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Abstract: Background: Focal unspecific bone uptake (UBU) is common in [18F]PSMA-1007 PET/CT,
yet its clinical significance remains unclear, causing uncertainty in treatment decisions. Material
and Methods: We retrospectively analyzed 99 prostate cancer patients (age 69 ± 7) who underwent
[18F]PSMA-1007 PET/CT scans (3 MBq/kg; uptake time 70 ± 14 min) for staging and follow-up
(after 13.0 ± 7.2 months). Semiquantitative assessment using the miPSMA score, analogous to the
PROMISE criteria, evaluated the prevalence of UBU and bone metastases. Results: In the initial
PET/CT scan, 56 patients had 230 lesions classified as UBU. A total of 19 patients were found to
have bone metastases and UBU, while 24 patients had no focal bone uptake. UBU distribution was
as follows: ribs (50%), spine (30%), pelvis (15%), and other sites (5%). There were no significant
differences in age, Gleason score, injected tracer dose, uptake time, SUVpeak of UBU, or SUVmean

in the spleen and parotid gland between patients with and without UBU. Follow-up showed stable
miPSMA-score and CT appearance in 44/56 patients with UBU (79%), minor changes in 5/56 patients
(8%), and new bone metastases in 7/56 patients (12%). Patient-specific analysis indicated at least
one bone metastasis initially classified as UBU in 3/56 patients (5%) and new bone metastases in
4/56 patients (7%). In total, 4 of the 24 patients (17%) without initial focal uptake developed osseous
metastases at follow-up. Conclusions: No significant differences were found between patients with
or without UBU. Only a small portion of UBU (2%) evolved into metastases, a lower rate than the
development of new osseous metastases, which appears to be independent of UBU.

Keywords: prostate cancer; [18F]PSMA-1007; PET/CT; unspecific bone uptake; bone lesion; bone
metastases

1. Introduction

Prostate cancer represents the most common malignancy in men [1], resulting in a
considerable proportion of clinical imaging examinations focusing on patients with this
tumor entity. In this regard, multiple studies have validated the superior efficacy of positron
emission tomography (PET) targeting the prostate-specific membrane antigen (PSMA), an
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transmembrane protein overexpressed on prostate cancer cells, over conventional cross-
sectional imaging modalities [2–5].

In addition to the initially used gallium-68 labeled PSMA ligands, different PSMA-
targeting tracers utilizing fluorine-18 are currently emerging, with [18F]PSMA-1007 being
the primary tracer employed [6]. In 68Ga-PSMA ligands, chelators are used to bind the
radiometal, whereas in [18F]PSMA-1007, no chelator complex is necessary as fluorine-18
is bound covalently to fluoronicotinic acid, which is introduced into the molecule to-
gether with additional hydrophilic groups without influencing the pharmacophore binding
to PSMA [7]. [18F]PSMA-1007 exhibits superior biodistribution compared to [68Ga]Ga-
PSMA-11, characterized by reduced bladder excretion and the consequent improvement of
locoregional staging [6,8–10].

Furthermore, the physical properties of fluorine-18, notably its longer half-life and
production in a cyclotron, contribute to improved availability and lower manufacturing
costs [11–13]. Additionally, due to the lower positron energy of fluorine-18 (0.65 MeV vs.
1.92 MeV), the spatial resolution is improved in [18F]PSMA-1007 PET scans.

