Comparing Different Methods for the Diagnosis of Liver Steatosis: What Are the Best Diagnostic Tools?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Clinical and Biological Evaluation
Blood Sampling and Analysis
2.3. Histological Examination: Evaluation of Steatosis Induction and Lipid Overloading—HE and Oil Red O Staining
Tissue Preparation
2.4. Morphological and Metabolic Imaging
Methoxyisobutylisonitrile (MIBI) Liver Perfusion
- 99mTc-MIBI SPECT/CT biodistribution in mice
2.5. Coherent Anti-Stokes Raman Scattering (CARS) Microscopy
2.6. MRI Protocol and Liver Steatosis Quantification
2.7. Near-Infrared Spectroscopy
Data Acquisition
2.8. Statistical Analysis
3. Results
3.1. Experimental Study Design and Characterization of the Liver Steatosis Model
3.2. Biochemical Analysis
3.3. Magnetic Resonance Spectroscopy Quantification of Liver Steatosis
3.4. CARS Microscopy
3.5. Histological Analysis
3.6. 99mTc-MIBI SPECT
3.7. NIR-SG1
3.8. Correlation and ROC Curves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
FLD | fatty liver disease |
LS | liver steatosis |
LT | liver transplantation |
MCD | methionine choline deficient |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
MASH | metabolic-associated steatohepatitis |
CARS | coherent anti-Stokes Raman scattering |
MASLD | metabolic dysfunction-associated steatotic liver disease |
mV | microvesicular |
MV | macrovesicular |
MRI | magnetic resonance imaging |
MRS | magnetic resonance spectroscopy |
99mTc MIBI | technetium-99m-2-methoxyisobutyl-isonitrile |
ORO | Oil Red O staining |
RS | Raman spectroscopy |
NIRS | near-infrared spectroscopy |
LBW | liver-to-body weight ratio |
AUC | area under the curve |
Appendix A
References
- Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology 2006, 43, S99–S112. [Google Scholar] [CrossRef] [PubMed]
- McCormack, L.; Petrowsky, H.; Jochum, W.; Mullhaupt, B.; Weber, M.; Clavien, P.-A. Use of severely steatotic grafts in liver transplantation: A matched case-control study. Ann. Surg. 2007, 246, 940–946; discussion 946–948. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ha, S.Y.; Park, C.-K.; Joh, J.-W.; Kwon, C.H.D.; Kwon, G.Y.; Kim, G.; Gwak, M.S.; Jeong, W.K.; Ko, J.S. Microsteatosis may not interact with macrosteatosis in living donor liver transplantation. J. Hepatol. 2015, 62, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.; Barritt, A.S.; Calmus, Y.; Scatton, O.; Runge, T.; Lebray, P.; Poynard, T.; Ratziu, V.; Conti, F. NAFLD and liver transplantation: Current burden and expected challenges. J. Hepatol. 2016, 65, 1245–1257. [Google Scholar] [CrossRef]
- Chiang, H.-J.; Lin, L.-H.; Li, C.-W.; Lin, C.-C.; Chiang, H.-W.; Huang, T.-L.; Chen, C.-L.; Cheng, Y.-F. Magnetic Resonance Fat Quantification in Living Donor Liver Transplantation. Transplant. Proc. 2014, 46, 666–668. [Google Scholar] [CrossRef]
- Sasso, M.; Miette, V.; Sandrin, L.; Beaugrand, M. The controlled attenuation parameter (CAP): A novel tool for the non-invasive evaluation of steatosis using Fibroscan. Clin. Res. Hepatol. Gastroenterol. 2012, 36, 13–20. [Google Scholar] [CrossRef]
- Qayyum, A.; Chen, D.M.; Breiman, R.S.; Westphalen, A.C.; Yeh, B.M.; Jones, K.D.; Lu, Y.; Coakley, F.V.; Callen, P.W. Evaluation of diffuse liver steatosis by ultrasound, computed tomography, and magnetic resonance imaging: Which modality is best? Clin. Imaging 2009, 33, 110–115. [Google Scholar] [CrossRef]
- Rokugawa, T.; Uehara, T.; Higaki, Y.; Matsushima, S.; Obata, A.; Arano, Y.; Abe, K. Potential of (99m)Tc-MIBI SPECT imaging for evaluating non-alcoholic steatohepatitis induced by methionine-choline-deficient diet in mice. EJNMMI Res. 2014, 4, 57. [Google Scholar] [CrossRef]
