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Abstract

:

Background: The aim of this review is to highlight the new advance of predictive and explainable artificial intelligence for neuroimaging applications. Methods: Data came from 30 original studies in PubMed with the following search terms: “neuroimaging” (title) together with “machine learning” (title) or ”deep learning” (title). The 30 original studies were eligible according to the following criteria: the participants with the dependent variable of brain image or associated disease; the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication language of English. Results: The performance outcomes reported were within 58–96 for accuracy (%), 66–97 for sensitivity (%), 76–98 for specificity (%), and 70–98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer’s disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume. Conclusion: Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.
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1. Introduction


1.1. Brain Disease


Brain disease represents a significant contributor to global disease burden [1,2,3]. In 2021, it was estimated that over three billion people globally were affected by neurological conditions [3]. Premature death and disability (disability-adjusted life years, DALYs) from neurological conditions has grown by 18% since 1990. More than 80% of this burden comes from low- and middle-income countries. Furthermore, there is considerable variation in access to treatment, i.e., there are almost 70 times more neurological professionals per 100,000 people in high-income countries compared to low- and middle-income countries. Stroke, neonatal encephalopathy, migraine, dementia, and diabetic neuropathy, as well as meningitis, epilepsy, neurological complications from preterm birth, autism spectrum disorder, and nervous system cancers, were the top 10 neurological conditions in 2021. The burden of brain disease is greater in men compared to women in general. However, there exist certain exceptions of female dominance, including migraine and dementia [3]. There are many types of brain disease, e.g., autoimmune brain diseases, epilepsy, infections, mental illness (i.e., anxiety, bipolar disorder, depression, post-traumatic stress disorder, schizophrenia), neurodegenerative brain diseases (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis), neurodevelopmental disorders (attention deficit hyperactivity disorder, autism spectrum disorder, dyslexia), stroke, traumatic brain injuries, and tumors [4,5,6].



Autoimmune brain diseases are characterized by the body’s immune system attacking a part of the brain, which it identifies as an invader. Epilepsy is defined as a tendency to experience seizures, which are characterized by electrical disturbances in the brain. These seizures typically disrupt consciousness and manifest as convulsions, which are uncontrolled muscle movements. Infections occur when various types of pathogens invade the brain or its protective coverings. Mental, behavioral, and emotional disorders have the potential to impair an individual’s quality of life and their capacity to function effectively. The principal categories are as follows: Anxiety, Bipolar disorder, Depression, Post-traumatic stress disorder (PTSD), and Schizophrenia. The accumulation of abnormal proteins in the brain is a common underlying cause of neurodegenerative disorders. These include conditions such as Alzheimer’s disease, Parkinson’s disease, and ALS (amyotrophic lateral sclerosis), among numerous others. Neurodevelopmental disorders impact the growth and development of the brain, with care typically provided by pediatric neurologists. Medical geneticists may ascertain the likelihood of an inherited disorder. In the event that a genetic predisposition is identified, family counselling is provided. A considerable number of neurodevelopmental disorders exist, including Attention deficit hyperactivity disorder (ADHD), Autism spectrum disorder, and Dyslexia. A stroke is defined as the obstruction or rupture of a cerebral blood vessel, which results in the interruption of cerebral blood flow and subsequent injury to the brain parenchyma. Traumatic brain injuries encompass a range of conditions, from mild concussions to more severe injuries such as gunshot wounds. Additionally, brain tumors may result from the metastasis of malignant cells from other regions of the body, including the lungs, breasts, and colon. Alternatively, they may develop within the brain tissue itself or its coverings. Astrocytomas are a common type of tumors that originate from the brain itself. A meningioma is a common tumor that develops from the coverings of the brain [6].