However, the use of [18F]PSMA-1007 has been associated with an elevated prevalence
of focal unspecific bone uptake (UBU) in up to 72% of patients, which appears to be
significantly more predominant than in other tracers [6,14]. Moreover, several studies have
shown increases in the prevalence of UBU in digital PET scanners [15–18]. UBU is classified
as focal osseous tracer uptake that does not meet the criteria of osseous metastases defined
by PROMISE regarding lesion number, miPSMA score, and morphological appearance on
computer tomography (CT). According to this definition, classification is performed as
follows: focal bone uptake is considered a bone metastasis if a sclerotic or lytic CT lesion
displays a peak standard uptake value (SUVpeak) greater than the SUVmean of the blood
pool or if there is an equivocal CT lesion with an SUVpeak higher than the SUVmean of the
spleen. Without a CT correlate, a solitary focal uptake must show a higher uptake than
the SUVmean of the parotid gland to be classified as bone metastasis, and in the case of
multifocal bone uptake, lesion uptake must be greater than the SUVmean of the spleen.
Lesions with benign CT morphology or non-prostate cancer-specific malignant lesions are
considered bone metastases if the SUVpeak is > the SUVmean of the parotid gland [19].

The cause of UBU, in particular the increased prevalence with the use of [18F]PSMA-
1007, remains unclear [20,21]. The hypothesis that the use of an 18F-labeled radiotracer leads
to the potential presence of free fluorine-18, which may constitute the pathophysiological
correlate of bone accumulation, could not be substantiated [22]. Moreover, this explanation
fails to account for variable prevalence among 18F-labeled radiotracers [15,23]. Current
data also argue against a PSMA-mediated specific accumulation, which also does not
explain the high variability between different PSMA-targeting radiotracers [15,20,21,24,25].
Of note, Vollnberg et al. demonstrated that PSMA-avid bone lesions biopsied under
PSMA-PET/CT guidance did not show histological PSMA expression [24]. In addition,
immunohistochemical investigations failed to demonstrate increased PSMA expression in
normal bone marrow [26].

Because of this, underlying benign bone and bone marrow changes are considered
the most likely cause of UBU [15,21], but the current data for such a clinically relevant
interpretation are still rather limited, so further studies seem necessary. In various studies
and case reports, the histological confirmation of UBU has revealed benign osseous changes
such as Paget’s disease, hyperplastic bone marrow, and fibrous dysplasia [15,21,27,28].
However, due to their low incidence, these are certainly only occasionally the cause of UBU.
Ninatti et al. support the hypothesis that underlying osteoporosis-related remodeling could
be the cause of UBU and better correlates with the high prevalence of this finding [29].
The differing chemical structures and pharmacokinetic properties of different new tracers
could also explain the increased occurrence of UBU with highly specific tracers such as
[18F]PSMA-1007 [30].

On the other hand, intermodal correlation [20], follow-up imaging [15,31], and histopatho-
logical assessment [24] have shown that a proportion of UBU may represent early-stage
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osseous metastases. The absence of CT morphological correlates supports the high sensitiv-
ity of molecular diagnostics in detecting (pathological) metabolic processes before the onset
of morphological changes. However, the prevalence of malignant findings varies widely
in recent studies, ranging from 0% to 22.8% [21,31]. Therefore, the clinical significance of
these findings remains elusive in clinical practice, contributing to increasing uncertainty in
image analysis and potentially leading to the over- or undertreatment of patients.

Therefore, the aim of our study was not only to describe the presence and distribution
pattern of UBU according to the PROMISE criteria but also to evaluate the incidence of
malignant transformation of identified UBU in order to improve our understanding of their
clinical significance for [18F]PSMA-1007, a tracer used worldwide and approved in different
countries. Although histological confirmation represents the gold standard, it is neither
ethically nor practically feasible in larger cohorts due to its invasiveness. Accordingly, we
evaluated the incidence via follow-up imaging using the same imaging protocol, radiotracer,
and PET/CT scanner.

