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Abstract: Introduction: Lung ultrasound (LUS) is widely used in clinical practice for identifying
interstitial lung diseases (ILDs) and assessing their progression. Although high-resolution computed
tomography (HRCT) remains the gold standard for evaluating the severity of ILDs, LUS can be
performed as a screening method or as a follow-up tool post-HRCT. Minimum training is needed to
better identify typical lesions, and the integration of innovative artificial intelligence (AI) automatic
algorithms may enhance diagnostic efficiency. Aim: This study aims to assess the effectiveness of
a novel AI algorithm in automatic ILD recognition and scoring in comparison to an expert LUS
sonographer. The “SensUS Lung” device, equipped with an automatic algorithm, was employed
for the automatic recognition of the typical ILD patterns and to calculate an index grading of the
interstitial involvement. Methods: We selected 33 Caucasian patients in follow-up for ILDs exhibiting
typical HRCT patterns (honeycombing, ground glass, fibrosis). An expert physician evaluated all
patients with LUS on twelve segments (six per side). Next, blinded to the previous evaluation, an
untrained operator, a non-expert in LUS, performed the exam with the SensUS device equipped
with the automatic algorithm (“SensUS Lung”) using the same protocol. Pulmonary functional tests
(PFT) and DLCO were conducted for all patients, categorizing them as having reduced or preserved
DLCO. The SensUS device indicated different grades of interstitial involvement named Lung Staging
that were scored from 0 (absent) to 4 (peak), which was compared to the Lung Ultrasound Score
(LUS score) by dividing it by the number of segments evaluated. Statistical analyses were done with
Wilcoxon tests for paired values or Mann–Whitney for unpaired samples, and correlations were
performed using Spearman analysis; p < 0.05 was considered significant. Results: Lung Staging
was non-inferior to LUS score in identifying the risk of ILDs (median SensUS 1 [0–2] vs. LUS 0.67
[0.25–1.54]; p = 0.84). Furthermore, the grade of interstitial pulmonary involvement detected with
the SensUS device is directly related to the LUS score (r = 0.607, p = 0.002). Lung Staging values
were inversely correlated with forced expiratory volume at first second (FEV1%, r = −0.40, p = 0.027),
forced vital capacity (FVC%, r = −0.39, p = 0.03) and forced expiratory flow (FEF) at 25th percentile
(FEF25%, r = −0.39, p = 0.02) while results directly correlated with FEF25–75% (r = 0.45, p = 0.04)
and FEF75% (r = 0.43, p = 0.01). Finally, in patients with reduced DLCO, the Lung Staging was
significantly higher, overlapping the LUS (reduced median 1 [1–2] vs. preserved 0 [0–1], p = 0.001),
and overlapping the LUS (reduced median 18 [4–20] vs. preserved 5.5 [2–9], p = 0.035). Conclusions:
Our data suggest that the considered AI automatic algorithm may assist non-expert physicians in LUS,
resulting in non-inferior-to-expert LUS despite a tendency to overestimate ILD lesions. Therefore, the
AI algorithm has the potential to support physicians, particularly non-expert LUS sonographers, in
daily clinical practice to monitor patients with ILDs. The adopted device is user-friendly, offering a
fully automatic real-time analysis. However, it needs proper training in basic skills.
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1. Introduction

Lung Ultrasound (LUS) is broadly used in clinical practice [1]. Since the COVID-19
pandemic, LUS has received much attention [2]. Some studies have tried to relate the
LUS score, which measures the severity of superficial lung disease [3], to other significant
COVID-19 indicators for early decision-making. LUS has the advantage of an easy and
quick assessment to identify and classify disease severity [4]. However, due to technical
limitations, only subpleural spaces may be evaluated with LUS. Even if none of the LUS
features is pathognomonic for a specific disease, much evidence supports its clinical value to
evaluate treatment response both in intensive care and internal medicine departments [5–7],
detect signs of pulmonary involvement, and disease progression or regression.

