é%v% diagnostics

Review

Diagnosis Based on Population Data versus Personalized Data:
The Evolving Paradigm in Laboratory Medicine

Abdurrahman Coskun

check for
updates

Citation: Coskun, A. Diagnosis Based
on Population Data versus
Personalized Data: The Evolving
Paradigm in Laboratory Medicine.
Diagnostics 2024, 14, 2135.
https://doi.org/10.3390/
diagnostics14192135

Academic Editors: Daria Pagali¢ and
Lidija Bilic-Zulle

Received: 29 August 2024
Revised: 17 September 2024
Accepted: 18 September 2024
Published: 25 September 2024

Copyright: © 2024 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University,
34752 Istanbul, Turkey; coskun2002@gmail.com; Tel.: +90-500-40-69

Abstract: The diagnosis of diseases is a complex process involving the integration of multiple
parameters obtained from various sources, including laboratory findings. The interpretation of
laboratory data is inherently comparative, necessitating reliable references for accurate assessment.
Different types of references, such as reference intervals, decision limits, action limits, and reference
change values, are essential tools in the interpretation of laboratory data. Although these references
are used to interpret individual laboratory data, they are typically derived from population data,
which raises concerns about their reliability and consequently the accuracy of interpretation of
individuals’ laboratory data. The accuracy of diagnosis is critical to all subsequent steps in medical
practice, making the estimate of reliable references a priority. For more precise interpretation,
references should ideally be derived from an individual’s own data rather than from population
averages. This manuscript summarizes the current sources of references used in laboratory data
interpretation, examines the references themselves, and discusses the transition from population-
based laboratory medicine to personalized laboratory medicine.
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reference change value; reference interval

1. Introduction

The diagnosis of diseases is a complex procedure based on multiple parameters
obtained from different sources, including patient history, physical examination, laboratory
findings, radiological findings, histopathological examinations, and more. Among these
parameters, laboratory findings are crucial as they form the basis of clinical decisions [1,2].
The interpretation of laboratory data is a comparative procedure that requires reliable
references for accurate interpretation. Different references such as the reference interval
(RI) [3-5], decision limits (DLs) [6], action limits (ALs), reference change value (RCV) [7],
etc., are used for the interpretation of laboratory data depending on the data type, the
clinical situation of the patients, and the type of diseases [8]. However, these references
are derived from population data but are used to interpret individual laboratory results
rather than population data [9]. The difference between the sources of references and
the data that they interpret raises questions about the reliability of the references and,
consequently, the accuracy of interpreting laboratory data. Since diagnosis is the first step
of medical practice, its accuracy is crucial for subsequent steps such as effective treatment,
monitoring, and evaluating the prognosis of disease. Therefore, reliable references should
be considered a priority in medical practice. Since there are no two identical humans
on our planet, if possible, the references used to interpret laboratory data should be
obtained from the individual’s own data [10]. However, this is not as easy as obtaining
references from the population data due to several limitations, such as the limited number
of data points used to estimate personalized references, as well as the timing and collection
of sampling [11]. In this manuscript, I summarize (i) the characteristics of laboratory
data, (ii) the diagnosis of diseases using multiple tools including laboratory data, (iii) the
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source of references based on population and individuals’ data, (iv) the references used to
interpret laboratory data, and (v) the evolution of population-based laboratory medicine to
personalized laboratory medicine.

2. Characteristics of Laboratory Data

Medical laboratories produce different types of data, mainly numerical (quantitative)
and categorical (qualitative) [12,13], as briefly outlined below (Figure 1).
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Figure 1. Data types produced in medical laboratories. Numerical (quantitative) data are more

(Quantitative)

common than categorical (qualitative) data.

2.1. Numerical Data

This type of data provides information about the quantities of analytes and is one
of the most common types of data generated by medical laboratories. This type of data,
exemplified by the measurement of analytes like glucose, cholesterol, etc., quantifies results
using numerical values. For instance, glucose levels might be reported as 100 mg/dL. In
this example, 100 represents numerical data. Numerical data can be categorized as discrete
and continuous data, as detailed below.

2.1.1. Discrete Data

Discrete data are the data type of data that used to count and can only take certain
values. In laboratory medicine, the number of cells such as leukocytes, erythrocytes,
platelets, bacteria, parasites, etc., are expressed as discrete data. Additionally, the number
of samples, repeated measurements, patients, and all other countable things are expressed
with discrete numbers. Discrete data can take only specific values and are expressed with
whole numbers such as 1, 2, 3, etc.