2. Materials and Methods
2.1. Patient Cohort

In this study, we retrospectively analyzed patients who underwent [18F]PSMA-1007
PET/CT imaging at our institution between May 2018 and March 2021. Our local institu-
tional ethics committee reviewed and approved this study (Project number: 064/2013B01).
Inclusion criteria were histologically confirmed prostate carcinoma and a minimum of two
[18F]PSMA-1007 PET/CT examinations performed using the same imaging protocol. Pa-
tients undergoing PET/CT to evaluate [177Lu]Lu-PSMA therapy were primarily excluded.
In addition, patients with incomplete clinical data or without the possibility of standardized
image evaluation (e.g., post-splenectomy status) were excluded. This resulted in a final
patient cohort of 99 individuals. Three groups were formed to test for potential differences
in the behavior of UBU over time: Group A: evidence of UBU but no bone metastases;
Group B: no focal bone uptake and no bone metastases; and Group C: evidence of bone
metastases.

2.2. PET/CT Acquisition

All examinations were performed on a PET/CT clinical scanner (Biograph mCT®,
Siemens Healthineers, Erlangen, Germany). PET data acquisition started 60–90 min after
the intravenous application of weight-adapted 3 MBq/kg body weight (BW) [18F]PSMA-
1007 (synthesized on a GE TRACERlab MX (GE Medical Systems, Liège, Belgium) using
materials from ABX, Radeberg, Germany), and data were acquired from the skull base to
the mid-thigh level over six-to-eight bed positions with an acquisition time of 2 min per bed
position. PET data reconstruction was conducted using a 3D ordered subset expectation
maximization algorithm (two iterations, 21 subsets, a Gaussian filter of 2.0 mm, a matrix
size of 400 × 400, and a slice thickness of 2.0 mm). If no contraindications were present, a
weight-adapted 90–120 mL intravenous CT contrast agent (Ultravist 370, Bayer, Leverkusen,
Germany) was injected for diagnostic CT examination. PET and CT data were co-registered
and evaluated using commercial software installed at our institution (syngo.via, software
version 8.2.; Siemens Healthineers, Erlangen, Germany).

2.3. Data Analysis

Patient information such as prostate-specific antigen (PSA) levels, Gleason score, and
individual antitumor therapy was obtained from in-house clinical reports. Image analysis
focusing on focal bone lesions was performed according to the PROMISE criteria [19],
considering the number of lesions, miPSMA score, and CT appearance. SUVpeak, location,
and CT appearance were determined for each lesion. UBU was defined as focal osseous
tracer uptake above the blood pool with or without equivocal CT findings that did not
meet the PROMISE criteria for osseous metastases. The diagnosis of osseous metastasis
was validated for all patients based on follow-up imaging (for the initial scan) or with
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additional available imaging and clinical data (for the follow-up scan), in consensus with a
senior nuclear medicine physician experienced in performing PET-CT evaluation (CLF).

2.4. Statistical Analysis

Statistical evaluation was performed using Microsoft Excel, software version 2405
(Microsoft ®) and R, software version 4.4.1 (open source). The data were largely of similar
variance and homogeneous normal distribution. Otherwise, the Johnson correction was ap-
plied. One-way ANOVA was used to evaluate differences between groups. p values < 0.05
were considered statistically significant. The Bonferroni correction was used for multiple
comparisons to counteract Type-1 error increases in multiple comparisons.

3. Results
3.1. Initial PET/CT Findings

A total of 99 patients (mean age 69 ± 7 years) were analyzed and divided into three
groups according to initial PET/CT findings: Group A: evidence of UBU but no bone
metastases, n = 56, with a total of 230 UBU lesions; Group B: no focal bone uptake and no
bone metastases, n = 24; and Group C: evidence of bone metastases, n = 19, with a total of
28 metastases and 54 lesions rated as UBU. In total, 96/99 patients underwent local therapy
(either surgery or radiation therapy), and 45/99 patients received androgen deprivation
therapy, including the 3 patients without local therapy. Additionally, 10/96 patients
received further treatment (either chemotherapy or secondary hormonal therapy). Detailed
patient information is provided in Table 1.

Table 1. Patient characteristics.