Interstitial lung diseases (ILDs) are characterized by progressive lung fibrosis, mostly
due to multiple interacting pathways [8]. ILDs encompass various types, each stemming
from different underlying causes. A significant portion of ILDs have parallel autoimmune
disorders (e.g., rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus,
Sjögren syndrome) [9]. ILDs can be classified into different patterns considering the
pulmonary images. The predominant patterns are Usual Interstitial Pneumonia (UIP)
and Non-Specific Interstitial Pneumonia (NSIP) [10]. Despite High-Resolution Computer
Tomography (HRCT) representing the gold standard imaging technique, LUS has high
sensitivity and specificity for the diagnosis even in the early pre-clinical phase [11]. Accord-
ingly, LUS applies in clinical practice to identify a given ILD and its evolution. In a daily
clinical setting, LUS can be performed as a screening method or in follow-up after HRCT
to evaluate typical patterns of interstitial lung involvement and monitor parenchyma out-
comes. Proper training is needed to better identify typical lesions [12]. The most important
findings in patients with ILDs during LUS are the number of B-lines, the alterations of the
pleural line, and subpleural abnormalities [1].

Therefore, innovative AI and other automatic algorithms may help in this issue [13], as
they can be trained/developed to identify and highlight abnormalities, lesions, or structures
of interest in medical images, assisting operators in their interpretation [14].

In this context, we wondered whether the algorithm integrated into the “SensUS Lung”
device, designed for the automatic recognition of the interstitial damage patterns, was
effective in ILD recognition and scoring by an untrained physician—who was a beginner in
ultrasonography, in particular in evaluating ILDs—compared to an expert LUS sonographer.
The algorithm calculates an index that grades a possible interstitial involvement. As a
secondary outcome, we investigated whether the SensUS evaluation was correlated with
clinical respiratory evaluation.

2. Patients and Methods
2.1. Patients

The study included 33 Caucasian patients (17 M and 16 F, aged 69 ± 17 year) in
outpatient follow-up for ILDs from 2021 to 2023 in the Unit of Internal Medicine “Guido
Baccelli” of the Hospital Policlinico of Bari. Patients were evaluated during a medical visit
in clinical practice. They were included in the protocol and signed informed consent. The
study was conducted according to the Good Clinical Practice Guidelines of the Italian
Ministry of Health and the ethical guidelines of the Declaration of Helsinki (as revised and
amended in 2004), following the approval by the Ethics Committee of the University of
Bari Medical School (Code ID no. 7010/2021 dated 13 October 2021).

For all patients, pulmonary functional tests (PFT) and diffuse lung carbon monoxide
(DLCO) evaluation were available. Patients were excluded if chronic heart failure or current
tumors were present.
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2.2. Imaging

All patients presented typical HRCT patterns of ILDs (honeycombing, ground glass,
fibrosis). Patients were included if HRCT was performed within three months before the
evaluation planned for this study.

An expert physician evaluated all patients with LUS scores on twelve segments (six per
side) as consolidated clinical practice in our institution [5]. Next, blinded to the previous
evaluation, an untrained physician novice in LUS performed the exam using the “SensUS Lung”
device and the same protocol. Both physicians were blinded to the patients’ HRCT reports.

2.3. Lung Ultrasound

LUS was performed after the patients had rested for 10 min in a sitting position. A
5–12 MHz convex probe was used (Logiq E9 XClear 2.0, GE Healthcare, Chalfont St Giles,
UK). The second harmonic wave was excluded, the depth was 10 cm, and the focus was
placed on the pleural line. The LUS score was performed in a separate room, and the
operator was blinded to any localization of the disease. The exam was performed using
a 12-zone segmentation as already included in clinical practice [5]. The same operator
performed all the LUS scores. According to the international guideline [12], the LUS score
was evaluated on six segments for each lung, and each segment was scored as 0 for equal
or less than 3 B-lines, 1 for more than 3 B-lines, 2 for B-lines more than 50% of the image
without clear subpleural alterations, and 3 for white lung or consolidation (Figure 1).
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2.4. Automated Algorithm 
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automated algorithm to evaluate the enrolled patients. The adopted device (SensUS Lung 
version 1.0, Amolab srl, Lecce, Italy) consisted of a battery-powered ultra-portable 
ultrasonographic unit and a convex probe operating at the nominal frequency of 3.5 MHz. 
The software module integrated into the device included a novel proprietary algorithm 
for the automatic recognition of the characteristic patterns of pneumonia, as described 
[15]. The lung acquisition was driven by the software (Figure 2), which had most of the 
pre-sets pre-configured with locked settings (e.g., tissue harmonics off). The operator may 
regulate depth, focus, and gain to obtain a better visualization of the pleura and lung. 