2.1.2. Continuous Data

Continuous data are the primary type used to express measurement results. Math-
ematically, the primary difference between discrete and continuous data lies in the rep-
resentation of values. Continuous data can include decimal places, allowing for a more
precise expression of measurements. For example, serum potassium levels can be reported
as 4.2 mmol/L. The number of decimal places used depends on the significance of the data
and the uncertainty of the measurement process.

2.2. Categorical Data

They can be classified as nominal and ordinal data.
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2.2.1. Nominal Data

Nominal data are a type of categorical data that are used to label data without any
quantitative value, such as female, male, name of people, colors, etc.

2.2.2. Ordinal Data

Ordinal data are a type of data where the categories have a meaningful order or
ranking. Unlike nominal data, ordinal data allow for the comparison of items or ranks,
such as first, second, and third, or classifications like none, mild, moderate, and severe.

3. Laboratory Data and Statistical Distributions

Laboratory data are not fixed values; they fluctuate due to pre-analytical, analytical,
biological, chronobiological, and lifelong variations. Therefore, even for an individual,
the measurement results of repeated samples taken at different times are not identical;
they exhibit a distribution. The characteristics of these distributions are determined by the
factors influencing patients and data variation.

In statistics, many different distribution types have been identified and analyzed in
detail [14]. However, only a few well-known distributions, such as the normal, log-normal,
and chi-square distributions, are frequently used in analyzing laboratory data. These
distributions, however, are not always well-suited for laboratory data, particularly from
healthy individuals, as such data have lower and upper limits determined by physiological
mechanisms. During disease, the control of these physiological mechanisms weakens, and
the range of laboratory data widens compared to that of healthy individuals [15]. Neverthe-
less, these data still have upper and lower limits. In other words, extreme values, which are
part of normal or log-normal distributions, etc., are not applicable to individual data, and
the measurement results of any measurand cannot be infinite or negative. For example, re-
peated measurements of blood pH do not contain values like 1.0 or 20, because these levels
are not compatible with human metabolism. Therefore, according to a normality test such
as those of Kolmogorov-Smirnov or Shapiro-Wilk, if the measurement results of samples
obtained from an individual are normally distributed, it is important to acknowledge that
in practice, the data themselves will never perfectly align with every data point present in
the idealized normal distribution. Ideally, truncated normal, truncated log-normal, trun-
cated t, semicircular, triangular, bimodal, multimodal, or other distributions with defined
upper and lower limits—or skewed forms of these distributions—may be better suited
to laboratory data than the classical normal, log-normal, or similar distributions [14,16]
(Figure 2A-D).

a b a b

Figure 2. Various distribution types used in statistical analysis: normal distribution (A), truncated
normal distribution (B), semicircular distribution (C), and a hypothetical distribution with lower and
upper limits (D). For laboratory data, (D) and its skewed derivatives appear to be more realistic.
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4. Diagnosis of Diseases

The diagnosis of diseases is a complex procedure and usually requires evidence
obtained from multiple sources, including laboratory data. Obtaining laboratory data is
relatively easy and frequently does not require invasive procedures. Therefore, it is often
requested by physicians and, after the patient’s history and physical examination, is the
first line of data used for diagnosis. Despite these positive aspects of laboratory tests, for
most, the diagnostic power of a single laboratory test is unfortunately not strong. Therefore,
physicians usually need additional evidence to confirm the diagnosis, particularly if the
results of laboratory tests do not align with the patient’s history and clinical findings. The
new evidence may include requesting panels of tests or additional laboratory tests related
to the possible diagnosis of diseases or different types of evidence such as radiological
imaging tests, pathological tests using microscopic examination of biopsies, genetic analysis,
etc., depending on the clinical findings of the patients, the probable diagnosis made by
physicians, and the results of laboratory tests. It should be noted that although these
additional tests increase diagnostic power and make it easier for physicians to make
decisions regarding the diagnosis, they are often more invasive, such as taking tissue
biopsies, or potentially harmful, such as the radiation used in radiological imaging. They
are also much more expensive than most laboratory tests. Consequently, to increase the
diagnostic power of laboratory tests, it is essential to measure and interpret the laboratory
test results accurately. The interpretation of laboratory data is a comparative procedure,
and for accurate interpretation, it requires reliable references for comparison [17]. Reliable
references should be obtained from credible sources using correct mathematical approaches,
as detailed below.

