Anemia and Iron Deficiency Predict All-Cause Mortality in Patients with Heart Failure and Preserved Ejection Fraction: 6-Year Follow-Up Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Follow-Up and Endpoints
2.3. Statistical Analyses
3. Results
3.1. Baseline Clinical Characteristics of Deceased and Surviving Patients
3.2. Baseline Clinical Characteristics by the Presence of Anemia
3.3. Baseline Clinical Characteristics by the Presence of ID
3.4. Cardiovascular and Non-Cardiovascular Mortality Rates by the Presence of Anemia or ID
3.5. Independent Predictors of All-Cause Mortality
4. Discussion
Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, K.; Teng, T.K.; Chandramouli, C.; Tromp, J.; Sakata, Y.; Lam, C.S. Epidemiology and Clinical Features of Heart Failure with Preserved Ejection Fraction. Card. Fail. Rev. 2022, 8, e27. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, H.H.; van Deursen, V.M.; van der Meer, P.; Voors, A.A. Comorbidities in Heart Failure. Handb. Exp. Pharmacol. 2017, 243, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; von Haehling, S.; Butler, J.; Cleland, J.G.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Eur. Heart J. 2023, 44, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, M.-D.; Jiang, S.-S.; Tang, L.; Wang, Y.-F.; Meng, Y.; Cai, Z.; Sun, X.-Y.; Cui, F.-Q.; Zhao, W.-J. Is serum hemoglobin level an independent prognostic factor for IgA nephropathy?: A systematic review and meta-analysis of observational cohort studies. Ren. Fail. 2023, 45, 2171885. [Google Scholar] [CrossRef]
- Magro, F.; Estevinho, M.M.; Catalano, G.; Patita, M.; Arroja, B.; Lago, P.; Rosa, I.; de Sousa, H.T.; Ministro, P.; Mocanu, I.; et al. How many biomarker measurements are needed to predict prognosis in Crohn’s disease patients under infliximab?-A prospective study. United Eur. Gastroenterol. J. 2023, 11, 531–541. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, E.; Marley, A.; Samaan, M.A.; Brookes, M.J. Iron deficiency anaemia: Pathophysiology, assessment, practical management. BMJ Open Gastroenterol. 2022, 9, e000759. [Google Scholar] [CrossRef]
- Gvirtzman, R.; Livovsky, D.M.; Tahover, E.; Goldin, E.; Koslowsky, B. Anemia can predict the prognosis of colorectal cancer in the pre-operative stage: A retrospective analysis. World J. Surg. Oncol. 2021, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutritional anemias, Report of a WHO Scientific Group, WHO Techn. Rep. Ser. 1968, 405, 9–10. [Google Scholar]
- Kapoor, J.R.; Kapoor, R.; Ju, C.; Heidenreich, P.A.; Eapen, Z.J.; Hernandez, A.F.; Butler, J.; Yancy, C.W.; Fonarow, G.C. Precipitating Clinical Factors, Heart Failure Characterization, and Outcomes in Patients Hospitalized With Heart Failure With Reduced, Borderline, and Preserved Ejection Fraction. JACC Heart Fail. 2016, 4, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.S.; Tay, W.T.; Teng, T.H.K.; Vedin, O.; Benson, L.; Dahlstrom, U.; Savarese, G.; Lam, C.S.; Lund, L.H. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur. J. Heart Fail. 2017, 19, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Pinto, Y.M. Heart Failure with Preserved Ejection Fraction—A Metabolic Disease? N. Engl. J. Med. 2023, 389, 1145–1146. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Junbo Ge, D.P.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef]