1.2. Neuroimaging and Artificial Intelligence


The concepts of neuroimaging and artificial intelligence have recently attracted global interest. A brain imaging method can be defined as any experimental technique that allows for the study of the structure or function of the human (or animal) brain, preferably in vivo in the context of the present study [7]. The optimal method should yield precise temporal and spatial localization of cerebral function, structure, or alterations in these properties. The optimal method should involve minimum invasion and maximum replication for treatment monitoring and therapeutic development as well. Structural magnetic resonance imaging (MRI) meets these optimal requirements for structural imaging. However, there is no single optimal technique for functional imaging, even though electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) are very popular. EEG and PET have been available for 4 decades or more, whereas functional magnetic resonance imaging (fMRI) is the newest widely used technique. Arguable, PET is the most invasive with the administration of radioisotopes and EEG has poor spatial mapping properties. Given these limitations, fMRI has become as the most common functional brain-mapping approach [7].



On the other hand, artificial intelligence can be denoted as “the capability of a machine to imitate intelligent human behavior” (the Merriam–Webster dictionary). As a division of artificial intelligence, machine learning can be considered to be “extracting knowledge from large amounts of data” [8]. Popular machine learning approaches are the decision tree, the naïve Bayesian, the random forest, the support vector machine, and the neural network. (See more detailed explanations for [8,9].) In particular, a random forest is a group of decision trees that collectively makes a majority decision regarding the dependent variable, a process known as “bootstrap aggregation.” For the purposes of this discussion, we will consider a random forest comprising 1000 decision trees. For the purposes of this discussion, we shall assume that the original data set comprises 10,000 participants. Subsequently, the training and testing of this random forest is conducted in two stages. Initially, new data comprising 10,000 participants is generated through random sampling with replacement, upon which a decision tree is constructed. In this process, some participants from the original data set are excluded from the new data set, and these remaining participants are referred to as the “out-of-bag” data set. This process is repeated 1000 times, resulting in the creation of 1000 new data sets, 1000 decision trees, and 1000 out-of-bag data sets. Secondly, the 1000 decision trees make predictions regarding the dependent variable for each participant in the out-of-bag data. Then, the majority vote is taken as the final prediction for that participant, and the out-of-bag error is derived as the proportion of incorrect votes for all participants in the out-of-bag data sets. An artificial neural network is a network of neurons (information units) based on a set of weights. Typically, it has one input layer, one or more intermediate layers, and one output layer [9]. A deep neural network is an artificial neural network having a large number of intermediate layers, with the number of layers often being in the range of 5 to 1000 [9].



The current research paradigm has a limited scope in terms of the predictors considered for the early diagnosis of disease. This is due to the use of logistic regression, which assumes a rather unrealistic condition of ceteris paribus, or “all other variables remaining constant”. In light of the aforementioned limitations, the literature on the early diagnosis of disease is increasingly turning to artificial intelligence. This includes studies on arrhythmia [10], birth outcome [11], cancer [12,13], comorbidity [14], depression [15], liver transplantation [16], menopause [17,18], and temporomandibular disease [19]. It is not constrained by the unrealistic assumption of “all the other variables staying constant.” Furthermore, the concept of explainable artificial intelligence is currently experiencing a surge in popularity. The term “explainable artificial intelligence” is defined as “artificial intelligence to identify major predictors of the dependent variable”. At this point in time, three popular approaches to explainable artificial intelligence have been identified: namely, random forest impurity importance, random forest permutation importance, and machine learning permutation importance [20]. The random forest impurity importance metric quantifies the reduction in node impurity resulting from the creation of a branch on a specific predictor. The random forest permutation importance metric quantifies the overall reduction in accuracy resulting from the random permutation of data on a given predictor. An extension of random forest permutation importance, machine learning accuracy importance calculates the decrease in accuracy resulting from the permutation of data on the predictor [20]. However, more study is needed on the review of artificial intelligence for neuroimaging applications. This study reviews the recent progress of predictive and explainable artificial intelligence for neuroimaging applications.





