Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. cfDNA Isolation and Fragment Size Distribution Analysis
2.3. CTC Enumeration and Characterization
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. cfDNA Fragments and CTC Counts Between ER and Non-ER Groups
3.3. Combination Score for Predicting Early Recurrence
3.4. Association of Combination Score with Prognosis
3.5. Correlation Between CTC Counts and Fragment Length of cfDNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef]
- Sakata, J.; Nomura, T.; Aono, T.; Kitami, C.; Yokoyama, N.; Minagawa, M.; Takizawa, K.; Miura, K.; Hirose, Y.; Ichikawa, H.; et al. Oncological outcomes of surgery for recurrent biliary tract cancer: Who are the best candidates? HPB 2021, 23, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Chan-On, W.; Nairismägi, M.L.; Ong, C.K.; Lim, W.K.; Dima, S.; Pairojkul, C.; Lim, K.H.; McPherson, J.R.; Cutcutache, I.; Heng, H.L.; et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 2013, 45, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Pawlik, T.M.; Anders, R.A.; Selaru, F.M.; Streppel, M.M.; Lucas, D.J.; Niknafs, N.; Guthrie, V.B.; Maitra, A.; Argani, P.; et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 2013, 45, 1470–1473. [Google Scholar] [CrossRef]
- Ong, C.K.; Subimerb, C.; Pairojkul, C.; Wongkham, S.; Cutcutache, I.; Yu, W.; McPherson, J.R.; Allen, G.E.; Ng, C.C.; Wong, B.H.; et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 2012, 44, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Takahashi, S.; Gotohda, N.; Konishi, M. Prognostic Impact of the Initial Postoperative CA19-9 Level in Patients with Extrahepatic Bile Duct Cancer. J. Gastrointest. Surg. 2016, 20, 1435–1443. [Google Scholar] [CrossRef]
- Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C.; Stephens, B.M.; Huang, J.; Semaan, A.; Guerrero, P.A.; et al. Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer. Gastroenterology 2019, 156, 108–118.e4. [Google Scholar] [CrossRef]
- Cayrefourcq, L.; Mazard, T.; Joosse, S.; Solassol, J.; Ramos, J.; Assenat, E.; Schumacher, U.; Costes, V.; Maudelonde, T.; Pantel, K.; et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015, 75, 892–901. [Google Scholar] [CrossRef]
- Maheswaran, S.; Haber, D.A. Ex Vivo Culture of CTCs: An Emerging Resource to Guide Cancer Therapy. Cancer Res. 2015, 75, 2411–2415. [Google Scholar] [CrossRef]
- Han, S.Y.; Park, S.H.; Ko, H.S.; Jang, A.; Seo, H.I.; Lee, S.J.; Kim, G.H.; Kim, D.U. Vimentin-Positive Circulating Tumor Cells as Diagnostic and Prognostic Biomarkers in Patients with Biliary Tract Cancer. J. Clin. Med. 2021, 10, 4435. [Google Scholar] [CrossRef]
- Semaan, A.; Bernard, V.; Kim, D.U.; Lee, J.J.; Huang, J.; Kamyabi, N.; Stephens, B.M.; Qiao, W.; Varadhachary, G.R.; Katz, M.H.; et al. Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br. J. Cancer 2021, 124, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Akita, M.; Ajiki, T.; Ueno, K.; Tsugawa, D.; Hashimoto, Y.; Tanaka, M.; Kido, M.; Toyama, H.; Fukumoto, T. Predictors of postoperative early recurrence of extrahepatic bile duct cancer. Surg. Today 2020, 50, 344–351. [Google Scholar] [CrossRef]