- Silverman, D.N.; Plante, T.B.; Infeld, M.; Callas, P.W.; Juraschek, S.P.; Dougherty, G.B.; Meyer, M. Association of β-Blocker Use With Heart Failure Hospitalizations and Cardiovascular Disease Mortality Among Patients With Heart Failure With a Preserved Ejection Fraction: A Secondary Analysis of the TOPCAT Trial. JAMA Netw. Open. 2019, 2, e1916598. [Google Scholar] [CrossRef]
- Graham, F.J.; Friday, J.M.; Pellicori, P.; Greenlaw, N.; Cleland, J.G. Assessment of haemoglobin and serum markers of iron deficiency in people with cardiovascular disease. Heart 2023, 109, 1294–1301. [Google Scholar] [CrossRef]
- Mentz, R.J.; Kelly, J.P.; von Lueder, T.G.; Voors, A.A.; Lam, C.S.; Cowie, M.R.; Kjeldsen, K.; Jankowska, E.A.; Atar, D.; Butler, J.; et al. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J. Am. Coll. Cardiol. 2014, 64, 2281–2293. [Google Scholar] [CrossRef]
- Ni, T.; Liu, Y.; Huang, M.; Ma, M.; Li, L.; Li, C.; Yang, R.; Yu, C. Association Between Anemia Status and the Risk of Different Types of Heart Failure: A RCSCD-TCM Study in China. Angiology 2023, 33197231161908, Online ahead of print. [Google Scholar] [CrossRef]
- Gupta, K.; Kalra, R.; Rajapreyar, I.; Joly, J.M.; Pate, M.; Cribbs, M.G.; Ather, S.; Prabhu, S.D.; Bajaj, N.S. Anemia, Mortality, and Hospitalizations in Heart Failure With a Preserved Ejection Fraction (from the TOPCAT Trial). Am. J. Cardiol. 2020, 125, 1347–1354. [Google Scholar] [CrossRef]
- Savarese, G.; Jonsson, Å.; Hallberg, A.C.; Dahlström, U.; Edner, M.; Lund, L.H. Prevalence of, associations with, and prognostic role of anemia in heart failure across the ejection fraction spectrum. Int. J. Cardiol. 2020, 298, 59–65. [Google Scholar] [CrossRef]
- Majmundar, M.; Doshi, R.; Zala, H.; Shah, P.; Adalja, D.; Shariff, M.; Kumar, A. Prognostic role of anemia in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Indian. Heart J. 2021, 73, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Pintér, A.; Behon, A.; Veres, B.; Merkel, E.D.; Schwertner, W.R.; Kuthi, L.K.; Masszi, R.; Lakatos, B.K.; Kovács, A.; Becker, D.; et al. The Prognostic Value of Anemia in Patients with Preserved, Mildly Reduced and Recovered Ejection Fraction. Diagnostics 2022, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Chairat, K.; Rattanavipanon, W.; Tanyasaensook, K.; Chindavijak, B.; Chulavatnatol, S.; Nathisuwan, S. Relationship of anemia and clinical outcome in heart failure patients with preserved versus reduced ejection fraction in a rural area of Thailand. Int. J. Cardiol. Heart Vasc. 2020, 30, 100597. [Google Scholar] [CrossRef] [PubMed]
- Shahim, A.; Hourqueig, M.; Lund, L.H.; Savarese, G.; Oger, E.; Venkateshvaran, A.; Benson, L.; Daubert, J.; Linde, C.; Donal, E.; et al. Long-term outcomes in heart failure with preserved ejection fraction: Predictors of cardiac and non-cardiac mortality. ESC Heart Fail. 2023, 10, 1835–1846. [Google Scholar] [CrossRef]