2. Methods


Figure 1 shows the flow diagram of this study as a modified version of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The source of data was 30 original studies in PubMed. The search terms were “neuroimaging” (title) together with “machine learning” (title) or “deep learning” (title). The eligibility criteria were the participants with the dependent variable of brain image or associated disease, the interventions/comparisons of artificial intelligence, the outcomes of accuracy, the AUC and/or variable importance, the publication year of 2019 or later, and the publication language of English. Opinions, reports, and reviews were excluded. The following summary measures were adopted: (1) sample size (participants), baseline vs. innovation artificial intelligence methods (comparisons vs. interventions), dependent variable (participants), task type; (2) baseline vs. innovation performance outcomes; (3) major demographic, health-related, and neuroimaging predictors. Here, accuracy denotes the proportion of correct predictions over all observations. The area under the curve (AUC) represents the area under the plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold settings. The AUC is a major performance criterion in this study, given that it accommodates sensitivity and specificity.




3. Results


3.1. Summary


The summary of the review for the 30 original studies [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] is presented in Table 1, Table 2, Table 3 and Table 4. The “Study” column in the tables denotes the reference numbers of the 30 original studies. Also, abbreviations are listed in Table 5. The tables include (1) sample size, baseline vs. innovation artificial intelligence methods, dependent variable and task type (Table 1); (2) baseline vs. innovation performance outcomes (Table 2); (3) major demographic, health-related, and neuroimaging predictors (Table 3); (4) cross validation and major control variable (Table 4). The ranges of performance measures were reported to be 58–96 for accuracy (%), 66–97 for sensitivity (%), 76–98 for specificity (%), and 70–98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma [28] and brain image properties [44], respectively. Similarly, the random forest delivered the best performance (root mean square error 1) for the regression of brain image properties [43]. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer’s disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neuro-filament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume. Finally, 22 original studies included cross validation, and 14 studies matched control and experimental groups in age, sex, and/or education (defined as “major control variables” in Table 4). The differences between the control and experimental groups in terms of the major control variables were statistically insignificant in the 14 studies. Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications. However, artificial intelligence is a data-driven approach, and more research is needed for more general conclusions given that the findings of this study above were based on the 30 original studies published in 2019 or later.




3.2. Predictive Artificial Intelligence


This section summarizes original studies, which highlight the strengths of predictive artificial intelligence with the best performance metrics for neuroimaging applications [28,43,44]. As addressed above, the support vector machine registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma in one study [28]. MRI data on texture and fractal dimension measures came from 28 glioma patients enrolled in a national medical institute. The dependent variable was the grade of glioma with 0 (low) vs. 1 (high). The independent variables were 25 texture and 15 fractal dimension indicators. The accuracy, sensitivity, specificity, and AUC of the support vector machine were 93%, 97%, 98%, and 98% for the general structure of the enhanced tumor, respectively. These best results were followed by those of the boundary of the whole tumor, i.e., the accuracy, sensitivity, specificity, and area under the curve of 83%, 100%, 60%, and 80%. These findings of multivariable machine learning were consistent with their univariate counterparts. The fractal dimension measures of high-grade glioma were significantly greater than those of low-grade glioma: 1.221 vs. 1.626 for the general structure of the enhanced tumor (p < 0.0001); 0.923 vs. 0.940 for the boundary of the whole tumor (p = 0.0105). This study suggests that the separate examination of the whole tumor and its elements is expected to present important insights regarding predictive artificial intelligence for neuroimaging applications.



Likewise, the convolutional neural network presented the best AUC of 98% for the classifications of brain conditions [44]. The source of MRI data was 59 study participants. The outcome variables are somatic pain and social rejection. The input variables were brain networks such as visual, somatomotor, dorsal attention, salience network, limbic, frontoparietal, and default. The convolutional neural network was a little better than the support vector machine as predictive artificial intelligence, i.e., 96%, 96%, 955, and 98% vs. 92%, 94%, 91%, and 97% in terms of accuracy, sensitivity, specificity, and AUC. In a similar context, the random forest delivered the best performance (root mean square error less than 1) for the regression of brain conditions [43]. Data consisted of 400 study participants. The dependent variable was cognitive ability (measured by the Global Cognitive Assessment Task), and the independent variable was the gray matter volume. The random forest outperformed the elastic net and ridge regression in terms of the root mean square error less than 1. The findings above demonstrate that the best predictive artificial intelligence models for neuroimaging applications vary depending on different outcome variables and different input variables. Little study was done, and more analysis is needed regarding which models serve as the best predictive artificial intelligence for varying brain conditions with varying analytic tasks.




