Detection of Alzheimer’s Disease Using Hybrid Meta-ROI of MRI Structural Images
Abstract
:1. Introduction
2. Materials and Methods
- is signal to noise (background) ratio and t is the decision variable.
- are the mean values of signal and noise (background).
- are the standard deviations of the signal and noise (background).
- is the error function.
- is the area under the ROC curve.
3. Results and Discussion
3.1. AD Detectability of Selected Regions of Interest
3.2. Hybrid Meta-ROI for AD Detection
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ossenkoppele, R.; Smith, R.; Mattsson-Carlgren, N.; Groot, C.; Leuzy, A.; Strandberg, O.; Palmqvist, S.; Olsson, T.; Jögi, J.; Stormrud, E.; et al. Accuracy of tau position emission tomography as a prognostic marker in preclinical and prodromal Alzheimer’s disease: A head-to-head comparison against amyloid position emission tomography and magnetic resonance imaging. JAMA Neurol. 2021, 78, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Wiste, H.J.; Weigand, S.D.; Therneau, T.M.; Lowe, V.J.; Knopman, D.S.; Gunter, J.L.; Senjem, M.L.; Jones, D.T.; Kantarci, K.; et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimer’s Dement. 2017, 13, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neurological staging of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Thal, D.R.; Rϋb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58, 1791–1800. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E.; Bohl, J. Staging of Alzheimer-Related cortical destruction. Eur. Neurol. 1993, 33, 403–408. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- McRae-McKee, K.; Udeh-Momoh, C.T.; Price, G.; Bajaj, S.; de Jager, C.A.; Scott, D.; Hadjichrysanthou, C.; McNaughton, E.; Bracoud, L.; Ahmadi-Abhari, S.; et al. Clinical relevance of the dichotomous classification of Alzheimer’s disease biomarkers: Should there be a “gray zone”? Alzheimer’s Dement. 2019, 15, 1348–1356. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef]
- Schwarz, C.G.; Gunter, J.L.; Wiste, H.J.; Przybelski, S.A.; Weigand, S.D.; Ward, C.P.; Senjem, M.L.; Vemuri, P.; Murray, M.E.; Dickson, D.W.; et al. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer’s disease severity. Neuroimage Clin. 2016, 11, 802–812. [Google Scholar] [CrossRef]
- Zheng, X.; Cawood, J.; Hayre, C.; Wang, S. Computer assisted diagnosis of Alzheimer’s disease using statistical likelihood-ratio test. PLoS ONE 2023, 18, e0279574. [Google Scholar] [CrossRef]
- Zheng, X.M.; Zubal, I.G.; Seibyl, J.P.; King, M.A. Correction for scatter and crosstalk contamination in dual radionuclide 99m-Tc and 123-I images using artificial neural network. IEEE Trans. Nucl. Sci. 2004, 51, 2649–2653. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Nestor, S.N.; Rupsigh, R.; Borrie, M.; Smith, M.; Accomazzi, V.; Wells, J.L.; Fogarty, J.; Bartha, R. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 2008, 131, 2443–2454. [Google Scholar] [CrossRef]
- Thompson, P.M.; Hayashi, K.M.; De Zubicaray, G.I.; Janke, A.L.; Rose, S.E.; Semple, J.; Hong, M.S.; Herman, D.H.; Gravano, D.; Doddrell, D.M.; et al. Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage 2004, 22, 1754–1766. [Google Scholar] [CrossRef] [PubMed]
- Ferrarini, L.; Palm, W.M.; Olofsen, H.; van Buchem, A.; REiber, J.H.C.; Admiraal-Behloul, F. Shape differences of the brain ventricles in Alzheimer’s disease. NeuroImage 2006, 32, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Wickens, D.T. Elementary Signal Detection Theory; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Bartlett, J.W.; Frost, C.; Mattsson, N.; Skillbäck, T.; Blennow, K.; Zetterberg, H.; Schott, J.M. Determining cut-points for Alzheimer’s disease biomarkers: Statistical issues, methods, and challenges. Biomark. Med. 2012, 6, 391–400. [Google Scholar] [CrossRef]
- Barrett, H.H.; Myers, K. Foundations of Image Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Zheng, X. Statistical analysis in quantitative research. In Research Methods for Student Radiographers: A Survival Guide; Hayre, C.M., Zheng, X., Eds.; CRC Press: London, UK, 2021. [Google Scholar]
- Zheng, X.M.; Gifford, H.C.; Pretorius, P.H.; King, M.A. An observer study of reconstruction strategies for detection of solitary pulmonary nodules using NeoTect SPECT images. Nucl. Sci. Symp. Conf. Rec. 2003, 4, 2690–2694. [Google Scholar]
- Zheng, X.; Kim, T.M.; Davidson, R.; Lee, S.; Shin, C.; Yang, S. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. Proc. SPIE 2014, 9033, 903328. [Google Scholar]
- Friedman, L.M.; Furberg, C.D.; DeMets, D.L.; Reboussin, D.M.; Granger, C.B. Fundamentals of Clinical Trials, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0. IBM: Armonk, NY, USA, 2020. [Google Scholar]
- ADNI. Alzheimer’s Disease Neuroimaging Initiative. Available online: http://adni.loni.usc.edu/ (accessed on 22 February 2021).