- Naito, A.; Obokata, M.; Kagami, K.; Harada, T.; Sorimachi, H.; Yuasa, N.; Saito, Y.; Kato, T.; Wada, N.; Adachi, T.; et al. Contributions of anemia to exercise intolerance in heart failure with preserved ejection fraction-An exercise stress echocardiographic study. Int. J. Cardiol. Heart Vasc. 2023, 48, 101255. [Google Scholar] [CrossRef]
- Metivier, F.; Marchais, S.J.; Guerin, A.P.; Pannier, B.; London, G.M. Pathophysiology of anaemia: Focus on the heart and blood vessels. Nephrol. Dial. Transplant. 2000, 15 (Suppl. 3), 14–18. [Google Scholar] [CrossRef]
- Chopra, V.K.; Anker, S.D. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail. 2020, 7, 2007–2011. [Google Scholar] [CrossRef]
- Cohen-Solal, A.; Damy, T.; Terbah, M.; Kerebel, S.; Baguet, J.; Hanon, O.; Zannad, F.; Laperche, T.; Leclercq, C.; Concas, V.; et al. High prevalence of iron deficiency in patients with acute decompensated heart failure. Eur. J. Heart Fail. 2014, 16, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef]
- Bekfani, T.; Pellicori, P.; Morris, D.; Ebner, N.; Valentova, M.; Sandek, A.; Doehner, W.; Cleland, J.G.; Lainscak, M.; Schulze, P.C.; et al. Iron deficiency in patients with heart failure with preserved ejection fraction and its association with reduced exercise capacity, muscle strength and quality of life. Clin. Res. Cardiol. 2019, 108, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Alcaide-Aldeano, A.; Garay, A.; Alcoberro, L.; Jiménez-Marrero, S.; Yun, S.; Tajes, M.; García-Romero, E.; Díez-López, C.; González-Costello, J.; Mateus-Porta, G.; et al. Iron Deficiency: Impact on Functional Capacity and Quality of Life in Heart Failure with Preserved Ejection Fraction. J. Clin. Med. 2020, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.L.; Warren, J.L.; Roberts, N.; Meyer, P.; Townsend, N.P.; Kaye, D. Iron deficiency in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Open Heart 2019, 6, e001012. [Google Scholar] [CrossRef]
- Barandiarán Aizpurua, A.; Sanders-van Wijk, S.; Brunner-La Rocca, H.P.; Henkens, M.T.H.M.; Weerts, J.; Spanjers, M.H.A.; Knackstedt, C.; van Empel, V.P.M. Iron deficiency impacts prognosis but less exercise capacity in heart failure with preserved ejection fraction. ESC Heart Fail. 2021, 8, 1304–1313. [Google Scholar] [CrossRef]
- Fitzsimons, S.; Yeo, T.J.; Ling, L.H.; Sim, D.; Leong, K.T.G.; Yeo, P.S.D.; Ong, H.Y.; Jaufeerally, F.; Ng, T.P.; Poppe, K.; et al. Impact of change in iron status over time on clinical outcomes in heart failure according to ejection fraction phenotype. ESC Heart Fail. 2021, 8, 4572–4583. [Google Scholar] [CrossRef]
Overall (n = 212) | Deceased (n = 60) | Surviving (n = 152) | p-Value | ||
---|---|---|---|---|---|
Female sex, n (%) | 116 (54.7) | 37 (61.7) | 79 (52) | 0.202 | |
Age, years | 70.6 ± 10.5 | 76.3 ± 8.4 | 68.4 ± 10.5 | <0.001 | |
Smoking, n (%) | 35 (16.5) | 7 (11.7) | 28 (18.4) | 0.233 | |
Alcohol use, n (%) | 9 (4.2) | 0 (0) | 9 (5.9) | 0.054 | |
Place of residence | Rural | 109 (51.4) | 34 (56.7) | 75 (49.3) | 0.157 |
Urban | 103 (48.6) | 25 (41.7) | 77 (50.7) | ||
NYHA | I–II | 175 (82.5) | 42 (70) | 133 (87.5) | 0.002 |
III–IV | 37 (17.5) | 18 (30) | 19 (12.5) | ||
Orthopnea, n (%) | 25 (11.8) | 13 (21.7) | 12 (7.9) | 0.005 | |