3.3. Explainable Artificial Intelligence


This section summarizes original studies, which request due attention to the strengths of explainable artificial intelligence with multiple-domain data for brain disease applications [27,29,31,41]. The aim of a recent study was to develop explainable artificial intelligence for the classification of frailty in Human Immunodeficiency Virus (HIV) patients [27]. The source of MRI data was 105 study participants enrolled in a university medical center. The outcome variable was frailty in HIV patients. The input variables were demographic (sex), health-related (depression, CD4), and neuroimaging predictors. The sensitivity and F1 score of boosting were 66% and 71%, correspondingly. Based on boosting permutation variable importance, the top five predictors were reduced cerebral blood flow in the right pallidum region, reduced cerebral blood flow in the left occipital region, lower psychomotor performance, reduced volume of the right pericalcarine region, and lower resting-state functional connectivity between the frontal parietal and ventral attention networks. Likewise, another study attempted to highlight the strengths of boosting as explainable artificial intelligence for the regression of brain age [29]. Data consisted of 22,661 study participants enrolled in national projects. The dependent variable was brain age, and the independent variables were demographic (sex), health-related (Alzheimer’s disease stage), and neuroimaging (Abnormal Amyloid-β, APOE-ε4, and plasma neurofilament light). The root mean square error of boosting was 4.



In a similar vein, the purpose of a recent study centered on developing explainable artificial intelligence for the classification of glioblastoma survival [31]. The source of MRI data was 133 study participants enrolled in a university medical center. The outcome variable was glioblastoma survival. The input variables were demographic (age, sex) and neuroimaging (cortical thickness, functional connectivity). The accuracy of the artificial neural network was 91%. According to artificial neural network permutation variable importance, the top five predictors were functional connectivity for distance correlation 10, Bankstss cortex, age, sex, and functional connectivity for distance correlation 11. The success of these machine learning studies was extended to its deep learning counterpart, which endeavored to demonstrate the strengths of the residual convolutional neural network as explainable artificial intelligence for the classification of motor performance in stroke [41]. Data consisted of 41 study participants enrolled in previous studies. The dependent variable was motor performance in stroke, and the independent variables were demographic (age, sex) and neuroimaging (axial diffusivity, fractional anisotropy, mean diffusivity, radial diffusivity, white matter, gray matter). The performance measures of the support vector machine and the residual convolutional neural network were similar to each other, i.e., 91% and 91% vs. 92% and 92% in terms of accuracy and AUC.





4. Discussion


The existing literature on predictive and explainable artificial intelligence for neuroimaging applications has some limitations. Firstly, a majority of the studies reviewed here were characterized by single-centre data with relatively small sample sizes. The utilization of multi-centre data will facilitate further advancements in this field of research. Indeed, more analysis is needed regarding the effect of the sample size on model performance. One study reviewed here [33] made a rare attempt in this direction. As the sample size increased from 100 to 10,000, an accuracy gap between machine learning (support vector machine) and deep learning (convolutional neural network-Alex) increased to 7% (51% vs. 58%) for the prediction of 10 brain age groups in this study. But more examination is needed on this topic, given that both machine learning and deep learning registered low performance and their performance difference was not very large in this study. Secondly, the accuracies of some studies reviewed here (58%) may not yet meet the standards required for use as diagnostic tests. In addition, only seven studies reviewed here used test sets, and these test sets came from internal sources. Despite these limitations, these studies were included in this review, given that the further advance of predictive and explainable artificial intelligence for neuroimaging applications is not possible without trials and errors.