4.1. The Theory of References for Measurands

It is noteworthy that for a healthy individual, the reference value used to compare
laboratory data is an interval rather than a single exact value. The reason for this is
the physiological fluctuation (variation) in the concentration of biomolecules around a
homeostatic set point (HSP) [17,18]. It should be noted that for an analyte, if the variation
around the HSP is obtained from an individual’s own data, it is known as within-person
biological variation (CVp). However, if it is obtained from the data of a group of individuals,
it is referred to as within-subject biological variation (CVy). The HSP of different subjects are
different, and for an analyte, the variation in HSPs among different individuals is known as
between-subject biological variation (CVg). The concentration of some biomolecules, such
as hormones, is regulated, while other molecules are influenced by production, excretion,
or degradation. In any case, it can be observed that there is fluctuation around the HSP for
all molecules, and that CVp, CVj, and CV are analyte-specific.

For an analyte, two types of reference intervals can be estimated: the ideal one is
the individual specific RI, which is known as the personalized reference interval (prRI).
The upper and lower limits of the fluctuation around the HSP, i.e., the limits of CVp, are
referred to as the limits of prRI. The second one is the population-based RI (popRI), which
is derived from the data of the population. The popRI can be estimated from the Gaussian
combination of both CVyand CVg.

Currently, in routine practice, the popRIs of analytes are estimated using the measure-
ment results of a single sample obtained from each individual in a group. The number of
reference individuals should exceed 120. Although this approach has been widely used
since the 1960s, concerns have been raised about the reliability of popRIs derived from this
method [19]. Recently, we developed models using the biological variation (BV) data of
analytes to estimate both prRIs [8-11,17,20-22] and popRIs [23].

It should be noted that the RI of an analyte is the interval within which the located
measurement results are considered indicative of healthy individuals, i.e., those without
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diseases. Therefore, Rls optimize the specificity of laboratory tests as outlined below [24]
(Figure 3).

TN
TN+ FP S

where TN is the true negative and FP is the false positive rate predicted by the RI. In
the conventional approach, historically, it is accepted that the RI covers 95% of data from
healthy individuals, with 2.5% of the healthy population’s data located below the lower
limit and 2.5% located above the upper limit. The clinically significant reference limit is the
decisive factor in the specificity of the Rls. Therefore, the confidence interval (CI) of the
clinically significant reference limit has a significant impact on the reliability of the Rls. It is
recommended that the CI of the reference limits should not exceed 0.2 times the range of
RI [3].

Specificity =

Cut-off point

N TP

11

FN FP

Figure 3. Reference intervals are derived from data obtained from healthy subjects, thereby reflecting
the specificity of the measurand, which can be expressed as TN/(TN + FP), where TN represents true
negatives and FP represents false positives. TP: true positive, FN: false negative. Although patient
data may not be normally distributed, for simplicity, it is assumed to be normally distributed in
this figure.

In contrast to RI, which represent a range, DL and AL are thresholds estimated from
patient data, used for disease diagnosis and medical interventions. Changes in data for
healthy individuals occur gradually and are time-dependent, requiring varying durations
for diagnosis. The duration needed for changes—from Rls to crossing DLs or ALs—is
specific to both the disease and individuals’ health conditions (Figure 4).

Although population-based reference intervals (popRI) DL, and ALs, are currently
being used in clinical practice, in reality, these references are not specific for individu-
als [10,19]. As shown in Figure 4, the specificity of the popRI for individuals is low and may
not be reliable. Therefore, for the accurate interpretation of laboratory data, personalized
references should be used, as they are both analyte- and individual-specific.
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Figure 4. Conventional reference intervals are derived from population data but are used to interpret
individual laboratory results. However, because prRlIs differ from popRls, the specificity of popRI is
low, leading to misinterpretation. The dashed curve represents the prRI.

4.2. The Source of References to Interpret Laboratory Test Results

In the real world, the source of scientific knowledge is data; knowledge not grounded
in reliable data is blind. Reliable knowledge is built upon reliable data, making it essential to
scrutinize both the quality and representativeness of the data for its intended purpose before
extracting knowledge from it. Numerous references, such as Rls, DLs, ALs, and RCVs, are
used to interpret laboratory test results [8]. These references are chosen depending on the
purposes for which the laboratory tests are being used, such as diagnosis, monitoring, and
planning of treatment, as well as the types and concentrations/activities of the laboratory
data. The sources of all these references are biological samples obtained from the relevant
individuals, as outlined below.