Paroxysmal nocturnal dyspnea, n (%) | 98 (46.2) | 38 (63.3) | 60 (39.5) | 0.002 | |
Bendopnea, n (%) | 58 (27.4) | 21 (35) | 37 (24.3) | 0.117 | |
Palpitation, n (%) | 95 (44.8) | 27 (45) | 68 (44.7) | 0.972 | |
Reduced exercise tolerance, n (%) | 201 (94.8) | 57 (95) | 144 (94.7) | 0.938 | |
Fatigue, tiredness, n (%) | 167 (78.8) | 52 (86.7) | 115 (75.7) | 0.077 | |
Ankle swelling, n (%) | 42 (19.8) | 20 (33.3) | 22 (14.5) | 0.002 | |
Chest pain, n (%) | 28 (13.2) | 8 (13.3) | 20 (13.2) | 0.973 | |
Body mass index, kg/m2 | 28.2 ± 4.6 | 27.7 ± 4.1 | 28.4 ± 4.7 | 0.378 | |
Systolic blood pressure, mmHg | 129.6 ± 15 | 130.1 ± 16 | 129.4 ± 15 | 0.224 | |
Diastolic blood pressure, mmHg | 78.7 ± 10 | 79.3 ± 9.8 | 78.5 ± 10.2 | 0.301 | |
Heart rate, bpm | 82 ± 16 | 79 ± 13 | 83 ± 17 | 0.082 | |
Jugular vein distention, n (%) | 42 (19.8) | 19 (31.7) | 23 (15.1) | 0.007 | |
Cardiac murmur, n (%) | 137 (64.6) | 47 (78.3) | 90 (59.2) | 0.009 | |
Third heart sound, n (%) | 9 (4.2) | 4 (6.7) | 5 (3.3) | 0.272 | |
Peripheral edema, n (%) | 40 (18.9) | 20 (33.3) | 20 (13.2) | 0.001 | |
Pulmonary crepitations, n (%) | 13 (6.1) | 7 (11.7) | 6 (3.9) | 0.035 | |
Tachypnea, n (%) | 11 (5.2) | 7 (11.7) | 4 (2.6) | 0.008 | |
ECG abnormality, n (%) | 110 (51.9) | 32 (53.3) | 78 (51.3) | 0.791 | |
Ascites, n (%) | 1 (0.5) | 1 (1.7) | 0 (0) | 0.111 | |
Cachexia, n (%) | 4 (1.9) | 1 (1.7) | 3 (2) | 0.882 | |
Comorbidities, n (%) | |||||
Anemia | 81 (38.2) | 44 (73.3) | 37 (24.3) | <0.001 | |
Iron deficiency | 108 (50.9) | 48 (80) | 60 (39.5) | <0.001 | |
Atrial fibrillation | 83 (39.2) | 25 (41.7) | 58 (38.2) | 0.637 | |
Hypertension | 163 (76.9) | 46 (76.7) | 117 (77) | 0.962 | |
Diabetes mellitus | 66 (31.1) | 21 (35) | 45 (29.6) | 0.445 | |
Chronic kidney disease | 25 (11.8) | 15 (25) | 10 (6.6) | <0.001 | |
Dialysis | 2 (0.9) | 2 (3.3) | 0 (0) | 0.024 | |
Obstructive sleep apnea | 25 (11.8) | 3 (5) | 22 (14.5) | 0.054 | |
Hyperlipidemia | 81 (38.2) | 22 (36.7) | 59 (38.8) | 0.772 | |
Coronary artery disease | 70 (33) | 18 (30) | 52 (34.2) | 0.557 | |
Coronary artery by-pass grafting | 21 (9.9) | 7 (11.7) | 14 (9.2) | 0.590 | |
Percutaneous coronary intervention | 36 (17) | 7 (11.7) | 29 (19.1) | 0.195 | |
Peripheral artery disease | 8 (3.8) | 2 (3.3) | 6 (3.9) | 0.833 | |
CVA/TIA | 15 (7.1) | 7 (11.7) | 8 (5.3) | 0.101 | |
COPD | 31 (14.6) | 10 (16.7) | 21 (13.8) | 0.597 | |
Hepatic failure | 0 (0) | 0 (0) | 0 (0) | - | |
Depression | 18 (8.5) | 5 (8.3) | 13 (8.6) | 0.959 | |
Malignancy | 6 (2.8) | 4 (6.7) | 2 (1.3) | 0.034 | |
Follow-up period, months | 66.2 ± 12.1 | 51.5 ± 14.9 | 68.6 ± 10.4 | <0.001 |
Overall (n = 212) | Deceased (n = 60) | Surviving (n = 152) | p-Value | ||
---|---|---|---|---|---|
Echocardiographic data | |||||
LVEF, % | 57 ± 4.2 | 55.8 ± 3.8 | 57.6 ± 4.2 | 0.005 | |
e’, cm/sn | 6.8 ± 1.9 | 6.6 ± 1.9 | 6.9 ± 1.9 | 0.203 | |
E/e’ | 11.3 ± 3.2 | 12.3 ± 3.8 | 11 ± 2.9 | 0.006 | |
LAVI, mL/m2 | 37.5 ± 9.6 | 38.6 ± 10 | 37.1 ± 9.5 | 0.298 | |
LA enlargement, n(%) | 126 (59.4) | 40 (66.7) | 86 (56.6) | 0.178 | |
LVMI, g/m2 | 111.6 ± 24.1 | 114.1 ± 25.3 | 110.7 ± 23.7 | 0.369 | |
LV concentric hypertrophy, n (%) | 131 (61.8) | 40 (66.7) | 91 (59.9) | 0.359 | |