Thirdly, three common methods of explainable artificial intelligence (machine learning permutation importance, random forest permutation importance, and random forest impurity importance) may yield different outcomes on some occasions. The random forest impurity importance shows more variation from the categorization of variables. However, the random forest has a special quality of including sequential information, and this special quality is more apparent with the random forest impurity importance. In this context, extensive comparison for the three methods of explainable artificial intelligence would be a major achievement for this line of research. Fourthly, other types of explainable artificial intelligence and trade-offs between predictive power and explainable power were beyond the scope of this review, e.g., local interpretable model-agnostic explanations (LIME) [51]. Fifthly, 22 studies reviewed here employed cross validation, but only eight studies reported performance measures over each subset [26], their standard deviations across all subsets [36], or their confidence intervals across all subsets [41,44,45,46,47,48]. Especially, this was a significant drawback for five out of nine studies with deep learning models with cross validation. In other words, there can be found certain risks of detection, attrition, and reporting biases. This issue requests much more attention for the future studies on this topic.



Sixthly, hyper-parameter tuning was either absent or basic in the studies reviewed here. One possible explanation is that neuroimaging investigation itself requires significant time and energy besides hyper-parameter tuning. In spite of this reality, it is still a valid suggestion that advanced hyper-parameter tuning is expected to bring significant improvement in the performance of predictive and explainable artificial intelligence for neuroimaging applications. One plausible approach of advanced hyper-parameter tuning is the policy gradient approach [52] (within reinforcement learning to be addressed below). Here, the policy gradient can be defined as “the change of action to maximize the reward”, e.g., the change of hyper-parameter selection to maximize the performance of predictive and explainable artificial intelligence for neuroimaging applications. In other words, the policy gradient approach can be denoted as “systematic hyper-parameter selection”, i.e., finding the optimal values of hyper-parameters based on performance measures and major control variables [52]. These new approaches would expand the boundary of knowledge by a great extent. Seventhly, experts in the field of artificial intelligence focus on the performance of predictive and explainable artificial intelligence as the best indicator of study quality. We followed this convention.



Indeed, some suggestions for this line of research are presented here. Firstly, synthesizing various forms of explainable artificial intelligence with various forms of data in the field of brain disease would represent a significant advancement in the field. An increasing amount of artificial intelligence research is synthesizing genetic, image, and numeric methods for disease diagnosis, treatment, and management. This new approach is called “wide and deep learning”, and it includes a great variety of multi-input multi-output combinations. A recent study [53] serves as a good example, given that it presents a glaucoma prediction system combing convolutional neural networks and their recurrent neural network counterparts. Here, the former network draws key image characteristics from multiple image inputs, and the latter part predicts glaucoma results from the course of the key image characteristics over time. In a convolutional neural network, filters look around input data and detect certain characteristics based on their convolution operations. (This predicts the status of normal versus disease.) In a recurrent neural network, output in the present is determined in a recurrent pattern by input in the present and memory in the past (which is called “the hidden state in the past”) [8,9]. There is a paucity of literature on this topic, and further investigation is required to gain insight into the integration of diverse forms of explainable artificial intelligence for diverse data types in the context of brain disease applications.



Secondly, little examination has been done, and more investigation is needed on reinforcement learning. Reinforcement learning has three key components: the environment bringing a series of rewards, an agent taking a series of actions to maximize the cumulative reward, and the environment transitioning to the next period with given transition probabilities [54]. Here, artificial intelligence (e.g., Alpha-Go) begins in a manner similar to that of a human player, taking a series of actions and maximizing the cumulative reward (chance of victory) from the limited information available in limited periods only. Then, it is capable of surpassing the performance of the best human player ever, due to the immense power of big data covering all human players to date [54]. The popularity of reinforcement learning in finance and health can be attributed to its ability to achieve excellent results without the need for unrealistic assumptions, while offering a superior performance compared to conventional statistical models [55,56]. Nevertheless, there is a paucity of literature on the subject, and further investigation is required in order to gain a deeper understanding of explainable reinforcement learning. A recent review indicates that only a few studies have addressed this issue. These studies have employed simplified models with straightforward interpretations but have demonstrated inadequate performance and have given insufficient consideration to the psychological and social factors underlying optimization processes [57].