- Ito, Y.; Abe, Y.; Egawa, T.; Kitago, M.; Itano, O.; Kitagawa, Y. Predictive Factors of Early Recurrence in Patients with Distal Cholangiocarcinoma after Pancreaticoduodenectomy. Gastroenterol. Res. Pract. 2018, 2018, 6431254. [Google Scholar] [CrossRef]
- Wakiya, T.; Ishido, K.; Kimura, N.; Nagase, H.; Kanda, T.; Ichiyama, S.; Soma, K.; Matsuzaka, M.; Sasaki, Y.; Kubota, S.; et al. CT-based deep learning enables early postoperative recurrence prediction for intrahepatic cholangiocarcinoma. Sci. Rep. 2022, 12, 8428. [Google Scholar] [CrossRef] [PubMed]
- Azad, T.D.; Chaudhuri, A.A.; Fang, P.; Qiao, Y.; Esfahani, M.S.; Chabon, J.J.; Hamilton, E.G.; Yang, Y.D.; Lovejoy, A.; Newman, A.M.; et al. Circulating Tumor DNA Analysis for Detection of Minimal Residual Disease After Chemoradiotherapy for Localized Esophageal Cancer. Gastroenterology 2020, 158, 494–505.e496. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.; Wu, H.T.; Tin, A.S.; et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol. 2019, 5, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, Y.; Lam, V.K.; Shi, Y.; Guan, Y.; Zhang, Y.; Ji, L.; Chen, Y.; Zhao, Y.; Qian, F.; et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Avriett, T.A.; Ray, C.M.; Kim, R.D. Circulating tumor DNA analysis guiding adjuvant treatment in resected stage III cholangiocarcinoma: A case report. J. Gastrointest. Oncol. 2024, 15, 485–490. [Google Scholar] [CrossRef]
- Wang, X.; Fu, X.H.; Qian, Z.L.; Zhao, T.; Duan, A.Q.; Ruan, X.; Zhu, B.; Yin, L.; Zhang, Y.J.; Yu, W.L. Non-invasive detection of biliary tract cancer by low-coverage whole genome sequencing from plasma cell-free DNA: A prospective cohort study. Transl. Oncol. 2021, 14, 100908. [Google Scholar] [CrossRef]
- Rizzo, A.; Ricci, A.D.; Tavolari, S.; Brandi, G. Circulating Tumor DNA in Biliary Tract Cancer: Current Evidence and Future Perspectives. Cancer Genom. Proteom. 2020, 17, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Zhang, J.; Hui, A.B.; Wong, N.; Lau, T.K.; Leung, T.N.; Lo, K.W.; Huang, D.W.; Lo, Y.M. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 2004, 50, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Umetani, N.; Giuliano, A.E.; Hiramatsu, S.H.; Amersi, F.; Nakagawa, T.; Martino, S.; Hoon, D.S. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J. Clin. Oncol. 2006, 24, 4270–4276. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, C.; Kang, Q.; Hovelson, D.H.; Sandford, E.; Olesnavich, M.; Dermody, S.M.; Wolfgang, J.; Tuck, K.L.; Brummel, C.; Bhangale, A.D.; et al. ctDNA transiting into urine is ultrashort and facilitates noninvasive liquid biopsy of HPV+ oropharyngeal cancer. JCI Insight 2024, 9, e177759. [Google Scholar] [CrossRef]