Group A (n = 56) Group B (n = 24) Group C (n = 19)

Age [years] 70 ± 6 66 ± 9 69 ± 7
Gleason score: 6–7 [n]
8–10 [n]

35
21

11
13

10
9

Initial serum PSA [ng/mL] 3.9 ± 8.2 1.6 ± 1.8 5.4 ± 6.6
Tracer dose [MBq] 317 ± 17 314 ± 13 314 ± 12
Uptake time [min] 72 ± 14 66 ± 12 71 ± 14
SUVmean blood pool 2.1 ± 0.6 2.6 ± 0.5 2.2 ± 0.7
SUVmean spleen 10.8 ± 3.9 8.9 ± 2.1 10.8 ± 4.9
SUVmean parotid gland 17.4 ± 4.9 18.6 ± 4.7 20.3 ± 5.1
UBU [n] 230 0 54
UBU SUVpeak 2.7 ± 0.8 - 2.6 ± 0.5
Metastases [n] - - 28
Metastases SUVpeak - - 7.7 ± 8.1

PSA = prostate-specific antigen; SUV = standard uptake value; UBU = focal unspecific bone uptake.

There was no statistically significant difference between the three groups regarding age
(p = 0.06), Gleason score (p = 0.14), injected tracer dose (p = 0.80), uptake time (p = 0.29), UBU
SUVpeak (p = 0.12), and SUVmean uptake in the spleen (p = 0.10) and parotid gland (p = 0.09).
The SUVmean of the blood pool was lower in both patients with UBU (Group A: 2.1 ± 0.6)
and patients with bone metastases (Group C: 2.2 ± 0.7) compared to patients without focal
bone uptake (Group B: 2.6 ± 0.5). A statistically significant difference was only found
between patients with UBU and patients without focal bone uptake (p = 0.003). Serum
PSA levels were higher in patients with UBU (3.9 ± 8.2 ng/mL) and patients with bone
metastases (5.4 ± 6.6 ng/mL) than in patients without focal bone uptake (1.6 ± 1.8 ng/mL).
However, a statistically significant difference was only found between patients with bone
metastases and patients without focal bone uptake (p = 0.03).

In Group A, 56 patients had 230 UBU in the initial scan (IS). The mean SUVpeak of
these lesions was 2.7 ± 0.8. The most common location in both cases was the thoracic rib
cage, accounting for 50%. Figure 1 illustrates the distribution of UBU locations, including
the IS and the follow-up examination (FU).
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3.2. Follow-Up Examination

The FU took place 13.0 ± 7.2 months after the IS. There was no difference in follow-up
interval between the groups (p = 0.94). In Group A (patients with UBU), 49/56 patients
presented with 262 UBU but no presence of bone metastasis in the FU. The mean SUVpeak
of these lesions (2.6 ± 0.7) was comparable to that of the IS. There was no change in
miPSMA-score and CT appearance in 44/49 patients. Of these, 22/44 patients received
only local treatment or no treatment between IS and FU. A total of 12/44 patients had
no change in systemic treatment (androgen deprivation therapy or secondary hormonal
therapy), while 10/44 patients experienced a change in or the start of systemic treatment
between IS and FU.

In 5/49 patients, a change in the miPSMA score (decrease in three cases) or a change
in CT appearance (change from no correlate to equivocal CT correlate in two cases) was
found, but this did not lead to a change in the lesion assessment for malignancy. One of
these patients was still on androgen deprivation therapy prior to IS. The others (four) had
no systemic treatment between IS andFU.