Thirdly, rigorous qualitative evaluation approaches need to be developed regarding systematic reviews of predictive and explainable artificial Intelligence for neuroimaging applications. The Enhancing the Quality and Transparency of Health Research Network recommends neuroimaging meta-analysis to include the following information: research question; eligibility and exclusion criteria; flow diagram; experimental characteristics such as sample size (participants), baseline vs. innovation methods (comparisons vs. interventions), dependent variable (participants), task type, baseline vs. innovation performance outcomes, and participant characteristics [58,59]. This study followed this recommendation with the following summary measures: research question (p. 003); eligibility and exclusion criteria (pp. 003–004); flow diagram (Figure 1); experimental characteristics such as (1) sample size, baseline vs. innovation artificial intelligence methods, dependent variable, and task type (Table 1), (2) baseline vs. innovation performance outcomes (Table 2), (3) major demographic, health-related, and neuroimaging predictors (Table 3), and (4) cross validation and major control variable (Table 4). However, more systematic qualitative evaluation methods can be designed, and this new guideline is expected to improve the reliability of reviews for predictive and explainable artificial intelligence for neuroimaging applications much more.




5. Conclusions


In summary, this study reviewed the recent progress of predictive and explainable artificial intelligence for neuroimaging applications. The ranges of performance measures were reported to be 58–96 for accuracy (%), 66–97 for sensitivity (%),76–98 for specificity (%), and 70–98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Similarly, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer’s disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neuro-filament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume. Combining various types of explainable artificial intelligence with various types of information in the field of brain disease would bring significant progress in the field. Little research has been done, and more study is needed on reinforcement learning. In spite of these limitations, predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.
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Figure 1. Flow diagram. 
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Table 1. Summary—Sample Size Method and Dependent Variable.






Table 1. Summary—Sample Size Method and Dependent Variable.













	Study
	Sample Size
	Method-Baseline
	Method-Innovation
	Dependent Variable
	Type





	21
	109
	
	Global Signal Regression
	Schizophrenia
	Classification



	22
	915
	CNN-Dense
	CNN-Dense SDA
	ASD
	Classification



	23
	500
	
	Unet
	Brain Image
	Generation



	24
	78
	
	LASSO
	Suicidal Thought
	Regression



	25
	387
	
	RF
	Anxiety in MDD
	Classification



	26
	638
	
	CNN-VGG
	Four Brain Age Groups
	Classification



	27
	105
	
	Boosting
	Frailty in HIV
	Classification



	28
	42
	
	SVM
	Glioma
	Classification



	29
	22,661
	
	Boosting
	Brain Age
	Regression



	30
	70
	
	SVM
	Chronic Sciatica
	Classification



	31
	133
	
	ANN
	Glioblastoma Survival
	Classification



	32
	19
	
	LDA
	Opiate Addiction
	Correlation



	33
	10,000
	LDA LR SVM *
	CNN-Alex
	10 Brain Age Groups
	Classification



	34
	160
	
	CNN-FastSurfer
	Brain Condition
	Classification



	35
	84
	
	SVM
	Insomnia in Hemodialysis
	Classification



	36
	3000
	
	CNN-Dense
	Dementia
	Classification



	37
	47
	
	CNN
	Pediatric Brain Tissues
	Generation



	38
	206
	
	DT LR RF * SVM
	ASD and Schizophrenia
	Classification



	39
	500
	
	Unet
	Brain Vascular
	Generation



	40
	103
	ANN Uni-Modal
	ANN Multi-Modal
	Schizophrenia
	Classification



	41
	154
	DT KN NB RF SVM *
	CNN-Residual
	Post-Stroke Motor
	Classification



	42
	81
	
	CNN-Residual
	Brain Image
	Generation



	43
	400
	
	EN RF * RR
	Brain Condition
	Regression



	44
	59
	SVM
	CNN
	Brain Condition
	Classification



	45
	341
	
	DT
	Dementia
	Classification



	46
	688
	
	SVM
	Schizophrenia
	Classification



	47
	172
	DT * KN LR SVM
	Graph Neural Network
	Schizophrenia
	Classification



	48
	180
	
	CNN
	Brain Image
	Generation



	49
	956
	
	CNN
	Psychosis
	Classification



	50
	1130
	
	CNN-Alex
	Parkinson’s Disease
	Classification







Note: * Best Model.