Figure 1. Lung Ultrasound Score was evaluated according to guidelines. (A) Score 0: normal pattern,
A-lines or <3 B-lines; (B) Score 1: moderate loss, ≥3 B-lines; (C) Score 2: severe loss, coalescent B-lines;
(D) Score 3: complete loss, white lung and/or lung consolidations. Legend: A-lines are indicated
by triangles; B-lines are indicated by continue lines; coalescent B-lines are indicated by dashed lines;
consolidation is indicated by circles; aerial bronchogram is indicated by an arrow; pleural effusion is
indicated by stars (as reported in ref. [4]).
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2.4. Automated Algorithm

An untrained and beginner ultrasonographer used the device equipped with an
automated algorithm to evaluate the enrolled patients. The adopted device (SensUS
Lung version 1.0, Amolab srl, Lecce, Italy) consisted of a battery-powered ultra-portable
ultrasonographic unit and a convex probe operating at the nominal frequency of 3.5 MHz.
The software module integrated into the device included a novel proprietary algorithm for
the automatic recognition of the characteristic patterns of pneumonia, as described [15].
The lung acquisition was driven by the software (Figure 2), which had most of the pre-sets
pre-configured with locked settings (e.g., tissue harmonics off). The operator may regulate
depth, focus, and gain to obtain a better visualization of the pleura and lung.
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Figure 2. SensUS software interface after the acquisition. The image is a screenshot of the automatic
data elaboration of the results, including the Pneumonia Score and Lung Staging.

A water-soluble and hypoallergenic coupling gel (Aquasonic® 100 Ultrasound Gel,
Parker Laboratories, Fairfield, NJ, USA) was used for the probe-skin coupling and sanitized
before and after each use with disinfectant wipes. The acquisition protocol was fully guided
by a software interface. To obtain a comparable evaluation, the lung acquisition with
SensUS was applied using a 12-zone method as already validated in LUS [3], specifically,
6 zones per side (left and right). Each acquired zone was scanned with the probe in
longitudinal and transversal direction, with 12 frames acquired per direction (thus, a total
of 24 frames per zone were acquired).

The working principle of the adopted device is described below [15]. The algorithm
analyses all frames through specific morphological filters and thresholds based on the geo-
metrical distributions of the pixels in all images to recognize the ILD patterns automatically.
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Then, the presence of the following signs was automatically detected by the algorithm:
focal, multifocal, confluent B-lines or “lung comets”; small or consistent consolidations
(in particular: small multifocal, intralobular or interlobular with possible dynamic aerial
bronchogram consolidations); A-lines; pleural effusions. The algorithm assigns a score,
named Pneumonia Score, associated with the examined anatomical zone, ranging from
0 to 4, based on the identified pneumonia signs. Finally, a total score for the patient,
named Lung Staging, was assigned, ranging from 0 to 4 based on the maximum of the
Pneumonia Score.

The “SensUS Lung” device indicated well-defined grades of interstitial involvement
(absent, initial, intermediate, advanced, and peak). Lung Staging scored from 0 (absent)
to 4 (peak). Therefore, to compare the Lung Staging measured with “SensUS Lung” to
the LUS score (scored from 0 to 3) that was derived by an expert physician, the LUS total
score (named crude LUS score) was divided by the number of segments evaluated (named
mean LUS score). To have a comparable Lung Staging (measured with SensUS) with the
LUS score, we reported the device scores from 0 (absent) to 3 (which includes advanced
and peak).