- FreeSurfer Software. Available online: https://surfer.nmr.mgh.harvard.edu/ (accessed on 22 February 2021).
- Ereira, S.; Waters, S.; Razi, A.; Marshall, C.R. Early detection of dementia with default-mode network effective connectivity. Nat. Ment. Health 2024, 2, 787–800. [Google Scholar] [CrossRef]
- Yokoi, T.; Watanabe, H.; Yamaguchi, H.; Bagarinao, E.; Masuda, M.; Imai, K.; Ogura, A.; Ohdake, R.; Kawabata, K.; Hara, K.; et al. Involvement of the precuneus/Posterior cingulate cortex is significant for the development of Alzheimer’s disease: A PET (THK5351, PiB) and resting fMRI study. Front. Ageing Neurosci. 2018, 10, 304. [Google Scholar] [CrossRef]
- Karas, G.; Scheltens, P.; Rombouts, S.; Van Schijndel, R.; Klein, M.; Jones, B.; Van Der Flier, W.; Vrenken, H.; Barkhof, F. Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study. Neuroradiology 2007, 49, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.R.; Bastin, M.E.; Ritchie, S.J.; Dickie, D.A.; Liewald, D.C.; Muñoz Maniega, S.; Redmond, P.; Royle, N.A.; Pattie, A.; Valdés Hernández, M.; et al. Brain cortical characteristics of lifetime cognitive ageing. Brain Struct. Funct. 2018, 223, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Feczko, E.; Augustinack, J.C.; Pacheco, J.; Morris, J.C.; Fischl, B.; Buckner, R.L. Differential effects of ageing and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurolbiol. Ageing 2009, 30, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.; Pantel, J. Neuroimaging of hippocampal atrophy in early recognition of Alzheimer’s disease—A critical appraisal after two decades of research. Psychiatry Res. Neuroimaging 2016, 247, 71–78. [Google Scholar] [CrossRef]
- Zheng, X. Clinical Validation of Entorhinal Volume as Imaging Biomarker for Screening and Early Detection of Alzheimer’s Disease in Rural Ageing Populations. Rural Health Research Institute Report 2024; Charles Sturt University. Available online: https://news.csu.edu.au/latest-news/researcher-hopes-to-unlock-method-for-early-detection-of-alzheimers-disease (accessed on 10 August 2024).