PAPs, mmHg | 22.7 ± 10.7 | 24.4 ± 11.6 | 22 ± 10.3 | 0.173 | |
Mitral regurgitation | None | 49 (23.1) | 10 (16.7) | 39 (25.7) | 0.259 |
Mild | 120 (56.6) | 39 (65) | 81 (53.3) | ||
Moderate | 43 (20.3) | 11 (18.3) | 32 (21.1) | ||
Mitral stenosis | None | 194 (91.5) | 58 (96.7) | 146 (96.1) | 0.833 |
Mild | 8 (8.5) | 2 (3.3) | 6 (3.9) | ||
Moderate | 0 (0) | 0 (0) | 0 (0) | ||
Aortic stenosis | None | 197 (92.9) | 56 (93.3) | 141 (92.8) | 0.820 |
Mild | 14 (6.6) | 4 (6.7) | 10 (6.6) | ||
Moderate | 1 (0.5) | 0 (0) | 1 (0.7) | ||
Aortic regurgitation | None | 161 (75.9) | 42 (70) | 119 (78.3) | 0.132 |
Mild | 43 (20.3) | 17 (28.3) | 26 (17.1) | ||
Moderate | 8 (3.8) | 1 (1.7) | 7 (4.6) | ||
Tricuspid regurgitation | None | 110 (51.9) | 30 (50) | 80 (52.6) | 0.509 |
Mild | 66 (31.1) | 17 (28.3) | 49 (32.2) | ||
Moderate | 36 (17) | 13 (21.7) | 23 (15.1) | ||
Blood tests | |||||
Hemoglobin, g/dL | 12.8 ± 1.9 | 11.1 ± 1.5 | 13.5 ± 1.6 | <0.001 | |
Transferrin saturation, mean (%) | 28.8 | 12.5 | 35.2 | <0.001 | |
Ferritin, ng/mL | 94.5 (35–207) | 34.1 (20–64.5) | 132.5 (67–244.5) | <0.001 | |
NT-proBNP, pg/mL | 568.5 (278–1339) | 895 (431.5–1436.5) | 454 (266–1100.5) | 0.017 | |
Fasting blood glucose, mg/dL | 111.4 ± 37 | 107.7 ± 35.7 | 112.9 ± 37.6 | 0.361 | |
BUN, mg/dL | 18.8 ± 8.1 | 21.2 ± 8.6 | 17.9 ± 7.8 | 0.010 | |
Serum Creatinine, mg/dL | 0.9 ± 0.3 | 1 ± 0.5 | 0.9 ± 0.4 | 0.049 | |
Serum Sodium, mmol/L | 140.6 ± 10 | 139.8 ± 10.2 | 141 ± 9.9 | 0.548 | |
Serum Potassium, mmol/L | 4.5 ± 0.5 | 4.5 ± 0.5 | 4.5 ± 0.5 | 0.538 | |
Serum Calcium, mg/dL | 9.2 ± 0.5 | 9 ± 0.5 | 9.3 ± 0.5 | 0.009 | |
Uric acid, mg/dL | 5.9 ± 1.4 | 6.2 ± 1.7 | 5.8 ± 1.4 | 0.060 | |
Leukocyte, ×103/µL | 8 ± 2.3 | 8 ± 2.3 | 8.1 ± 2.4 | 0.706 | |
C-reactive protein, mg/dL | 4 (1.7–8) | 3.4 (1.4–9.3) | 4 (2–7.1) | 0.315 | |
TSH, µIU/mL | 1.2 (0.8–1.9) | 1.2 (0.7–1.9) | 1.2 (0.9–1.9) | 0.307 | |
Medications, n(%) | |||||
Angiotensin-converting enzyme inhibitor | 56 (26.4) | 19 (31.7) | 37 (24.3) | 0.276 | |
Angiotensin receptor blocker | 55 (25.9) | 12 (20) | 43 (28.3) | 0.215 | |
Beta-blocker | 110 (51.9) | 30 (50) | 80 (52.6) | 0.730 | |
Aldosterone antagonists | 29 (13.6) | 7 (11.7) | 22 (14.5) | 0.592 | |
Amiodarone | 4 (1.8) | 2 (3.3) | 2 (1.3) | 0.331 | |
Nondihydropyridine calcium blockers | 24 (11.3) | 6 (10) | 18 (11.8) | 0.703 | |
Dihydropyridine calcium blockers | 45 (21.2) | 16 (26.7) | 29 (19.1) | 0.224 | |
Digoxin | 18 (8.5) | 5 (8.3) | 13 (8.6) | 0.959 | |
Statin | 55 (25.9) | 14 (23.3) | 41 (27) | 0.586 | |
Loop diuretic | 45 (21.2) | 13 (21.7) | 32 (21.1) | 0.922 | |
Thiazide | 67 (31.6) | 20 (33.3) | 47 (30.9) | 0.734 | |
Isosorbide | 6 (2.8) | 1 (1.7) | 5 (3.3) | 0.521 | |
Antiaggregant | 68 (32.1) | 21 (35) | 47 (30.9) | 0.567 | |
Anticoagulant | 71 (33.5) | 25 (41.7) | 46 (30.3) | 0.113 | |
Nonsteroidal anti-inflammatory drug | 29 (13.7) | 8 (13.3) | 21 (13.8) | 0.927 | |
Oral antihyperglysemic | 57 (26.9) | 21 (35) | 36 (23.7) | 0.094 | |
Insulin | 13 (6.1) | 3 (5) | 10 (6.6) | 0.666 |
Overall (n = 212) | With Anemia (n = 81) | Without Anemia (n = 131) | p-Value | ||
---|---|---|---|---|---|
Female sex, n (%) | 116 (54.7) | 47 (58) | 69 (52.7) | 0.447 | |