 





Table 2. Summary—Model Performance.
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Study

	
Performance-Baseline

	

	
Performance-Comparison

	




	

	
Acc

	
Sen

	
Spe

	
AUC **

	
Acc

	
Sen

	
Spe

	
AUC **






	
21

	

	

	

	

	
83

	
69

	
94

	
85




	
22

	

	

	

	
86

	

	

	

	
93




	
23

	

	

	

	

	

	

	

	
70




	
24

	

	

	

	

	

	

	

	
NA




	
25

	

	

	

	

	

	

	

	
80




	
26

	

	

	

	

	

	

	

	
73




	
27

	

	

	

	

	

	
66

	

	
71




	
28

	

	

	

	

	
93

	
97

	
98

	
98




	
29

	

	

	

	

	

	

	

	
4




	
30

	

	

	

	

	
90

	

	

	




	
31

	

	

	

	

	
91

	

	

	




	
32

	

	

	

	

	

	

	

	
83




	
33

	
51

	

	

	

	
58

	

	

	




	
34

	

	

	

	

	
96

	
96

	

	




	
35

	

	

	

	

	
82

	

	

	
82




	
36

	

	

	

	

	
95

	
96

	
95

	
95




	
37

	

	

	

	

	

	

	

	
90




	
38

	

	

	

	

	
76

	

	

	
83




	
39

	

	

	

	

	

	

	

	
93




	
40

	
55

	

	

	
69

	
71

	

	

	
92




	
41

	
91

	

	

	
91

	
92

	

	

	
92




	
42

	

	

	

	

	

	

	

	
NA




	
43

	

	

	

	

	

	

	

	
1




	
44

	
92

	
94

	
91

	
97

	
96

	
96

	
95

	
98




	
45

	

	

	

	

	
84

	

	

	
86




	
46

	

	

	

	

	
60

	

	
84

	




	
47

	
78

	
83

	
72

	
79

	
80

	
84

	
76

	
80




	
48

	

	

	

	

	

	

	

	
97




	
49

	

	

	

	

	
70

	

	

	




	
50

	

	

	

	

	
96

	

	

	
95




	
Min

	

	

	

	

	
58

	
66

	
76

	
70




	
Max

	

	

	

	

	
96

	
97

	
98

	
98








Note: ** Correlation (Correlation) R-Square (Regression) or Structural Similarity Index Measure (Generation). [image: Diagnostics 14 02394 i001] F1 (Classification) Root Mean Square Error (Regression) or R-Square (Generation).













 





Table 3. Summary—Major Predictor.
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	Study
	Predictor Demographic
	Predictor Health
	Predictor Neuroimaging





	21
	
	
	



	22
	
	
	



	23
	
	
	



	24
	Age Education
	Depression Distress
	LAA



	25
	
	
	GMV ALFF RH FC



	26
	
	
	FC



	27
	Sex
	Depression CD4
	Neuroimaging



	28
	
	
	FDM



	29
	Sex
	Alzheimer’s Disease Stage
	AAB APOE-ε4 PNL



	30
	
	
	FC ALFF SA Combination



	31
	Age Sex
	
	CT FC



	32
	
	Alpha Desynchronization
	FC



	33
	
	
	



	34
	
	
	



	35
	
	
	ALFF RMCG RC



	36
	
	
	



	37
	
	
	



	38
	
	
	CT SCV



	39
	
	
	



	40
	
	RNA Sequencing
	Neuroimaging



	41
	Age Sex
	
	Neuroimaging



	42
	
	
	GMV



	43
	
	
	GMV



	44
	
	
	



	45
	
	Mild Behavioral Impairment
	LHV



	46
	
	
	