AD | MCI | NC | |
---|---|---|---|
Entorhinal | |||
Volume | 3036.7 ± 813.7 | 3617.2 ± 868.3 | 3912.4 ± 761.2 |
Surface | 788.5 ± 160.1 | 820.4 ± 159.8 | 827.7 ± 157.8 |
Thickness | 2.743 ± 0.458 | 3.110 ± 0.463 | 3.370 ± 0.278 |
Fusiform | |||
Volume | 15,480.3 ± 2609.8 | 16,774.4 ± 2534.8 | 17,653.6 ± 2245.0 |
Surface | 5443.9 ± 795.5 | 5690.3 ± 691.9 | 5759.1 ± 677.4 |
Thickness | 2.462 ± 0.205 | 2.563 ± 0.218 | 2.658 ± 0.134 |
Inferior temporal | |||
Volume | 16,736.9 ± 3092.3 | 18,950.8 ± 3277.3 | 19,502.5 ± 2855.8 |
Surface | 5609.5 ± 940.0 | 6025.3 ± 915.6 | 6115.3 ± 858.4 |
Thickness | 2.496 ± 0.188 | 2.623 ± 0.193 | 2.685 ± 0.123 |
Middle temporal | |||
Volume | 17,415.8 ± 3065.2 | 19,058.1 ± 3087.8 | 20,264.1 ± 2883.2 |
Surface | 5744.3 ± 884.4 | 6053.4 ± 791.3 | 6143.3 ± 820.2 |
Thickness | 2.498 ± 0.200 | 2.613 ± 0.201 | 2.717 ± 0.123 |
Temporal pole | |||
Volume | 4305.1 ± 856.1 | 4518.3 ± 730.5 | 4787.0 ± 650.7 |
Surface | 880.5 ± 135.0 | 902.1 ± 113.3 | 908.7 ± 108.0 |
Thickness | 3.211 ± 0.385 | 3.359 ± 0.360 | 3.552 ± 0.258 |
Precuneus | |||
Volume | 15,656.2 ± 2500.8 | 16,362.9 ± 2493.1 | 17,326.8 ± 2404.8 |
Surface | 7025.9 ± 874.2 | 7168.3 ± 827.4 | 7181.2 ± 954.4 |
Thickness | 2.105 ± 0.174 | 2.163 ± 0.185 | 2.265 ± 0.150 |
Para-hippocampal | |||
Volume | 3350.8 ± 625.6 | 3555.4 ± 596.3 | 3834.9 ± 518.2 |
Surface | 1199.7 ± 148.4 | 1218.4 ± 220.3 | 1229.9 ± 132.0 |
Thickness | 2.409 ± 0.304 | 2.537 ± 0.323 | 2.690 ± 0.237 |
Hippocampus | |||
Volume | 5962.1 ± 1025.3 | 6559.2 ± 1049.2 | 7238.4 ± 870.0 |
Amygdala | |||
Volume | 2340.9 ± 548.1 | 2594.8 ± 542.8 | 2957.1 ± 476.6 |
Inferior Lateral Ventricle | |||
Volume | 3348.5 ± 2440.2 | 2279.1 ± 1651.6 | 1500.5 ± 1066.1 |
Total Ventricle | |||
Volume | 57,312.7 ± 27,368.6 | 49,605.5 ± 24,277.5 | 41,296.2 ± 20,535.1 |
NC → AD | MCI → AD | NC → MCI | ||||
---|---|---|---|---|---|---|
AUC | % | AUC | % | AUC | % | |
Cortical Thickness | ||||||
Entorhinal | 0.879 | −20.5 | 0.676 | −12.5 | 0.730 | −8.02 |
Middle Temp | 0.832 | −8.40 | 0.675 | −4.50 | 0.653 | −3.90 |
Inferior Temp | 0.798 | −7.30 | 0.695 | −4.96 | 0.593 | −2.34 |
Fusiform | 0.789 | −7.66 | 0.652 | −4.02 | 0.628 | −3.64 |
Temporal Pole | 0.773 | −10.1 | 0.618 | −4.51 | 0.668 | −5.59 |
Para-hippocampal | 0.764 | −11.0 | 0.623 | −5.18 | 0.638 | −5.85 |
Precuneus | 0.754 | −7.32 | 0.593 | −2.72 | 0.656 | −4.61 |
Cortical Surface | ||||||
Entorhinal | 0.582 | −4.85 | 0.566 | −3.97 | 0.515 | −0.89 |
Middle Temp | 0.593 | −6.71 | 0.614 | −5.24 | 0.523 | −1.47 |
Inferior Temp | 0.665 | −8.63 | 0.632 | −7.15 | 0.531 | −1.48 |
Fusiform | 0.624 | −5.63 | 0.603 | −4.43 | 0.516 | −1.20 |
Temporal Pole | 0.569 | −3.15 | 0.561 | −2.42 | 0.502 | −0.73 |