4.2.1. Population-Based Big Data

Big data refers to complex and large datasets that are beyond the capacity of traditional
data processing tools to analyze, interpret, and manage. They are characterized with “V”s,
and multiple “V”s have been attributed to big data [25]. Despite multiple Vs, three main Vs,
namely volume, velocity, and variety, have been used widely for big data [26,27]. However,
it should be noted that the characteristics of healthcare data, particularly laboratory data,
differ from industrial or other datasets. Since laboratory data often include repeated
measurements from individuals, a new “V” representing “variability”, known as the CVp
of the analyte for the individual, can be added to the existing “V”s as a new component
(Figure 5).

Population-based data have both significant advantages and disadvantages for lab-
oratory medicine. The primary advantage is that the volume of data can be substantial.
Increasing the volume of data decreases the uncertainty of the precision of statistical models.
For example, the mean of a population can be estimated using the mean of a small dataset
randomly selected from the population. However, in such cases, the representativeness
of this mean for the entire population may be questionable because the uncertainty of the
sample mean is inversely proportional to the square root of the number of data points in
the sample selected from the population, as formulated below:

Cl=kx 2)

sD
NG
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where CI is the confidence interval of the mean, SD is the standard deviation, 7 is the
number of data points in the sample selected from the population, and k is the coverage
factor depending on the statistical distribution of the dataset. It should be noted that the
main purpose of using big data is not only to reduce the uncertainty of the precision of
statistical models but also to ensure that the selected sample represents the population.
Increasing the number of data points enhances the representativeness of the sample for the
entire population. This is important particularly in clinical studies.

V1
Variability

Figure 5. Some important Vs for healthcare big data. Big data is characterized by multiple Vs, which
refer to the attributes of complex and large datasets that exceed the capabilities of traditional data
processing tools to analyze, interpret, and manage. Variability, a property unique to laboratory data,
is included as a new “V” alongside the existing “V”s that represent the characteristics of laboratory
big data. Veracity represents the quality, accuracy, and integrity of big data.

Because of biological diversity, attaining a completely homogeneous population is not
achievable. Therefore, despite statistical homogeneity, each population should be consid-
ered heterogenous. The degree of heterogeneity can vary depending on the composition
of the population, but typically, it is higher than zero. Thus, increasing the number of
data points in the sample can be helpful in detecting minor differences or rarely observed
serious clinical situations within the population.

Since references are used to categorize individuals based on their health status, data
from both healthy and diseased subjects are necessary to derive reliable references.

Population-Based Big Data of Healthy Subjects

Obtaining big data from healthy subjects in the real world is not as easy as expected.
Barriers such as ethical, technical, and economic issues limit the collection of big data from
healthy populations. Therefore, this type of data is usually obtained from hospitals using
some statistical extraction method to exclude the data of non-healthy subjects. Hospital
data include both healthy subjects and patient data, and although some statistical methods
have been developed to extract data from healthy subjects, it remains challenging to do so.
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As a result, the quality of data from healthy subjects obtained from hospitals or medical
laboratories may not always meet the desired standards.

While popRI can be estimated from the data of at least 120 healthy individuals using
the direct method, population-based big data of healthy subjects obtained from hospitals or
medical laboratories are commonly used to estimate RlIs using the indirect method. More-
over, to derive reliable references, data from only healthy subjects are not adequate because
some references, such as DL and AL, which are crucial for clinical decisions, are derived
from patient data rather than from the data of healthy individuals as previously mentioned.

Population-Based Big Data of Diseased Subjects

References based on data from healthy subjects have limitations when used to diagnose
certain diseases or evaluate their severity. For example, serum glucose levels are used for
diagnosing diabetes mellitus (DM). For healthy adult subjects, the upper limit of the RI for
glucose is not the cutoff for diagnosing DM. According to American Diabetes Association
(ADA) guideline, the cutoff value for diagnosing DM with fasting plasma glucose is
126 mg/dL [28]. In clinical practice, there is often a gap between the limits of the RI and the
DL for diseases. For example, the UL of the RI for an analyte typically represents the 97.5th
percentile of healthy subjects, meaning that only 2.5% of healthy individuals have values
above this threshold. Consequently, the UL of the RI can be considered the boundary for
measurement results from healthy subjects. Therefore, for accurate disease diagnosis, data
beyond the Rls are needed to estimate the DLs, and such data can only be obtained from
diseased subjects.