Age, years | 70.6 ± 10.5 | 74.4 ± 8.7 | 68.3 ± 11 | <0.001 | |
NYHA | I–II | 175 (82.5) | 57 (70.4) | 118 (90.1) | <0.001 |
III–IV | 37 (17.5) | 24 (29.6) | 13 (9.9) | ||
Paroxysmal nocturnal dyspnea, n (%) | 98 (46.2) | 52 (64.2) | 46 (35.1) | <0.001 | |
Bendopnea, n (%) | 58 (27.4) | 32 (39.5) | 26 (19.8) | 0.002 | |
Reduced exercise tolerance, n (%) | 201 (94.8) | 78 (96.3) | 123 (93.9) | 0.443 | |
Body mass index, kg/m2 | 28.2 ± 4.6 | 28.3 ± 4.6 | 28.1 ± 4.6 | 0.751 | |
Systolic blood pressure, mmHg | 129.6 ± 15 | 130.6 ± 15.3 | 129 ± 15.2 | 0.445 | |
Diastolic blood pressure, mmHg | 78.7 ± 10 | 79.4 ± 10.5 | 78.3 ± 9.8 | 0.437 | |
Heart rate, bpm | 82 ± 16 | 80 ± 14 | 83 ± 17 | 0.185 | |
Jugular vein distention, n (%) | 42 (19.8) | 21 (25.9) | 21 (16) | 0.079 | |
Peripheral edema, n (%) | 40 (18.9) | 20 (24.7) | 20 (15.3) | 0.088 | |
Pulmonary crepitations, n (%) | 13 (6.1) | 10 (12.3) | 3 (2.3) | 0.003 | |
ECG abnormality, n (%) | 110 (51.9) | 41 (50.6) | 69 (52.7) | 0.771 | |
Comorbidities, n (%) | |||||
Iron deficiency | 108 (50.9) | 73 (90.1) | 35 (26.7) | <0.001 | |
Atrial fibrillation | 83 (39.2) | 30 (37) | 53 (40.5) | 0.620 | |
Hypertension | 163 (76.9) | 64 (79) | 99 (75.6) | 0.564 | |
Diabetes mellitus | 66 (31.1) | 31 (38.3) | 35 (26.7) | 0.078 | |
Chronic kidney disease | 25 (11.8) | 16 (19.8) | 9 (6.9) | 0.005 | |
Obstructive sleep apnea | 25 (11.8) | 9 (11.1) | 16 (12.2) | 0.809 | |
Hyperlipidemia | 81 (38.2) | 29 (35.8) | 52 (39.7) | 0.571 | |
Coronary artery disease | 70 (33) | 31 (38.3) | 39 (29.8) | 0.201 | |
Peripheral artery disease | 8 (3.8) | 2 (2.5) | 6 (4.6) | 0.433 | |
CVA/TIA | 15 (7.1) | 5 (6.2) | 10 (7.6) | 0.687 | |
COPD | 31 (14.6) | 15 (18.5) | 16 (12.2) | 0.207 | |
Depression | 18 (8.5) | 6 (7.4) | 12 (9.2) | 0.656 | |
Malignancy | 6 (2.8) | 5 (6.2) | 1 (0.8) | 0.021 | |
Echocardiographic data | |||||
LVEF, % | 57 ± 4.2 | 56.7 ± 4.1 | 57.3 ± 4.3 | 0.319 | |
E/e’ | 11.3 ± 3.2 | 12.1 ± 3.6 | 10.9 ± 2.9 | 0.008 | |
LA enlargement, % | 126 (59.4) | 55 (67.9) | 71 (54.2) | 0.048 | |
LV concentric hypertrophy, % | 131 (61.8) | 53 (65.4) | 78 (59.5) | 0.391 | |
Blood tests | |||||
Hemoglobin, g/dL | 12.8 ± 1.9 | 11 ± 1.1 | 13.9 ± 1.3 | <0.001 | |
Transferrin saturation, mean (%) | 28.8 | 15.5 | 37 | <0.001 | |
Ferritin, ng/mL | 94.5 (35–207) | 35 (19.7–85) | 141 (83.9–261) | <0.001 | |
NT-proBNP, pg/mL | 568.5 (278–1339) | 1041 (373–1558) | 430 (254–981) | 0.002 | |
BUN, mg/dL | 18.8 ± 8.1 | 21.2 ± 9.4 | 17.3 ± 6.8 | 0.001 | |
Serum Creatinine, mg/dL | 0.9 ± 0.3 | 1 ± 0.5 | 0.9 ± 0.3 | 0.036 | |
Serum Sodium, mmol/L | 140.6 ± 10 | 141.2 ± 2.4 | 140.1 ± 12.6 | 0.437 | |
Serum Potassium, mmol/L | 4.5 ± 0.5 | 4.5 ± 0.5 | 4.5 ± 0.5 | 0.532 | |
Serum Calcium, mg/dL | 9.2 ± 0.5 | 9 ± 0.5 | 9.3 ± 0.5 | <0.001 | |
Uric acid, mg/dL | 5.9 ± 1.4 | 6.2 ± 1.5 | 5.8 ± 1.4 | 0.053 | |
Leukocyte, ×103/µL | 8 ± 2.3 | 8 ± 2.6 | 8 ± 2.2 | 0.913 | |
C-reactive protein, mg/dL | 4 (1.7–8) | 3.6 (1.8–9.6) | 4 (1.7–7) | 0.055 | |
TSH, µIU/mL | 1.2 (0.8–1.9) | 1.3 (0.7–1.9) | 1.2 (0.8–1.9) | 0.490 | |
Medications, n (%) | |||||
Angiotensin-converting enzyme inhibitor | 56 (26.4) | 23 (28.4) | 33 (25.2) | 0.607 | |