2.5. Flow-Volume Spirometry and Diffusion Lung Carbon Monoxide

A pulmonary functional test was performed with flow-volume spirometry at the time
of the LUS evaluation during a medical visit, according to a standardized protocol [16]. Dis-
tal airflow obstruction was evaluated as forced expiratory volume at first second (FEV1%),
forced vital capacity (FVC%), and forced expiratory flow (FEF) at the 25–75 percentile
(FEF25–75%) of total flow. The same operator performed all flow-volume spirometry and
validated the flow-volume spirometry evaluation. Flow-volume spirometry was performed
with MicroLab portable (CareFusion, San Diego, CA, USA), and all results were processed
by Spirometry PC Software version 3.20 (Vyaiere Medical). A diffusion lung carbon monox-
ide (DLCO) test was performed in another center to evaluate the grade of interstitial disease.
Results were given within a month of the evaluation. They were categorized into reduced
or preserved DLCO, according to the value of the test: “reduced” if DLCO was less than
60%, while “preserved” if it was equal or over 60%.

2.6. Statistics

Data were analyzed using SPSS version 21.0 (IBM, Armonk, NY, USA) and expressed
as means ± S.D. for parametric data and median and interquartile range [IQR] for non-
parametric ones. The distribution of dichotomous values was analyzed with a Chi-square
test. As far as non-normally distributed data is concerned, we performed a non-parametric
Mann–Whitney test for comparisons and Spearman distribution for correlations. Normally
distributed data were studied with parametric unpaired t-test for comparisons and Pearson
distribution. Statistical significance was set to p < 0.05.

3. Results
3.1. Patients

Patients were slightly overweight, with the majority being non-smokers, only one
being a current smoker, and 27% having a history of smoking. About 42% presented a
post-COVID ILD, while the remaining were affected by ILD without a history of SARS-
CoV-2 infection (Table 1). Among the latter group, 21% (6 patients) were Non-Specific
Interstitial Pneumonia (NSIP) attributed to autoimmune diseases (1 vasculitis, 1 systemic
lupus erythematosus, 1 Sjögren syndrome, 1 systemic sclerosis) or systemic granulomatosis
(3 sarcoidosis). Three patients had Organized Pneumonia, and the remaining 10 patients
were affected by a Usual Interstitial Pneumonia (UIP) pattern due to secondary causes (1 to
amiodarone, 3 to radiation therapy, 6 to professional exposure). None of the participants
were in treatment with ILD-specific drugs, as their lung disease was considered stable both
as clinical and radiological evaluation by a third referral pneumological center.
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Table 1. Baseline features of 33 patients with ILDs considered to be all population and stratified
according to the reduction or normal diffusion of lung Carbon Monoxide (DLCO) test. Comparison
between these two groups was performed, and p-values are shown in the latter column.

Parameter All Patients Preserved DLCO Reduced DLCO p-Values

Demography
Numbers of patients 33 17 16

Age (years) 69 ± 17 62 ± 7 72 ± 16 Ns
Females/males 16 F/17 M 9 F/8 M 7 F/9 M Ns

Weight (kg) 68.1 ± 13.66 67.6 ± 5.07 66.41 ± 13.54 Ns
Height (m) 1.64 ± 0.09 1.68 ± 0.07 1.63 ± 0.09 Ns

Body Mass Index (kg/m2) 25.0 ± 3.47 25.4 ± 3.39 24.6 ± 3.62 Ns
Smokers (former) 1 (9) 0 (3) 1 (6) Ns

Clinical
Hypertension 15 9 6 Ns

Diabetes (type 2) 7 4 3 Ns
Dyslipidemia 7 3 4 Ns

SARS-CoV-2 infection 14 9 5 Ns
Ns: not significant.

No differences were found in PFT values between all patients when they were classi-
fied according to the DLCO result, apart from a significantly lower forced vital capacity
(FVC%) in patients with reduced DLCO (Table 2), as expected.

Table 2. Flow-volume spirometry value standardized for age, sex and BMI considering patients
stratified according to the reduction or normal diffusion of lung Carbon Monoxide (DLCO) test.
Comparison between these two groups was performed, and p-values are shown in the latter column.