For the diagnosis, monitoring, or medical intervention of diseases, clinical outcome
data are valuable, but they may vary depending on the clinical trial and the methods used
to obtain them. The first The European Federation of Clinical Chemistry and Laboratory
Medicine (EFLM) Strategic Conference updated the hierarchy of models, previously known
as the Stockholm Consensus, now referred to as the Milan Criteria. These criteria are used
to establish analytical performance specifications [18]. In the Milan Criteria, the impact
of analytical variation on clinical outcomes is recognized as the primary criterium for
establishing the analytical performance specifications for analytes. Therefore, patient data
used to estimate reference values, particularly for DLs, should be derived from accurate
sources and methods.

It should be noted that Rls evaluate the specificity of laboratory tests, i.e., the ability
to confirm the absence of a disease, but not their sensitivity, i.e., the ability to detect the
presence of a disease. Although plenty of data from diseased subjects are available in
medical laboratory information systems (LIS), these data belong to patients with various
clinical situations and do not have the same quality. Therefore, these data should not be
used in estimating DL, AL, and other cutoff points without proper evaluation and filtration.

For an analyte, at least theoretically, patients” data are more heterogeneous than the
data of healthy subjects. In healthy subjects, in addition to CV}, CV is the main variation.
However, for patients’ data, there are additional factors that increase the variation between
individuals, such as the severity of diseases, treatment protocols, host response, etc. Since
the concentration of biomolecules is under physiological control, pathological situations
adversely affect this control. In such cases, due to weak physiological control, fluctuations
in biomolecules increase, and the HSPs shift from their normal levels. The control of
these fluctuations and the HSPs weakens depending on the severity of the disease and
the effectiveness of the treatment. Increased or decreased concentrations of biomolecules
are used for the diagnosis of diseases, such as DL. However, fluctuations in biomolecule
concentrations have not yet been utilized for the diagnosis or monitoring of diseases.

DLs should be derived from less variable data, and it should be noted that increasing
variability decreases the reliability of DLs. To reduce these variabilities, the DLs of analytes
should ideally be estimated based on individuals” own data. However, this is not easy in
practice, and there are several barriers to using individuals” own data to estimate the DLs
of the analytes, which is essential for the accurate diagnosis of diseases. Using individuals’



Diagnostics 2024, 14, 2135

9of 16

own data is not the solution to all problems related to reference values because, in the real
world, it is not possible to collect hundreds of data points from each individual. There-
fore, statistical algorithms based on small datasets should be used to estimate references
for individuals.

4.2.2. Individuals” Small Datasets

Conventional statistics is shaped based on the population-sample paradigm [9]. Popu-
lations are defined by large datasets, while samples consist of a smaller, randomly selected
subset of data points from the population, which allows for inferences to be made about
the broader population. The representative capacity of the sample for the population is the
critical point, and some statistical parameters, such as confidence interval and uncertainty,
can be used to express this representativeness. To increase the representativeness of samples
for the population, the number of data points in the samples is increased.

In contrast to the population-sample paradigm, the characteristics of a small dataset
obtained from individuals differ, as outlined below.

Although, theoretically, the number of data points for a healthy individual can be
as high as a population dataset, in practice, this is not possible. In reality, the number
of data points for an analyte for a healthy individual is limited, typically around 10 or
even less, and rarely higher than 30. This is because for each data point, the individual
must go to a hospital, the samples must be obtained from the individual, and the analyte
must be measured, and this is not realistic in the real world to increase the number of
measurement results to a high level. In other words, the classical dual population-sample
paradigm is not applicable to small-sample-size groups, and we need a small data paradigm
particularly for personalized medicine [29]. However, despite the small sample size,
valuable information can be extracted from a small dataset using appropriate tools [29-32].
For individuals, references based on their own data derived from a limited number of
data points are often more reliable than population-based references estimated from larger
datasets [22] (Figure 4). Because individual data are more homogeneous and specific to
each person, references derived from population data may not represent all individuals
equally. Therefore, population data may not serve as an ideal reference for the individual.