- Li, F.; Wei, F.; Huang, W.L.; Lin, C.C.; Li, L.; Shen, M.M.; Yan, Q.; Liao, W.; Chia, D.; Tu, M.; et al. Ultra-Short Circulating Tumor DNA (usctDNA) in Plasma and Saliva of Non-Small Cell Lung Cancer (NSCLC) Patients. Cancers 2020, 12, 2041. [Google Scholar] [CrossRef]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415. [Google Scholar] [CrossRef]
- Chen, E.; Cario, C.L.; Leong, L.; Lopez, K.; Márquez, C.P.; Chu, C.; Li, P.S.; Oropeza, E.; Tenggara, I.; Cowan, J.; et al. Cell-free DNA concentration and fragment size as a biomarker for prostate cancer. Sci. Rep. 2021, 11, 5040. [Google Scholar] [CrossRef]
- Underhill, H.R.; Kitzman, J.O.; Hellwig, S.; Welker, N.C.; Daza, R.; Baker, D.N.; Gligorich, K.M.; Rostomily, R.C.; Bronner, M.P.; Shendure, J. Fragment Length of Circulating Tumor DNA. PLoS Genet. 2016, 12, e1006162. [Google Scholar] [CrossRef]
- Mouliere, F.; Robert, B.; Arnau Peyrotte, E.; Del Rio, M.; Ychou, M.; Molina, F.; Gongora, C.; Thierry, A.R. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE 2011, 6, e23418. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Loree, J.M.; Ahronian, L.G.; Parikh, A.R.; Niedzwiecki, D.; Pereira, A.A.L.; McKinney, M.; Korn, W.M.; Atreya, C.E.; Banks, K.C.; et al. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer. Cancer Discov. 2018, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, X.; Li, M.; Liu, W.; Lu, L.; Li, Y.; Chen, X.; Yang, S.; Liu, T.; Cheng, W.; et al. Ultra-short cell-free DNA fragments enhance cancer early detection in a multi-analyte blood test combining mutation, protein and fragmentomics. Clin. Chem. Lab. Med. 2024, 62, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Jie, X.X.; Zhang, X.Y.; Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget 2017, 8, 81558–81571. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell 2008, 14, 818–829. [Google Scholar] [CrossRef]
- Shin, S.H.; Han, D.J.; Park, K.T.; Kim, Y.H.; Park, J.B.; Kim, S.C. Validating a simple scoring system to predict malignancy and invasiveness of intraductal papillary mucinous neoplasms of the pancreas. World J. Surg. 2010, 34, 776–783. [Google Scholar] [CrossRef]
- Wen, N.; Peng, D.; Xiong, X.; Liu, G.; Nie, G.; Wang, Y.; Xu, J.; Wang, S.; Yang, S.; Tian, Y.; et al. Cholangiocarcinoma combined with biliary obstruction: An exosomal circRNA signature for diagnosis and early recurrence monitoring. Signal Transduct. Target. Ther. 2024, 9, 107. [Google Scholar] [CrossRef]
- Anker, P.; Mulcahy, H.; Chen, X.Q.; Stroun, M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 1999, 18, 65–73. [Google Scholar] [CrossRef]
- Sorenson, G.D.; Pribish, D.M.; Valone, F.H.; Memoli, V.A.; Bzik, D.J.; Yao, S.L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994, 3, 67–71. [Google Scholar]
BTC (n = 24) | p-Value | ||
---|---|---|---|
ER (n = 8) | Non-ER (n = 16) | ||
Sex male | 7 (87.5) | 8 (50.0) | 0.087 |
Age, mean ± SD | 68.6 ± 7.2 | 66.8 ± 10.8 | 0.673 |
Diagnosis (dCCA/pCCA/iCCA/GBC) | 3 (37.5)/3 (37.5)/0 (0)/2 (25.0) | 7 (43.75)/4 (25.0)/2 (12.5)/3 (18.75) | 0.697 |
Viral hepatitis | 0 (0) | 0 (0) | - |
Clonorchiasis Hx | 1 (12.5) | 3 (18.75) | 0.593 |
Hypertension | 5 (62.5) | 8 (50.0) | 0.444 |