Parameter All Patients Preserved DLCO Reduced DLCO p-Values

FEV1 (%) 101.60 ± 26.83 121.00 ± 9.66 104.18 ± 26.40 Ns
FVC (%) 101.50 ± 26.80 123.00 ± 10.22 99.90 ± 28.47 0.03

FEV1/FVC (%) 103.90 ± 13.61 100.00 ± 12.02 107.10 ± 12.02 Ns
FEF25 (%) 90.79 ± 42.29 118.80 ± 49.47 76.95 ± 35.95 Ns
FEF50 (%) 87.56 ± 30.53 97.00 ± 24.96 87.07 ± 30.20 Ns

FEF25–75 (%) 78.75 ± 35.74 79.66 ± 15.50 84.05 ± 45.05 Ns
FEF75 (%) 88.32 ± 39.53 97.80 ± 31.97 100.16 ± 41.40 Ns

Ns: not significant.

3.2. Algorithm Evaluation Compared to Human Evaluation

Lung Staging measured by SensUS demonstrated its capability to effectively identify
the risk of ILD with a result statistically no different from that of the LUS score. The median
Lung Staging was 1, with a range from 0 to 2, while the median LUS score was 0.67, ranging
from 0.25 to 1.54; the difference was not statistically significant (p = 0.84). These findings
suggest that Lung Staging can be a reliable alternative to the LUS score for the ILD risk
assessment (Figure 3).

The degree of interstitial pulmonary involvement, as measured by the expert ultrasono-
grapher with LUS score, exhibited a direct correlation with the extent of lung abnormalities
evaluated with the Lung Staging (r = 0.607; p = 0.002) (Figure 4).
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3.3. Clinical Meaning of the SensUS Lung Device Evaluation

The study revealed important relationships between imaging results and lung function
parameters. Considering patients as a whole, the Lung Staging was inversely correlated
with forced expiratory volume at the first second (FEV1% r = −0.40, p = 0.027) and forced
vital capacity (FVC% r = −0.39, p = 0.03). This indicates that Lung Staging may not
only be effective in assessing the risk of ILDs but could also provide valuable clinical
insights into the evaluation. In fact, considering Lung Staging as a measure of ILD severity,
as it increases, lung function tends to decline. However, Lung Staging exhibited direct
correlations with FEF25–75% (r = 0.45, p = 0.04) and FEF75% (r = 0.43, p = 0.01), indicating
that these parameters may reflect different aspects of the lung function in the context of
ILDs (Figure 5).
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relates to forced expiratory volume at the first and second (FEV1—panel A) and forced vital capacity
(FVC—panel B); on the contrary, Lung Staging directly relates to forced expiration flow between the
25th and 75th percentile of evaluation (FEF 25–75%—panel C) and forced expiration flow at 75th
percentile of evaluation (FEF 75%—panel D).

Lastly, the study pointed out that in patients with reduced DLCO, Lung Staging
classifications were significantly higher compared to those with preserved DLCO (reduced
median 1 [1–2] vs. preserved 0 [0–1], p = 0.001). The overlap in results with the LUS score
in this subgroup underscores the diagnostic efficacy of Lung Staging (reduced median
18 [4–20] vs. preserved 5.5 [2–9], p = 0.035). This is particularly true in cases where
conventional lung function tests may be inconclusive, supporting a pneumologist non-
expert in LUS to have the imaging evaluation of ILD severity (Figure 6).

Diagnostics 2024, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. Correlation between Lung Staging measured with SensUS and pulmonary functional test 
(PFT) parameters in all patients as BMI, age, gender, and smoking habits. Lung Staging inversely 
relates to forced expiratory volume at the first and second (FEV1—panel A) and forced vital capacity 
(FVC—panel B); on the contrary, Lung Staging directly relates to forced expiration flow between 
the 25th and 75th percentile of evaluation (FEF 25–75%—panel C) and forced expiration flow at 75th 
percentile of evaluation (FEF 75%—panel D). 

Lastly, the study pointed out that in patients with reduced DLCO, Lung Staging 
classifications were significantly higher compared to those with preserved DLCO 
(reduced median 1 [1–2] vs. preserved 0 [0–1], p = 0.001). The overlap in results with the 
LUS score in this subgroup underscores the diagnostic efficacy of Lung Staging (reduced 
median 18 [4–20] vs. preserved 5.5 [2–9], p = 0.035). This is particularly true in cases where 
conventional lung function tests may be inconclusive, supporting a pneumologist non-
expert in LUS to have the imaging evaluation of ILD severity (Figure 6). 