4.3. Population-Based Big Data and Personalized Laboratory Medicine

Big data can be effectively utilized to extract valuable insights for populations. How-
ever, it is not always a reliable source for individuals. Data not obtained specifically from
an individual may not accurately reflect that person’s unique context and often have limita-
tions when applied to their particular situation. Consequently, the source of data plays a
crucial role in determining their reliability and usefulness in medical practice, especially
as a reference for interpreting laboratory results. It can be inferred that while big data is a
strong resource for population-level references, it may not be as effective for individual-
level insights. On the other hand, for an individual, it is not a realistic expectation to have
a big dataset for most analytes. Therefore, statistical models for personalized laboratory
medicine should be based on small- or middle-sized datasets. However, despite the small
size, it can be speculated that, for individuals, models based on the individuals’ own data
give better results than models based on big data obtained from the population. This
is because in big datasets, individuals are accepted as a member of the big group, and
each individual is usually represented by only a single measurement result. Therefore,
the representativeness of big data for individuals is not as strong as that of small datasets
obtained directly from individuals.

Although population data have limitations in representing individuals, it does not
mean that they are useless in personalized medicine. While they should not be used
directly to derive references for individuals, they can be used to develop general models
for analytes, such as the patterns of ultradian, circadian, and infradian variations. These
patterns can be applied to small datasets of individuals to indirectly estimate individual-
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specific references, particularly for personalized decision limit (prDL) and personalized
action limit in diagnosis and treatment.

4.3.1. Population-Based Reference Intervals for Personalized Laboratory Medicine

The popRIs of analytes are derived from population data and therefore should be used
for populations. However, the critical point is that the population is not assessed based on
popRI, and in reality, popRIs are used to evaluate individual data. Furthermore, the type of
data collected to estimate the RI does not represent the physiological basis of Rls.

Investigations into RIs commenced in the 1960s [33-39], and since then, a consistent
methodology has been applied, relying on the distribution of measurement results obtained
from individual samples taken from a group of individuals for the estimation of RIs.
Statistically, the popRI is estimated from the data of at least 120 individuals. Various
statistical techniques depending on the distribution types of the data are being used to
estimate the UL and LL of the popRI. The utilization of measurement results from a
minimum of 120 subjects is necessary for the straightforward calculation of the UL, LL,
and popRI. In the non-parametric estimation of RI, the measurement results are ranked
from the lowest to the highest and the central 95% of the ranked data are accepted as the
RIs. The LL and UL of the RI can be estimated through a straightforward calculation by
excluding 5% of population from the ranked set of measurements: 2.5% from the lowest
values and 2.5% from the highest values.

Despite advancements in statistical calculation techniques, there have been no sub-
stantial alterations in the theoretical framework governing the estimation of Rls, main-
taining alignment with human physiology and the behavior of biomolecules within the
human body. Due to the current theoretical framework of Rls being incompatible with the
metabolism of molecules that fluctuate around an HSP, RIs based on conventional models
have not been suitable for interpreting individual test results. Recently, we developed a
model to estimate the popRI using data from a few reference individuals to determine the
population set point (PSP) and a Gaussian combination of CVy, CVg, and CV4 to estimate
the variation around the PSP [23]. The new model is more realistic and accounts for all
types of variation in molecules observed within the population.

For an individual, the RI is based on the CVp of the analytes. However, due to subclin-
ical situations, the prRI based on repeated measurements may shift for some individuals.
Therefore, using the popRI based on the PSP and biological variation (BV) data [23] can
provide a reliable reference for prRIs and help prevent the estimation of extreme prRlIs.

4.3.2. Population-Based Decision Limits for Personalized Laboratory Medicine

Although RIs are commonly used by physicians to distinguish healthy subjects from
diseased ones, the Rl is not a diagnostic tool for all analytes and related diseases. For an
analyte, RIs define a lower limit (2.5%) and an upper limit (97.5%) based on measurement
results from samples obtained from healthy subjects. These limits cover 95% of the mea-
surement results from healthy individuals and do not serve as cutoff values to distinguish
healthy individuals from those with diseases. For diagnosing diseases, we need data from
diseased patients rather than from healthy reference individuals. For an analyte, if the
measurement result falls outside of the RI, it means that with a given probability (such as
95%), the result likely does not come from a healthy subject. However, to interpret this
accurately, we need additional limits to make our decision. Therefore, the diagnosis of
diseases relies on DLs, which are critical thresholds for analytes used in diagnosing diseases
or making clinical decisions for specific situations, rather than on Rls.