Angiotensin receptor blocker | 55 (25.9) | 20 (24.7) | 35 (26.7) | 0.744 | |
Beta-blocker | 110 (51.9) | 44 (54.3) | 66 (50.4) | 0.577 | |
Aldosterone antagonists | 29 (13.6) | 9 (11.1) | 20 (15.3) | 0.392 | |
Digoxin | 18 (8.5) | 6 (7.4) | 12 (9.2) | 0.656 | |
Statin | 55 (25.9) | 22 (27.2) | 33 (25.2) | 0.751 | |
Loop diuretic | 45 (21.2) | 20 (24.7) | 25 (19.1) | 0.332 | |
Antiaggregant | 68 (32.1) | 32 (39.5) | 36 (27.5) | 0.068 | |
Anticoagulant | 71 (33.5) | 27 (33.3) | 44 (33.6) | 0.970 | |
Nonsteroidal anti-inflammatory drug | 29 (13.7) | 11 (13.6) | 18 (13.7) | 0.974 | |
Oral antihyperglysemic | 57 (26.9) | 31 (38.3) | 26 (19.8) | 0.003 | |
Insulin | 13 (6.1) | 6 (7.4) | 7 (5.3) | 0.543 | |
Follow-up period, months | 66.2 ± 12.1 | 57.8 ± 15.8 | 68.7 ± 11.3 | <0.001 | |
Long-term mortality, n (%) | 60 (28.3) | 44 (54.3) | 16 (12.2) | <0.001 |
Iron Deficiency (n = 108) | No Iron Deficiency (n = 104) | p-Value | ||
---|---|---|---|---|
Female sex, n (%) | 64 (59.3) | 52 (50) | 0.176 | |
Age, years | 73.6 ± 9 | 67.6 ± 11.3 | <0.001 | |
NYHA | I–II | 82 (75.9) | 93 (89.4) | 0.010 |
III–IV | 26 (24.1) | 11 (10.6) | ||
Paroxysmal nocturnal dyspnea, n (%) | 61 (56.5) | 37 (35.6) | 0.002 | |
Bendopnea, n (%) | 35 (32.4) | 23 (22.1) | 0.093 | |
Reduced exercise tolerance, n (%) | 103 (95.4) | 98 (94.2) | 0.708 | |
Body mass index, kg/m2 | 28.6 ± 4.5 | 27.8 ± 4.7 | 0.234 | |
Systolic blood pressure, mmHg | 129.5 ± 15.4 | 129.7 ± 15.1 | 0.919 | |
Diastolic blood pressure, mmHg | 78.9 ± 9.5 | 78.6 ± 10.7 | 0.843 | |
Heart rate, bpm | 82 ± 16 | 82 ± 16 | 0.955 | |
Jugular vein distention, n (%) | 24 (22.2) | 18 (17.3) | 0.369 | |
Peripheral edema, n (%) | 25 (23.1) | 15 (14.4) | 0.105 | |
Pulmonary crepitations, n (%) | 10 (9.3) | 3 (2.9) | 0.053 | |
ECG abnormality, n (%) | 56 (51.9) | 54 (51.9) | 0.992 | |
Comorbidities, n (%) | ||||
Anemia | 73 (67.6) | 8 (7.7) | <0.001 | |
Atrial fibrillation | 46 (42.6) | 37 (35.6) | 0.295 | |
Hypertension | 82 (75.9) | 81 (77.9) | 0.735 | |
Diabetes mellitus | 36 (33.3) | 30 (28.8) | 0.481 | |
Chronic kidney disease | 15 (13.9) | 10 (9.6) | 0.335 | |
Obstructive sleep apnea | 10 (9.3) | 15 (14.4) | 0.244 | |
Hyperlipidemia | 40 (37) | 41 (39.4) | 0.721 | |
Coronary artery disease | 37 (34.3) | 33 (31.7) | 0.696 | |
Peripheral artery disease | 2 (1.9) | 6 (5.8) | 0.135 | |
CVA/TIA | 7 (6.5) | 8 (7.7) | 0.731 | |
COPD | 14 (13) | 17 (16.3) | 0.486 | |
Depression | 8 (7.4) | 10 (9.6) | 0.564 | |
Malignancy | 4 (3.7) | 2 (1.9) | 0.434 | |
Echocardiographic data | ||||
LVEF, % | 57 ± 4.3 | 57 ± 4.2 | 0.766 | |
E/e’ | 11.6 ± 3.5 | 11.1 ± 3 | 0.284 | |
LA enlargement, % | 70 (64.8) | 56 (53.8) | 0.104 | |
LV concentric hypertrophy, % | 69 (63.9) | 62 (59.6) | 0.522 | |
Blood tests | ||||
Hemoglobin, g/dL | 11.9 ± 1.8 | 13.8 ± 1.4 | <0.001 | |
Transferrin saturation, mean (%) | 18 | 40 | <0.001 | |
Ferritin, ng/mL | 36.5 (19.9–65) | 209.5 (133–314) | <0.001 | |
NT-proBNP, pg/mL | 726.5 (305–1346) | 453 (261–1313) | 0.098 | |
BUN, mg/dL | 19.4 ± 7.8 | 18.3 ± 8.5 | 0.321 | |
Serum Creatinine, mg/dL | 0.9 ± 0.3 | 0.9 ± 0.5 | 0.852 | |
Serum Sodium, mmol/L | 141.4 ± 2.3 | 139.8 ± 14.1 | 0.243 | |