New bone metastases were detected in 7/56 patients in Group A. Of these patients,
six had metastases in the ribs, four had metastases in the spine, two had metastases in the
pelvis, and three had metastases in other bone regions. Patient-specific analysis showed
that four patients had new bone metastases, while in three patients, at least one metastasis
was initially classified as UBU. The three patients in whom UBU was identified as an
early bone metastasis did show the following characteristics in the first scan: Patient 1
had UBU in the ribs on the first scan with an SUVpeak of 2.9, which was identified as
metastasis in the follow-up with an SUVpeak of 3.6, as well as a newly formed metastasis in
the pelvis. Patient 2 showed UBU in the pelvis with an SUVpeak of 4.9, which was identified
as metastasis in the follow-up with an SUVpeak of 7.1 and a suspicious CT appearance.
There were also several new metastases formed in the ribs, spine, and other bone regions.
Patient 3 showed UBU in the ribs, the spine, and the femur with SUVpeak values of 4.2, 3.3,
and 7.6, respectively. UBU levels in the ribs and the spine were rated as metastases in the
FU (SUVpeak 16.1 and 17.1), while the femoral lesion showed no increase in tracer uptake
(initial SUVpeak of 7.6 decreased to 3.9).

In Group B (no focal bone uptake on IS), 4/24 patients (17%) developed osseous
metastases on FU (n = 9). Figure 2 displays patient selection and follow-up evaluation.

An example of a newly formed metastasis and one originating from UBU is illustrated
in Figure 3.
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4. Discussion

Our study further confirms the described high prevalence of UBU in [18F]PSMA-1007
PET/CT. UBU without prevalence of bone metastases was most commonly located in the
thoracic rib cage (50%), followed by the spine (30%). The prevalence of UBU, determined in
our study to be 56%, is at the upper end of the previously reported rates for [18F]PSMA-1007,
which were 34.2% [20], 38% [29], 41% [31], 43.9% [21], and 51.4% [15]. This variation may be
attributed to differences in the detection accuracy of different PET systems, in particular the
increased detection rate with digital PET scanners [15]. Furthermore, follow-up imaging of
all patients using [18F]PSMA-1007 PET/CT revealed the malignant transformation of UBU
in three patients only.

In our cohort, the PSA levels were elevated in both subgroups of patients with UBU
and osseous metastases. While an increase in PSA levels upon the detection of bone
metastases is highly explicable, a relationship between UBU and serum PSA level seems
less obvious, especially when considering our and other pre-existing findings stating that
the overwhelming majority of UBU is not associated with prostate cancer. In addition,
several other studies [15,21] have failed to demonstrate an elevated PSA level in UBU,
suggesting that the cause of this observation in our data remains unclear.

The current study did not identify a notable correlation between the frequency of
UBU and other clinical and imaging variables, such as age, Gleason score, injected tracer
dose, uptake time, or mean uptake in the spleen and parotid gland. These findings
align with those of previous studies [15,21], although one study showed an increased
prevalence of UBU with a 90 min uptake time compared to a 60 min uptake time [15]. In
addition, a lower blood pool activity was observed in our cohort of patients with UBU.
This finding can be attributed to the definition of UBU itself, as it was defined according
to the PROMISE criteria, which include all lesions above the blood pool. Consequently,
the dependence of UBU on particularly low blood pool activity is to be expected. A
comparison with other studies regarding the SUV is constrained because it is not yet clear
which is the most appropriate parameter, leading to different values, such as SUVmean and
SUVpeak, but primarily SUVmax, being used and assessed. Due to the point-spread function
reconstruction utilized at our center and the resulting distortion of SUVmax, we do not
favor this parameter [32].

Our findings are consistent with the existing literature regarding UBU location. In
our study, most (50%) was found in the ribs, which is comparable to the range of 57–62%
reported in the other studies [15,21,29]. This is followed (to a lesser extent, depending
on the specific division of the skeletal system in the study) by lesions in the pelvis or
spine. This spread pattern is particularly interesting because, based on the distribution of
metastases in bone scans, it has been shown that rib metastases without concurrent spinal
metastases are extremely rare, occurring in only 1% of cases [33]. However, it should be
noted that PSMA-PET/CT has a higher sensitivity compared to bone scans, so these results
are not necessarily applicable. Biopsy studies also show that rib metastases account for
only 12–20% of all osseous metastases in prostate cancer [34,35].

