure to a high proportion of clinically relevant images,
but perhaps with reduced exposure to normal images. A downside of increased automation
is that clinicians might become more inclined to accept the decisions of these tools, even
when they may be incorrect [50,76,77], potentially influencing diagnostic precision. Thus,
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the incorporation of SaMDs must be accompanied by efforts to ensure clinicians remain
well trained and that they do not become dependent on automated systems [42,63,76,78].

Other concerns include the influence that non-medical professionals (e.g., computer
scientists and IT specialists) may exert in healthcare settings, and the possible appearance
of monopolies in specific healthcare areas due to a reliance on software [45].

7. Future Trends and Innovations
7.1. Predictive Analytics and Their Potential to Revolutionize Preventive Care in Digestive Health

Predictive analytics involve applying statistical techniques in conjunction with ML
algorithms to extract patterns from data that can then be used to predict future events.
These patterns may be difficult to perceive by human observation and may not even be
discerned through epidemiological studies. This is a powerful tool in preventive healthcare,
and in digestive medicine it can help the early detection of specific conditions and possible
flare-ups of others like IBD, enabling adjustments to medication or lifestyle. This approach
can enhance personalized care by considering the individual’s clinical history, lifestyle, and
factors like age, weight, diet, family history, and gut microbiome to evaluate their health
risks. Early signs of many digestive conditions are often difficult to detect, so conducting
predictive analyses on the basis of data from devices like health trackers or smart toilets is
crucial for detecting subtle changes and raising the alarm for early detection and treatment.

Moreover, predictive models can help design personalized diets, exercise routines, or
even supplements to promote gut health, reducing the risk of future health problems. These
approaches face similar challenges regarding data privacy and security, and the accuracy
of these models again depends on the quality and quantity of the data available. In this
context, the number of potentially underrepresented cases in the data could be increased
by integrating blockchain-based solutions into healthcare platforms, enhancing the training
and successful implementation of SaMDs.

7.2. The Role of Cross-Disciplinary Collaborations for Nurturing Innovation

The nature of SaMDs means cross-disciplinary collaborations, which are fundamental
for driving innovation in these tools. SaMDs bridge the fields of medicine and software
engineering, intersecting with other areas such as data science, user experience design,
technology assessment, and regulation, each with its own knowledge base and terminology.
Effective collaboration requires clear communication regarding the needs and clinical con-
texts to be translated into technical solutions. The odds of success in these collaborations are
greatly increased when teams have a wide mindset, paving the way to greater innovation.
Again, safety and regulation demands will bring in specialists from other areas, further
enhancing the cross-fertilization of ideas.

Thus, teams involved in developing SaMDs for digestive healthcare are likely to
include: clinicians specializing in digestive medicine, healthcare management experts
ensuring seamless device integration into clinical workflows, software engineers designing
robust and secure SaMDs following best practices, and regulatory experts guiding the
development process and patients to ensure the tools effectively meet their needs and
preferences. The communication and collaboration between these diverse groups will lead
to the development of safer, more effective, and user-friendly tools that will improve patient
care. Additionally, the widespread adoption of SaMDs in digestive healthcare presents an
opportunity for the secondary use of collected images, potentially generating new evidence
from the original data.

8. Conclusions

The transformative potential of Software as a Medical Devices (SaMDs) to reshape
digestive healthcare is evident, particularly in the realm of personalized medicine. These
devices may significantly improve diagnosis, treatment, and patient management by
incorporating AI algorithms, which allows the leveraging of a vast amount of data currently
available, ultimately enhancing accuracy and performance.
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The development and implementation of SaMDs highlights the need for adequate
regulatory frameworks to ensure that these tools remain transparent in their functioning
and comply with the FAIR principles for data management: findability, accessibility, inter-
operability, and reusability. SaMDs must also be adapted for use with different devices and
in different settings, incorporating data from diverse centres. This adaptability, however,
increases the demands for compliance with data protection guidelines and the establish-
ment of adequate security measures, which are critical for its successful integration into
clinical workflows.

This study also emphasizes that future advances should address the need for adequate
clinical studies and real-world data to demonstrate the safety and suitability of these
devices to healthcare settings. Additionally, as the field evolves, progress may shift towards
a transition from semi-automated to a more fully automated analysis, further enhancing
the capabilities of SaMDs in digestive healthcare.
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