- Guiu, B.; Petit, J.-M.; Walker, P.M.; Loffroy, R.; Hillon, P.; Brunotte, F.; Krausé, D.; Cercueil, J.-P. Magnetic resonance spectroscopy: A new standard for quantification of liver steatosis? Gastroenterol. Clin. Biol. 2009, 33, 967–970. [Google Scholar] [CrossRef]
- Crane, P.; Laliberté, R.; Heminway, S.; Thoolen, M.; Orlandi, C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur. J. Nucl. Med. 1993, 20, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Ziemba, A.; Urasaki, Y.; Brotman, S.; Pizzorno, G. Label-free Evaluation of Hepatic Microvesicular Steatosis with Multimodal Coherent Anti-Stokes Raman Scattering Microscopy. PLoS ONE 2012, 7, e51092. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lu, F.; Zheng, W.; Xu, S.; Tai, D.; Yu, H.; Huang, Z. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique. J. Biomed. Opt. 2011, 16, 116024. [Google Scholar] [CrossRef]
- Reistad, N.; Nilsson, J.H.; Bergenfeldt, M.; Rissler, P.; Sturesson, C. Intraoperative liver steatosis characterization using diffuse reflectance spectroscopy. HPB 2019, 21, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Evers, D.J.; Westerkamp, A.C.; Spliethoff, J.W.; Pully, V.V.; Hompes, D.; Hendriks, B.H.W.; Prevoo, W.; van Velthuysen, M.-L.F.; Porte, R.J.; Ruers, T.J.M. Diffuse reflectance spectroscopy: Toward real-time quantification of steatosis in liver. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2015, 28, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Golse, N.; Cosse, C.; Allard, M.-A.; Laurenzi, A.; Tedeschi, M.; Guglielmo, N.; Fernandez-Sevilla, E.; Robert, M.; Tréchot, B.; Pietrasz, D.; et al. Evaluation of a micro-spectrometer for the real-time assessment of liver graft with mild-to-moderate macrosteatosis: A proof of concept study. J. Hepatol. 2019, 70, 423–430. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Yin, Z.; Murphy, M.C.; Li, J.; Glaser, K.J.; Mauer, A.S.; Mounajjed, T.; Therneau, T.M.; Liu, H.; Malhi, H.; Manduca, A.; et al. Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography. Eur. Radiol. 2019, 29, 5823–5831. [Google Scholar] [CrossRef]
- Sarri, B.; Chen, X.; Canonge, R.; Grégoire, S.; Formanek, F.; Galey, J.-B.; Potter, A.; Bornschlögl, T.; Rigneault, H. In Vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. J. Control. Release 2019, 308, 190–196. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Itagaki, H.; Shimizu, K.; Morikawa, S.; Ogawa, K.; Ezaki, T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int. J. Clin. Exp. Pathol. 2013, 6, 2683–2696. [Google Scholar] [PubMed]
- Zhang, Q.-Y.; Zhang, Q.-F.; Zhang, D.-Z. The Impact of Steatosis on the Outcome of Liver Transplantation: A Meta-Analysis. BioMed Res. Int. 2019, 2019, 3962785. [Google Scholar] [CrossRef] [PubMed]
- Levene, A.P.; Kudo, H.; Armstrong, M.J.; Thursz, M.R.; Gedroyc, W.M.; Anstee, Q.M.; Goldin, R.D. Quantifying hepatic steatosis—More than meets the eye. Histopathology 2012, 60, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Boudinaud, C.; Abergel, A.; Joubert-Zakeyh, J.; Fontarensky, M.; Pereira, B.; Chauveau, B.; Garcier, J.M.; Chabrot, P.; Boyer, L.; Magnin, B. Quantification of steatosis in alcoholic and nonalcoholic fatty liver disease: Evaluation of four MR techniques versus biopsy. Eur. J. Radiol. 2019, 118, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-M.; Chen, H.-C.; Chang, W.-T.; Jhan, J.-W.; Lin, H.-L.; Liau, I. Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-stokes Raman scattering microscopy. Anal. Chem. 2009, 81, 1496–1504. [Google Scholar] [CrossRef]
- Lombardini, A.; Mytskaniuk, V.; Sivankutty, S.; Andresen, E.R.; Chen, X.; Wenger, J.; Fabert, M.; Joly, N.; Louradour, F.; Kudlinski, A.; et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci. Appl. 2018, 7, 10. [Google Scholar] [CrossRef]