The prevalence of osseous metastases derived from UBU varies considerably in the
literature due to variations in the definition of UBU, different radiotracers, variant scanner
technology, and the methods for confirming the presence of osseous metastasis (imaging,
clinical assessment, or biopsy). In a recent study with [18F]PSMA-1007, Luo et al. [31]
reported a prevalence of focal bone uptake not classified as metastasis of only 11.6% and
the presence of malignancy in 22.8% of cases when PSMA-RADS 3B (equivocal uptake in
bone lesions, not defined but also not atypical of prostate cancer in anatomical imaging) [36]
was used, which nevertheless exhibited a significantly lower prevalence than those reported
in other studies [15,20,21,29].

Grünig et al. demonstrated a higher proportion of malignancy (14%) in cases with
detected UBU. Of note, follow-up data were available for only 36% of patients and were
inconsistent, sometimes relying solely on conventional imaging [15].
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Furthermore, Arnfield et al. found no evidence of malignant transformation among
patients with UBU (UBU detection rate 43.9%) [21]. However, follow-up data were available
for only 82% of the patients, of whom only 36% underwent follow-up imaging.

When placing our findings in the context of the existing literature, we would like to
emphasize that although our study lacked histological verification and entailed a degree of
uncertainty, we utilized [18F]PSMA-1007 PET/CT imaging for the entire cohort, recognized
as the optimal modality for patient monitoring.

Through this approach, we identified the malignant transformation of UBU in 5% of
cases at the patient level, corresponding to 4% of initially non-osseous metastatic patients
in our cohort (n = 80; Groups A and B). Nevertheless, it is imperative to acknowledge the
persistent risk of new metastatic occurrences in the presence of an underlying malignancy.
We showed that the risk of new osseous metastases was 10% (based on all patients initially
classified as non-osseous metastatic). This risk appears to be independent of the presence
of UBU and surpasses that of UBU transformation to metastasis nearly threefold.

Regarding risk factors that could indicate the risk of a malignant origin of UBU,
Luo et al. proposed positive lymph node metastasis, an elevated SUVmax, and pelvic
localization [31]. Arnfield et al. suggested a threshold of SUVmax 7.2 to classify lesions
as likely benign [21]. Due to the presence of only three patients with UBU-derived bone
metastases in our cohort, we cannot conduct a statistical analysis on this matter or other
risk factors. However, given the low individual SUV values of these lesions (2.9, 3.3, 4.2,
and 4.9), we can at least not support the hypothesis of SUV dependence.

The limitations of our study include the limited number of patients and the retrospec-
tive design. In addition, the uptake of our lesions tended to be in the lower range (where
comparable between different SUV parameters), thus only allowing limited conclusions
regarding UBU with high uptake, yet not classified as metastasis according to the PROMISE
criteria. However, as our data showed, the number of such lesions is limited in everyday
practice. Furthermore, the fact that the scans were performed with different clinical indica-
tions could introduce bias but can be considered legitimate given the incidental nature of
UBU. The clear differentiation from early osseous metastases, especially in cohorts with
low prevalence of osseous metastases, such as patients with biochemical recurrence after
prostatectomy, is challenging. It is likely that the very high prevalence of UBU may have a
significant impact on the management of several patients. This influence may range from
potential under- or over-treatment in the worst-case scenario to more commonly additional
or more frequent imaging investigations. In any case, uncertainty remains for treating
physicians and patients, even if there is no direct impact on therapeutic decisions.

5. Conclusions

Our study underscores the lack of significant differences between patients with or
without UBU concerning various imaging and clinical parameters. Furthermore, only
a small fraction of the detected UBU turned out to be metastases over time (2%). This
proportion is lower than the likelihood of developing new osseous metastases, which also
appears to be independent of the presence of UBU. Therefore, our data suggest that the
presence of UBU, analogous to the PROMISE criteria, does not influence the development
of osseous metastases over time. Based on this data, treatment decision-making should not
be significantly influenced by the findings of UBU.
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