Estimating the RI for an analyte is relatively easy because it is based on data from
reference individuals. On the other hand, estimating the DL is challenging because it
relies on data from patients with different clinical situations [6,40,41]. Population-based
DL (popDL) can be estimated using data from test results of patients with specific clinical
situations and diagnosed diseases. Since an analyte can be used in various clinical situations
of a disease, there may be more than one popDL for an analyte. However, this is not the
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case for RIs, so an analyte has only one RI for a given age and sex. The DL is usually higher
than the UL or lower than the LL of the RIs. However, in some clinical situations, it may be
equal to the limits of the RlIs but is not located within the Rls in any case.

It can be questioned why, although an interval is used for healthy subjects, a similar
interval is not used to interpret the measurement results of analytes in patients. In statistics,
an interval such as an Rl is estimated from a dataset that has a specific distribution type.
Similar to healthy subjects, the measurement results of laboratory tests in patients have
a distribution, but in contrast to healthy subjects, it is not rational to expect that data in
pathological situations are normally or symmetrically distributed. Due to weak physio-
logical control, the data are expected to be skewed toward the pathological side, and the
range of fluctuation in measurement results around a theoretical set point is expected to be
greater than the fluctuation observed in healthy subjects.

In patients, for an analyte, a single cut-off is often used for diagnosing diseases rather
than an interval. If a higher level of the analyte is clinically significant, the lower limit
of pathological data is used; conversely, if a lower level of the analyte is significant, the
upper limit of pathological data is used to estimate the popDL. It should be noted that with
RIs, the specificity of the laboratory test is evaluated (Equation (1)), while with DLs, the
sensitivity of the laboratory test is assessed as formulated below (Figure 3).

TP

Sensitivity = m

)

In personalized laboratory medicine, popDLs are essential, particularly for estimating
prDLs. Since it is neither practical nor feasible to collect a sufficient dataset representing
numerous clinical situations for deriving prDLs for an analyte, popDLs can be used as
a reference to estimate prDLs through an indirect approach, as summarized below (see
Section 4.4.2).

4.4. Individuals’ Small Datasets and Personalized Laboratory Medicine
4.4.1. Personalized Reference Intervals

From previous studies, it is known that the range of popRls and prRlIs are different for
ameasurand [22,42,43], and, therefore, it can be concluded that prRIs increase the specificity
of laboratory tests by reducing the false positive rate, which is accurate for populations but
not for individuals. The prRI can be estimated using an appropriate prediction interval
model [44], based on individuals’ own data when they are medically in a steady state.

The classical approach is based on the HSP and the total variation around the HSP
and can be formulated as shown below:

prRI = HSP +k x \/(”:Dx (sD%p +5D3) (4)

where k is the coverage factor, and its value depends on the type of statistical distribution. If
n > 30, k is the z-value for 95%, which is 1.96. If n < 30, k is the t-table value for n — 1 degrees
of freedom. SDj,p represents the within-subject (obtained from a group of individuals) or
within-person (obtained from individual’s own data) biological variation, and SDg is the
analytical variation expressed in terms of standard deviation (SD).

It should be noted that if the variations in the amounts of analytes are given in terms
of CV, such as CVy,/p and CV,, they must be converted to absolute values for the given
concentration of the analytes before they can be combined with the HSP. Since the limits
of prRIs are estimated using the BV data of measurands, the availability of reliable BV
data [45] is essential for accurate prRIs. EFLM has launched the EFLM BV Database [46],
which includes BV data for commonly requested measurands in laboratory medicine.
These data are derived from meta-analyzed published BV studies [47-50] and from a
multinational project, EuBIVAS, which has obtained high-quality BV data for numerous
measurands [51-54].
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4.4.2. Personalized Decision Limits

Although popDLs are preferred by physicians to distinguish diseased subjects from
healthy ones, for an individual, the diagnosis of diseases should be based on prDLs rather
than popDLs. Hence, in practice, for the benefit of patients, personalizing DLs holds
greater clinical significance than popDLs. However, estimating prDL for an analyte poses
greater challenges.