Serum Potassium, mmol/L | 4.5 ± 0.5 | 4.5 ± 0.5 | 0.470 | |
Serum Calcium, mg/dL | 9.2 ± 0.5 | 9.3 ± 0.5 | 0.062 | |
Uric acid, mg/dL | 6.1 ± 1.4 | 5.8 ± 1.5 | 0.215 | |
Leukocyte, ×103/µL | 7.9 ± 2.3 | 8.3 ± 2.5 | 0.234 | |
C-reactive protein, mg/dL | 3.5 (1.6–8) | 4 (1.9–8) | 0.960 | |
TSH, µIU/mL | 1.3 (0.8–1.9) | 1.2 (0.8–1.8) | 0.359 | |
Medications, n (%) | ||||
Angiotensin-converting enzyme inhibitor | 30 (27.8) | 26 (25) | 0.647 | |
Angiotensin receptor blocker | 23 (21.3) | 32 (30.8) | 0.116 | |
Beta-blocker | 57 (52.8) | 53 (51) | 0.791 | |
Aldosterone antagonists | 12 (11.1) | 17 (16.3) | 0.267 | |
Digoxin | 8 (7.4) | 10 (9.6) | 0.564 | |
Statin | 26 (24.1) | 29 (27.9) | 0.527 | |
Loop diuretic | 23 (21.3) | 22 (21.2) | 0.980 | |
Antiaggregant | 36 (33.3) | 32 (30.8) | 0.689 | |
Anticoagulant | 41 (38) | 30 (28.8) | 0.160 | |
Nonsteroidal anti-inflammatory drug | 17 (15.7) | 12 (11.5) | 0.373 | |
Oral antihyperglysemic | 35 (32.4) | 22 (21.2) | 0.065 | |
Insulin | 6 (5.6) | 7 (6.7) | 0.721 | |
Follow-up period, months | 61.2 ± 15 | 69.4 ± 12 | <0.001 | |
Long-term mortality, n (%) | 48 (44.4) | 12 (11.5) | <0.001 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age, 1 year increase | 1.103 (1.063–1.182) | <0.001 | 1.122 (1.039–1.261) | 0.002 |
NYHA III–IV | 3.101 (1.501–6.702) | 0.002 | 1.401 (0.981–2.603) | 0.058 |
PND | 2.936 (1.603–5.004) | 0.002 | 1.421 (1.097–2.508) | 0.027 |
Cardiac murmur | 2.401 (1.142–4.775) | 0.010 | 2.115 (0.688–1.701) | 0.241 |
Anemia | 8.603 (6.401–9.990) | <0.001 | 5.401 (4.303–6.209) | 0.001 |
Iron deficiency | 6.073 (4.650–8.201) | <0.001 | 3.502 (2.204–6.701) | 0.015 |
CKD | 4.700 (1.971–6.002) | <0.001 | 2.166 (1.500–3.825) | 0.020 |
Malignancy | 0.180 (0.033–1.048) | 0.037 | 0.225 (0.170–1.081) | 0.326 |
LVEF, 1% increase | 0.886 (0.824–0.987) | 0.006 | 0.837 (0.725–0.974) | 0.016 |
E/e’, 0.5 increase | 1.105 (1.039–1.268) | 0.007 | 1.064 (0.862–1.331) | 0.550 |
NT-proBNP, 50 pg/mL increase | 1.000 (1.000–1.001) | 0.018 | 1.000 (0.999–1.000) | 0.391 |
BUN, 0.1 mg/dL increase | 1.045 (1.013–1.094) | 0.011 | 0.914 (0.816–1.019) | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köseoğlu, F.D.; Özlek, B. Anemia and Iron Deficiency Predict All-Cause Mortality in Patients with Heart Failure and Preserved Ejection Fraction: 6-Year Follow-Up Study. Diagnostics 2024, 14, 209. https://doi.org/10.3390/diagnostics14020209
Köseoğlu FD, Özlek B. Anemia and Iron Deficiency Predict All-Cause Mortality in Patients with Heart Failure and Preserved Ejection Fraction: 6-Year Follow-Up Study. Diagnostics. 2024; 14(2):209. https://doi.org/10.3390/diagnostics14020209
Chicago/Turabian StyleKöseoğlu, Fatoş Dilan, and Bülent Özlek. 2024. "Anemia and Iron Deficiency Predict All-Cause Mortality in Patients with Heart Failure and Preserved Ejection Fraction: 6-Year Follow-Up Study" Diagnostics 14, no. 2: 209. https://doi.org/10.3390/diagnostics14020209
APA StyleKöseoğlu, F. D., & Özlek, B. (2024). Anemia and Iron Deficiency Predict All-Cause Mortality in Patients with Heart Failure and Preserved Ejection Fraction: 6-Year Follow-Up Study. Diagnostics, 14(2), 209. https://doi.org/10.3390/diagnostics14020209