Diabetes | 3 (37.5) | 3 (18.75) | 0.302 |
Smoker | 2 (25.0) | 3 (18.75) | 0.555 |
Alcohol consumption | 3 (37.5) | 2 (12.5) | 0.186 |
BMI, mean ± SD | 25.3 ± 2.3 | 23.4 ± 3.3 | 0.158 |
Surgical pathologic findings | |||
R0/R1 resection | 4 (50.0)/4 (50.0) | 14 (87.5)/2 (12.5) | 0.069 |
Node metastasis | 8 (100) | 6 (37.5) | 0.004 |
Adjuvant chemotherapy Capecitabine/FLv/Gemcitabine/CCRTx | 1 (12.5)/3 (37.5)/1 (12.5)/3 (37.5) | 4 (25.0)/5 (31.3)/1 (6.2)/6 (37.5) | 0.445 |
Laboratory findings | |||
WBC (/µL) | 5221.7 ± 1985.9 | 5385.0 ± 1904.3 | 0.885 |
NLR | 78.7 ± 140.2 | 68.4 ± 131.1 | 0.861 |
Hb (g/dL) | 12.3 ± 1.6 | 11.9 ± 1.3 | 0.436 |
PLT (k/µL)) | 199.3 ± 101.4 | 203.6 ± 84.4 | 0.913 |
ALT (U/L) | 17.0 ± 6.4 | 22.6 ± 17.6 | 0.396 |
ALP (U/L) | 90.9 ± 38.6 | 102.4 ± 30.5 | 0.431 |
Total Bilirubin (g/dL) | 0.59 ± 0.42 | 0.52 ± 0.30 | 0.637 |
Albumin (g/dL) | 4.00 ± 0.62 | 4.22 ± 0.46 | 0.333 |
CEA (ng/mL) | 3.33 ± 1.71 | 2.41 ± 1.49 | 0.221 |
CA19-9 (U/mL) | 90.8 ± 106.2 | 70.1 ± 170.7 | 0.209 |
Liquid biopsy findings | |||
Total cfDNA (pg/µL) | 2530.1 ± 1839.2 | 1562.5 ± 1244.8 | 0.140 |
UF of cfDNA (pg/µL) | 858.2 ± 1380.6 | 173.7 ± 66.7 | <0.001 |
UF proportion of cfDNA (%) | 31.0 ± 30.4 | 15.7 ± 8.0 | <0.001 |
LF of cfDNA (pg/µL) | 271.3 ± 238.1 | 266.1 ± 369.2 | 0.244 |
LF proportion of cfDNA (%) | 16.0 ± 25.5 | 15.4 ± 14.4 | 0.060 |
Total CTC count (/mL) | 128.4 ± 204.6 | 85.5 ± 169.7 | 0.513 |
vCTC count (/mL) | 48.3 ± 91.5 | 25.8 ± 41.6 | 0.010 |
vCTC proportion (%) | 27.0 ± 18.1 | 39.6 ± 24.7 | 0.413 |
BTC (n = 24) | p-Value | Acquired Point | ||
---|---|---|---|---|
ER (n = 8) | Non-ER (n = 16) | |||
Total cfDNA > 1515 pg/µL | 5 | 5 | 0.153 | |
UF of cfDNA > 169.8 pg/µL and UF proportion of cfDNA > 15.1% | 4 | 1 | 0.028 | YES, 1; No, 0 |
LF of cfDNA < 101.2 pg/µL and LF proportion of cfDNA < 12.6% | 2 | 9 | 0.156 | |
Total CTC count > 40/mL | 4 | 7 | 0.556 | |
vCTC count > 15/mL and vCTC proportion > 40% | 5 | 2 | 0.021 | YES, 1; No, 0 |
CA 19-9 levels > 39 U/mL | 6 | 4 | 0.028 | YES, 1; No, 0 |
Combination score | 1.9 ± 0.8 | 0.4 ± 0.6 | <0.001 | |
0.1 vs. 2.3 | 1/7 | 15/1 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.H.; Lee, H.J.; Kim, T.I.; Lee, J.; Han, S.Y.; Seo, H.I.; Kim, D.U. Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Diagnostics 2024, 14, 2462. https://doi.org/10.3390/diagnostics14212462
Park SH, Lee HJ, Kim TI, Lee J, Han SY, Seo HI, Kim DU. Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Diagnostics. 2024; 14(21):2462. https://doi.org/10.3390/diagnostics14212462
Chicago/Turabian StylePark, Sung Hee, Hye Ji Lee, Tae In Kim, Jonghyun Lee, Sung Yong Han, Hyung Il Seo, and Dong Uk Kim. 2024. "Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer" Diagnostics 14, no. 21: 2462. https://doi.org/10.3390/diagnostics14212462
APA StylePark, S. H., Lee, H. J., Kim, T. I., Lee, J., Han, S. Y., Seo, H. I., & Kim, D. U. (2024). Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Diagnostics, 14(21), 2462. https://doi.org/10.3390/diagnostics14212462