 
Figure 6. Lung Staging and Lung ultrasound score (LUS), both as mean and crude, in patients with 
preserved (plain) or reduced (dotted) DLCO. 

Figure 6. Lung Staging and Lung ultrasound score (LUS), both as mean and crude, in patients with
preserved (plain) or reduced (dotted) DLCO.



Diagnostics 2024, 14, 155 9 of 13

4. Discussion

The fields of application of AI are varied, but the most significant challenge in the
use of these algorithms in healthcare could be the difficulty of capturing and represent-
ing contextual information. For example, the process of anamnesis is difficult to fix in
an automated manner; this issue becomes even more evident in patients with multiple
comorbidities, where different aspects of the condition emerge progressively as more exams
are performed, and results become available. Diagnostic evaluation is the main clinical
application for AI, ranging from pathology to imaging [13,14,17–20]. Several authors have
studied the impact of ultrasound on clinical management and patient outcomes in recent
years, in particular since the COVID-19 pandemic [21–23].

Ultrasound has influenced healthcare in diagnostic and real-time imaging, guidance
for procedures, improved surgery, emergency medicine, cardiovascular application, neu-
rological assessment, and monitoring therapies. Moreover, portable and point-of-care
ultrasound has expanded its use not only in emergencies but also in rural healthcare and
developing countries [1]. The first claim about LUS is the reliability of the results. Nu-
merous studies tested multiple methods to find the most affordable method to examine
LUS [24]. Soldati et al. studied the sensibility and specificity of LUS in the diagnosis
of pneumothorax. When compared to chest X-rays, LUS showed higher sensitivity and
sensibility than computed (CT) tomography scans [25]. Of course, the reliability of this
technique depends on the instrument used. A hand-held ultrasound has been proven to
have a lower quality than other conventional ultrasound machines but can be used for
specific indications.

Recently, AI has been applied in multiple fields. For example, new data about AI
applied to ultrasound and echocardiography to enhance performance in time-sparing
settings are being published. In emergency departments, the impact of this assessment
would be greater if current measurements were automated [26]. A fully automated machine-
learning algorithm could assess the extent of ventricular contraction without the initial
requirement of identifying endocardial boundaries or measuring left ventricular volumes
at end-systole and end-diastole [27,28]. The use in ILD patients was mostly as a diagnostic
tool supporting CT scan imaging, as well as in quantitative parameters or the quantification
of parenchymal lesions [29]. Recent reviews highlight the strengths and weaknesses of
current developments in AI methods to detect ILD diagnosis and prognosis, underlining
the need for several databases to improve and develop current data [30,31].

Walsh et al. tested an algorithm for systematic, objective fibrotic imaging analysis
(SOFIA) vs. radiologist UIP probabilities. When prognostic accuracy was evaluated in
the identification of the UIP pattern, only SOFIA predicted survival [17]. Furthermore,
Furukawa et al. demonstrated the diagnostic accuracy of an AI algorithm that especially
improved the accuracy of the diagnosis of idiopathic pulmonary fibrosis (IPF) when clinical
data were also included in the evaluation [32]. In pathology, AI has been tested as well to
predict UIP. Uemagi et al. proved the accuracy of a model (MIXTURE) providing a visual
representation of both the quantity and the spatial arrangement of each morphological
observation in comparison to the original Whole Slide Image (WSI) [20].

AI has been examined for the implementation of well-known limitations of diagnostic
imaging, like chest X-rays. Evaluating the diagnostic accuracy in the screening of pul-
monary tuberculosis, different results with different software were collected, giving high
sensitivity for the AI detection of the disease [33]. Fanni et al. pointed to the solidity of
AI-based software for the detection of lung nodules, automated flagging of positive cases
of tuberculosis, and post-processing. They developed a digital bone suppression software
that is able to produce highly accurate bone-suppressed images [34]. Numerous researchers
have analyzed the impact of deep-learning image reconstruction, underlining the influence
of AI in cancer screening, reducing image noise, and increasing the nodule detection rate
and accuracy of chest CT images on ultra-low doses [35–37].