- Cesaretti, M.; Izzo, A.; Pellegrino, R.A. Letter to the Editor: Assessment of liver graft steatosis: A new panorama. Liver Transplant. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transplant. Soc. 2023, 29, E6–E7. [Google Scholar] [CrossRef]
- Nahon, P.; Soubrane, O. Fa(s)t assessment of the liver graft: Is it relevant? J. Hepatol. 2019, 70, 346–347. [Google Scholar] [CrossRef]
- Elbanna, K.Y.; Mansoori, B.; Mileto, A.; Rogalla, P.; Guimarães, L.S. Dual-energy CT in diffuse liver disease: Is there a role? Abdom. Radiol. 2020, 45, 3413–3424. [Google Scholar] [CrossRef]
- Xu, J.J.; Boesen, M.R.; Hansen, S.L.; Ulriksen, P.S.; Holm, S.; Lönn, L.; Hansen, K.L. Assessment of Liver Fat: Dual-Energy CT versus Conventional CT with and without Contrast. Diagnostics 2022, 12, 708. [Google Scholar] [CrossRef]
- Kou, L.; Labrie, D.; Chylek, P. Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. Appl. Opt. 1993, 32, 3531–3540. [Google Scholar] [CrossRef] [PubMed]
- Uzel, A.; Sdika, M.; Chopinet, S.; Lopez, O.; Montcel, B. Near infrared diffuse reflectance spectroscopy for fat quantification in non-alcoholic fatty liver disease. In European Conference on Biomedical Optics; Optica Publishing Group: Washington, DC, USA, 2023; p. 126281Q. [Google Scholar]
Parameter | Control | MCD-14d | MCD-28d |
---|---|---|---|
Body weight, g £ | 25.9 (24.7–27.0) | 17.9 (17.2–18.4) *** | 16.2 (15.8–16.8) *** |
Liver weight, g £ | 1.2 (1.1–1.3) | 0.7 (0.6–0.8) *** | 0.6 (0.5–0.7) *** |
LBW ratio, % £ | 4.6 (4.4–4.9) | 3.7 (3.6–3.9) * | 3.8 (3.5–4.1) ** |
ALT UI/L $ | 50.6 ± 8 | 152 ± 6 * | 273 ± 21 ** |
IL-6 (pg/mL) $ | 46.4 ± 1 | 79.2 ± 2 * | 251.4 ± 3 ** |
TG (nmol/µL) (N = 1.1–1.8) $ | 1.6 ± 0.2 | 3.1 ± 0.2 * | 3.6 ± 0.2 ** |
(99m)Tc MIBI Plateau value–max value ratio £ | 1.86 (1.5–2.1) | 0.92 (0.9–1.1) * | 0.88 (0.8–0.9) ** |
MRS (%) $ | 7.1 ± 0.8 | 19.1 ± 1.8 ** | 25.1 ± 2.7 *** |
CARS microscopy (%) $ Mean droplet size $ | 0.74 ± 0.3 0.9 ± 0.1 | 5.56 ± 0.47 ** 6.3 ± 0.2 ** | 11.8 ± 1.6 *** 10.8 ± 1.2 *** |
NIR-SG1 (%) | 4.6 ± 1.2 | 30.1 ± 0.9 *** | |
Histological steatosis (%) £ Oil Red O stain | 1.4 (1.1–1.9) | 11.3 (8.6–19.2) ** | 33.1 (27.7–37.2) *** |
Histological steatosis (%) £ | 0 | 8 ± 3.4 ** | 31 ± 4.6 *** |
Moderate liver steatosis (>30%), n (%) | 0 | 1 (20) *** | 4 (80) *** |
Score NAS £ | 0 (0–1) | 2 (1.5–3) ** | 4 (3–6) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chopinet, S.; Lopez, O.; Brustlein, S.; Uzel, A.; Moyon, A.; Varlet, I.; Balasse, L.; Kober, F.; Bobot, M.; Bernard, M.; et al. Comparing Different Methods for the Diagnosis of Liver Steatosis: What Are the Best Diagnostic Tools? Diagnostics 2024, 14, 2292. https://doi.org/10.3390/diagnostics14202292
Chopinet S, Lopez O, Brustlein S, Uzel A, Moyon A, Varlet I, Balasse L, Kober F, Bobot M, Bernard M, et al. Comparing Different Methods for the Diagnosis of Liver Steatosis: What Are the Best Diagnostic Tools? Diagnostics. 2024; 14(20):2292. https://doi.org/10.3390/diagnostics14202292
Chicago/Turabian StyleChopinet, Sophie, Olivier Lopez, Sophie Brustlein, Antoine Uzel, Anais Moyon, Isabelle Varlet, Laure Balasse, Frank Kober, Mickaël Bobot, Monique Bernard, and et al. 2024. "Comparing Different Methods for the Diagnosis of Liver Steatosis: What Are the Best Diagnostic Tools?" Diagnostics 14, no. 20: 2292. https://doi.org/10.3390/diagnostics14202292
APA StyleChopinet, S., Lopez, O., Brustlein, S., Uzel, A., Moyon, A., Varlet, I., Balasse, L., Kober, F., Bobot, M., Bernard, M., Haffner, A., Sdika, M., Montcel, B., Guillet, B., Vidal, V., Grégoire, E., Hardwigsen, J., & Brige, P. (2024). Comparing Different Methods for the Diagnosis of Liver Steatosis: What Are the Best Diagnostic Tools? Diagnostics, 14(20), 2292. https://doi.org/10.3390/diagnostics14202292