Para-hippocampal | 0.571 | −2.49 | 0.526 | −1.55 | 0.547 | −0.94 |
Precuneus | 0.543 | −2.19 | 0.548 | −2.01 | 0.496 | −0.18 |
Regional Volume | ||||||
Hippocampus | 0.828 | −19.3 | 0.661 | −9.54 | 0.790 | −9.85 |
Inf-Lat Ventricle | 0.821 | 76.2 | 0.669 | 38.0 | 0.676 | 41.2 |
Amygdala | 0.805 | −23.3 | 0.632 | −10.3 | 0.691 | −13.1 |
Entorhinal | 0.786 | −25.2 | 0.693 | −17.5 | 0.590 | −7.84 |
Middle Temp | 0.752 | −15.1 | 0.652 | −9.00 | 0.604 | −6.13 |
Para-hippocampal | 0.736 | −13.5 | 0.600 | −5.93 | 0.641 | −7.56 |
Total ventricle | 0.693 | 32.5 | 0.584 | 14.4 | 0.616 | 18.3 |
Precuneus | 0.680 | −10.1 | 0.572 | −4.41 | 0.609 | −5.72 |
Cortical Thickness | Input Nodes | AUC | Volume | Input Nodes | AUC |
---|---|---|---|---|---|
Entorhinal (E), Middle Temporal (M), Inferior Temporal (I), Fusiform (F), Temporal Pole, (T), Para-hippocampal (PH), Precuneus (P). | E | 0.879 | Hippocampus (H), Inf-Lat Ventricle (IV), Amygdala (A), Entorhinal (E), Middle Temporal (M), Para-hippocampal (PH), Precuneus (P). | H | 0.828 |
E + M | 0.903 | H + IV | 0.879 | ||
E + M + I | 0.901 | H + IV + A | 0.879 | ||
E + M + I + F | 0.907 | H + IV + A + E | 0.897 | ||
E + M + I + F + T | 0.906 | H + IV + A + E + M | 0.906 | ||
E + M + I + F + T + PH | 0.904 | H + IV + A + E + M + PH | 0.902 | ||
E + M + I + F + T + PH + P | 0.906 | H + IV + A + E + M + PH + P | 0.895 | ||
Hybrid | |||||
Cortical Thickness (Thk) and Volume (Vol) | Input Nodes | AUC | |||
Entorhinal (E-Thk), Hippocampus (H-Vol), Middle Temporal (M-Thk), Inf-Lat Ventricle (IV-Vol), Amygdala (A-Vol). | (E-Thk) + (H-Vol) | 0.895 | |||
(E-Thk) + (H-Vol) + (M-Thk) | 0.911 | ||||
(E-Thk) + (H-Vol) + (M-Thk) + (IV-Vol) | 0.919 | ||||
(E-Thk) + (H-Vol) + (IV-Vol) + (M-Thk) + (A-Vol) | 0.914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Detection of Alzheimer’s Disease Using Hybrid Meta-ROI of MRI Structural Images. Diagnostics 2024, 14, 2203. https://doi.org/10.3390/diagnostics14192203
Zheng X, on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Detection of Alzheimer’s Disease Using Hybrid Meta-ROI of MRI Structural Images. Diagnostics. 2024; 14(19):2203. https://doi.org/10.3390/diagnostics14192203
Chicago/Turabian StyleZheng, Xiaoming, and on behalf of the Alzheimer’s Disease Neuroimaging Initiative. 2024. "Detection of Alzheimer’s Disease Using Hybrid Meta-ROI of MRI Structural Images" Diagnostics 14, no. 19: 2203. https://doi.org/10.3390/diagnostics14192203
APA StyleZheng, X., & on behalf of the Alzheimer’s Disease Neuroimaging Initiative. (2024). Detection of Alzheimer’s Disease Using Hybrid Meta-ROI of MRI Structural Images. Diagnostics, 14(19), 2203. https://doi.org/10.3390/diagnostics14192203