The significance of AI assistance has been highlighted as well in intensive care units
(ICUs). Data showed that when physicians, even if beginners, were supported by the
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AI tool, their performance improved, exceeding the level of advanced users. Of course,
the support of AI does not yield a significant enhancement for an expert ultrasonogra-
pher [38]. Automatic detection of abnormalities and pathological findings in LUS has been
proposed [39], with good concordance between expert observers and automatic detection
in a point-of-care setting [40,41]. This method has been proposed to make the evaluation
of pulmonary edema easier. However, in a real-life study, physician evaluation was more
specific despite both being highly sensitive [42]. Moreover, by combining murmur sound
and LUS, a deep-learning algorithm was able to differentiate ILDs from COPD patients [43].
The use of AI in chest imaging was boosted by the COVID-19 pandemic [44], but automatic
imaging evaluation was more on CT scans. Few experiences were performed on LUS with
promising results [45]. Thus, we performed one of the few real-world evaluations of ILD
patients using an automatic algorithm.

Our data indicate a concordance between the evaluation performed by an expert
ultrasonographer and a beginner one who used automatic imaging processing. The close
correlation we found between the Lung Staging measured with SensUS and the LUS score
was relevant for a wide clinical use of automatic algorithms. In fact, the SensUS Lung
device rises accordingly with the LUS score, indicating a good interchange. Furthermore,
the correlations between SensUS values (e.g., Lung Staging) and lung function parameters
shed light on the functional consequences of ILDs. Therefore, the SensUS Lung device may
be useful for an ultrasound beginner to evaluate interstitial lung involvement rapidly and
with good accuracy. Our results highlight the potential of the SensUS Lung device as a
valuable tool for identifying ILDs in patients with compromised gas exchange in the lung.

In summary, the SensUS Lung device demonstrated its non-inferiority to LUS in ILD
risk assessment and provided additional insights into the relationship between ILD severity,
lung function, and Lung Staging. This information can help clinicians make better-informed
decisions about the diagnosis and management of ILDs in their patients.

4.1. Limitations

Some limitations should be considered when interpreting results. First, the sample
size is restricted. A larger and more diverse patient population would provide a more
robust assessment of the automatic algorithm’s effectiveness. Moreover, the study was
conducted in a single center, which might limit the generalizability of the findings to other
healthcare settings and patient populations. Patients underwent HRCT as recommended by
guidelines but only within three months before enrollment in this study. The LUS or SensUS
Lung evaluation was not performed at the same time to minimize patient discomfort, so
we chose not to compare these results to HRCT. Furthermore, the study focused on typical
HRCT patterns (honeycombing, ground glass, fibrosis) for patient inclusion. Although
these are common indicators of ILDs, the study did not explore the potential of automated
algorithms in identifying atypical or rare ILD patterns for which the SensUS Lung device
could be implemented. Thus, the SensUS Lung device, in its current state, should be
regarded as a supportive tool for healthcare providers rather than a complete replacement
for expert evaluation through LUS and HRCT. However, this is an exploratory evaluation in
a real-life setting planned in a larger study as a starting point for a more complete algorithm
upgrade.

4.2. Conclusions

Presently, AI or automated image processing can support but not replace LUS and
HRCT performed by expert staff in monitoring patients. Our data suggest that AI al-
gorithms may help non-expert physicians in LUS with results that are non-inferior to
expert LUS despite it tending to overestimate ILD lesions. Therefore, algorithms like AI
or automated image processing may support physicians (in particular, non-expert LUS
sonographers) in daily clinical practice to monitor patients with ILDs. This device is simple
to use, and it makes a fully automatic real-time analysis. However, it needs definite training
in basic skills. In the future, AI and other automatic algorithms may be used to find patterns
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in enormous volumes of medical data, aiding in disease prediction and prevention before
symptoms appear. More studies are needed to expand the clinical evidence base for the
performance of these products.
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