	47
	
	
	



	48
	
	
	



	49
	
	
	GMV CT



	50
	
	
	










 





Table 4. Summary—Cross Validation and Major Control Variable.
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	Study
	Sample Size
	Training
	Validation
	Test
	N-Fold CV *
	Major Control Variable





	21
	1029
	799
	89
	141
	
	Age Sex



	22
	915
	488
	244
	183
	3
	Sex



	23
	500
	500
	500
	
	
	



	24
	78
	70
	8
	
	10
	Emotion Physiology



	25
	387
	348
	39
	
	10
	



	26
	638
	408
	102
	128
	5
	Age Sex



	27
	105
	84
	21
	
	5
	



	28
	42
	23
	6
	13
	5
	



	29
	24,975
	20,395
	2266
	2314
	10
	Age



	30
	16,100
	15,870
	230
	
	70
	Age Sex Education Occupation



	31
	133
	132
	1
	
	133
	



	32
	19
	19
	
	
	
	Age Education IQ



	33
	12,314
	10,000
	1157
	1157
	
	Age Gender



	34
	160
	140
	20
	
	
	Age Gender



	35
	84
	83
	1
	
	84
	Age Sex Education



	36
	3000
	2400
	600
	
	5
	



	37
	47
	47
	47
	
	
	



	38
	206
	165
	41
	
	5
	Age Sex



	39
	500
	500
	500
	
	
	



	40
	103
	83
	20
	
	5
	Age Sex



	41
	154
	124
	30
	
	5
	



	42
	81
	81
	81
	
	
	



	43
	400
	360
	40
	
	10
	



	44
	59
	52
	7
	
	8
	



	45
	340
	306
	34
	
	10
	Age Education



	46
	688
	619
	69
	
	10
	Age Sex



	47
	172
	155
	17
	
	10
	



	48
	180
	128
	32
	20
	5
	



	49
	956
	860
	96
	
	10
	



	50
	1130
	1020
	110
	
	10
	







Note: * N-Fold Cross Validation for Training-Validation Sets. [image: Diagnostics 14 02394 i001] Leave-One-Out Cross Validation (Every Single Element Serves as the Validation Set).













 





Table 5. Abbreviation.






Table 5. Abbreviation.





	
Method

	




	
ANN

	
Artificial Neural Network




	
CNN

	
Convolutional Neural Network




	
DT

	
Decision Tree




	
EN

	
Elastic Net




	
KN

	
K-Nearest Neighbor




	
LASSO

	
Least Absolute Shrinkage and Selection Operator




	
LDA

	
Linear Discriminate Analysis




	
LR

	
Logistic Regression




	
NB

	
Naïve Bayes




	
RF

	
Random Forest




	
RR

	
Ridge Regression




	
SDA

	
Supervised Domain Adaptation




	
SVM

	
Support Vector Machine




	
VGG

	
Virtual Geometry Group




	
Dependent Variable




	
ASC

	
Attenuation-Scatter Correction




	
ASD

	
Autism Spectrum Disorder




	
HIV

	
Human Immunodeficiency Virus




	
MDD

	
Major Depressive Disorder




	
Model Performance




	
Acc

	
Accuracy




	
Sen

	
Sensitivity




	
Spe

	
Specificity




	
AUC

	
Area Under the Curve




	
Predictor Neuroimaging




	
AAB

	
Abnormal Amyloid-β




	
ALFF

	
Amplitude of Low-Frequency Fluctuation




	
CT

	
Cortical Thickness




	
FC

	
Functional Connectivity




	
FDM

	
Fractal Dimension Measure




	
GMV

	
Gray Matter Volume




	
LAA

	
Left Amygdala Activity




	
LHV

	
Left Hippocampal Volume




	
PNL

	
Plasma Neurofilament Light




	
RC

	
Right Cerebellum




	
RH

	
Regional Homogeneity




	
RMCG

	
Right Middle Occipital Gyrus




	
SA

	
Surface Area




	
SCV

	
Sub-Cortical Volume
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