In practice, it is not possible to collect sufficient data to derive the prDL for a mea-
surand. However, this does not mean that prDL cannot be estimated. Although direct
estimation is not feasible, indirect estimation can be performed using a model based on the
relationship between popRI and popDL as detailed below:

Due to pathological processes during disease, it is assumed that the distribution
of an analyte’s data shifts toward the pathological side. Therefore, the relative changes
(popRCpL), i.e., the shift of population-based data from the popRI to the popDL, should be
calculated as shown below [8]:

LpopRI - POPDL
LpopRI

popRCp; = (5)

where LpopRI represents the clinically significant limit of the popRI for the analyte. In the
second step, the prDL can be estimated indirectly from popRCpy, as shown below.

prDL = Lyri £ Lprr X popRCpp = Lyrp X (1+£ popRCp;) (6)

If the DL is located above the UL, then the mathematical sign should be “+”. However,
if the DL is located below the LL, then the mathematical sign should be “—". It can be
concluded that, in comparison to the popDL, the PrDL may increase the sensitivity of
laboratory tests by reducing the false negative rate, which is accurate for populations but
not for individuals.

5. High-Dimensional Data and Personalized Laboratory Medicine

High-dimensional data (HDD) are characterized by datasets with a large number of
variables or features, often exceeding the number of observations [55]. Mathematically,
HDD can be represented as a matrix, as detailed below:

X111 X120 Xip
X21 X2 -t X2p

X=1. . | . (7)
Xnl Xn2 0 Xnp

where x;; represents the value of the jth variable/feature for the ith measurement results.
When the number of variables/features (p) is higher than the number of measurement
results (n), the dataset is referred to as HDD.

Patients’ data, including medical history; physical examination findings; laboratory
results; genetic information; radiological imaging such as MRIs, CT scans, and PET scans;
medications; and more, stored in Electronic Health Records (EHRSs), can be considered a
high-dimensional dataset [56].

There are complex relationships among the biomolecules measured in medical labo-
ratories, and their collective interactions create metabolism. Therefore, for an individual,
laboratory data collected over time in a Laboratory Information System (LIS) can be con-
sidered HDD. Instead of relying on classical statistical approaches that evaluate single
molecules or variables, statistical methods suited for HDD should be applied to interpret
these data effectively [57].

Recently, wearable biosensors have become very popular and are used to monitor
patients” health, providing continuous data on various parameters that are crucial for
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managing chronic diseases such as diabetes mellitus, cardiovascular diseases, etc. [58-61].
These data contain a vast number of features for each patient.

The new step in disease diagnosis should be based on HDD rather than the evaluation
of single properties of measurands. This approach requires the assessment of multidimen-
sional data for personalized laboratory medicine. Such an evaluation should include time
as a critical dimension and should assess progress over changing time intervals. Al-assisted
tools are essential for implementing HDD in routine laboratory practice [62-64].

6. Artificial Intelligence and Machine Learning for Personalized Laboratory Medicine

At present, artificial intelligence (AI) has demonstrated significant promise in disease
diagnosis. Al-assisted diagnostic tools can analyze radiological images like X-rays, CT
scans, and MRIs, as well as evaluate medical history, examine symptoms, and process
other disease-related information, helping physicians make quicker and more precise
diagnoses [65-70].

Al has become an important tool in all steps of laboratory medicine and can be applied
to all stages of total testing process [71]. Currently, Al can be used for human-based
workflows including test utilization, error detection, result interpretation, genomics, and
image analysis [72].

Personalized laboratory medicine can be regarded as high-dimensional laboratory
medicine, incorporating multiple components such as the BV of analytes, chronobiology,
precision laboratory medicine, and individualized statistical algorithms, among others [9].
For each individual, integrating and utilizing this complex information is challenging,
making Al-assisted algorithms essential for disease diagnosis. Currently, Al-assisted algo-
rithms are becoming important tools in general laboratory medicine [73-77]. The adoption
of Al-assisted tools and algorithms will enable the evolution of conventional laboratory
medicine into personalized laboratory medicine, enhancing personalized diagnosis and
disease management.

7. Conclusions

Accurate diagnosis is essential for effective disease management. However, the di-
agnostic process involves numerous components and requires the integration of medical
information from various sources, including patient history, examinations, radiological
images, laboratory findings, etc. The references currently used to evaluate laboratory data
are derived from population averages rather than individual-specific data. These references
may not be accurate for individual patients, highlighting the need for a paradigm shift
from conventional laboratory medicine to personalized laboratory medicine.

Centuries ago, Nicolaus Copernicus revolutionized our understanding of the universe
by shifting the center from the Earth to the Sun [78]. Similarly, it is now time to shift the focus
of medicine from population averages to individual-specific data. In modern medicine,
patients should be at the center of disease management. To facilitate this paradigm shift,
we must leverage personalized statistical algorithms and artificial intelligence.
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