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Abstract: Objectives: To compare 3D cephalometric analysis performed using AI with that conducted
manually by a specialist orthodontist. Methods: The CBCT scans (a field of view of 15 × 15 cm)
used in the study were obtained from 30 consecutive patients, aged 18 to 50. The 3D cephalometric
analysis was conducted using two methods. The first method involved manual tracing performed
with the Invivo 6 software (Anatomage Inc., Santa Clara, CA, USA). The second method involved
using AI for cephalometric measurements as part of an orthodontic report generated by the Diagnocat
system (Diagnocat Ltd., San Francisco, CA, USA). Results: A statistically significant difference within
one standard deviation of the parameter was found in the following measurements: SNA, SNB,
and the left interincisal angle. Statistically significant differences within two standard deviations
were noted in the following measurements: the right and left gonial angles, the left upper incisor,
and the right lower incisor. No statistically significant differences were observed beyond two
standard deviations. Conclusions: AI in the form of Diagnocat proved to be effective in assessing the
mandibular growth direction, defining the skeletal class, and estimating the overbite, overjet, and
Wits parameter.

Keywords: artificial intelligence; 3D cephalometry; Diagnocat

1. Introduction

Since its inception, artificial intelligence (AI) has led to significant advancements,
enhancing various aspects of our daily lives, including medical practices [1,2]. Recently, AI
has facilitated the development of personalized medicine, enabling more precise disease
predisposition assessments and diagnoses and the selection of optimal treatments for
individuals [3]. In dentistry, AI is employed for various tasks, including numbering
teeth, analyzing the relationship between the third molars and the mandibular canal,
planning dental implants, diagnosing periapical pathologies, detecting cavities, evaluating
osteoporotic changes, and examining jaw tumors [4].

AI is frequently employed in the processing and analysis of cone beam computed
tomography (CBCT) in dentistry [5]. Advanced AI algorithms, like Diagnocat, have
been created to facilitate both the coarse and fine volume segmentation of teeth in CBCT
images, making them highly effective in managing large datasets [6]. Diagnocat’s AI
efficiently analyzes CBCT images in DICOM format, ensuring smooth data transfer [7].
AI-powered dental imaging software significantly enhances the speed and efficiency of
data processing [8]. CBCT, a 3D imaging technology, is widely used in dentistry for
various applications, including implant placement, orthodontic treatment planning, and
root canal procedures [9]. Currently, considerable scientific effort is being directed towards
AI applications that aim to automate the identification of landmarks in CBCT [10].

Cephalometric analysis is a quantitative diagnostic tool routinely utilized by orthodon-
tists, prosthodontists, and maxillofacial and orthognatic surgeons to assess skeletal and
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dentoalveolar relationships, morphometric characteristics, and growth patterns in patients.
Since its introduction in 1931, this method has evolved significantly, integrating the latest
advancements in orthodontic radiology and diagnostics [11]. The analysis relies on linear
and angular measurements derived from two-dimensional (2D) radiographs of the skull,
producing a personalized cephalogram for each patient [12]. Traditional cephalometric
reference points are identified on skeletal structures, such as the anterior and posterior
cranial base, maxilla, and mandible; on teeth, including the molars and incisors; and on
soft tissue structures, such as the nose and chin. By measuring the distances and angles
between these landmarks and axes, clinicians can categorize patients according to their
skeletal, dental, and profilometric features. Despite technological advancements, the man-
ual tracing of specific points in relation to key anatomical structures of the skull and neck
on lateral, frontal, and axial 2D radiographs remains the gold standard for this procedure.
The primary challenges in accurately identifying cephalometric points include the time
commitment, the high level of expertise required, and the potential for variability between
and within operators [13].

While software is now widely utilized for cephalometric measurements, the tracing of
landmarks continues to be a manual process that must be carried out by an orthodontic
specialist [14]. The accuracy of this analysis heavily depends on the expert’s experience
and even their condition on a given day, which can lead to inconsistencies [15]. The lack
of reliability in manual tracing is a significant concern, as the inaccurate identification
of cephalometric landmarks can result in incorrect decisions in orthodontic treatment.
Therefore, the development of fully automated and reliable methods for the identification
of these landmarks is highly sought after to enhance quality control. AI algorithms of-
fer promising new opportunities to assist orthodontic professionals in their daily work,
potentially improving both efficiency and accuracy [16].

To the authors’ knowledge, there have been only a limited number of studies that
have employed convolutional neural networks (CNNs) for automated 3D cephalometric
analysis. Although these initial studies have shown promising results, they have also
revealed significant methodological limitations [17]. Consequently, definitive conclusions
about the practical applicability of these algorithms are still not well established.

The aim of this study is to compare 3D cephalometric analysis performed using AI
with that conducted manually by a specialist orthodontist and maxillofacial radiology
specialist. The null hypothesis is the following: there is no significant difference between
3D cephalometric analysis performed using an AI-powered virtual assistant and that
conducted manually by a human orthodontist.

2. Materials and Methods

This study received approval from the bioethical committee of RUDN University
(Protocol No. 12, 17 March 2024). It was based on a retrospective and registration dataset,
meaning that it did not involve human experiments or the use of human tissue samples,
and no patients were specifically imaged for this research.

2.1. Study Design and Patient Selection

The CBCT scans used in this study were obtained from 30 consecutive patients, aged
18 to 50 (13 males and 17 females), who were admitted to a local diagnostic center. The
sample was annotated by a dental and maxillofacial radiology specialist with extensive
experience in surgical procedures and full-mouth rehabilitation and an orthodontist using
cephalometric landmarks. Both specialists provided the tracing twice (7 days between
measurements) to calibrate the results. Samples were excluded if the difference in the
measurements between the specialists was more than half of a standard deviation or
more than half of a standard deviation within the measurements of one specialist. These
procedures were provided for expert calibration. As a result, none of the patients were
excluded and the diagnostic outcome for each parameter was similar. Then, the mean value
of the measurements was calculated. The general inclusion criteria for the study were as
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follows: patients with well-controlled systemic diseases, patients requiring cephalometric
radiographs and CBCT, patients without maxillofacial deformities, patients with fully
erupted incisors and first molars, and patients without any previous orthodontic treatment.

All CBCT images were obtained using the GALILEOS Comfort system (Sirona Dental
Systems GmbH, Bensheim, Germany) with the following acquisition settings: tube voltage
of 98 kV, tube current of 5 mAs, scanning time of 14 s, field of view (FOV) of 15 × 15 cm,
and isotropic voxel size of 0.25 mm. During the scan, the patients were positioned in
habitual occlusion, with their lips and tongue at rest. Their heads were stabilized using
head and chin supports, ensuring that no excessive pressure was applied.

2.2. 3D Cephalometric Analysis

The 3D cephalometric analysis was conducted using two methods. The first method
involved manual tracing performed with the Invivo 6 software (Anatomage Inc., Santa
Clara, CA, USA). The number of landmarks was predetermined to ensure consistency in the
cephalometric measurements across the methods studied. Initially, the CBCT images were
aligned using specific landmarks: Ba, Or R, Or L, Po R, and Na. Following this alignment,
all landmarks were traced according to the established definitions [18,19] (Figure 1).

Diagnostics 2024, 14, x FOR PEER REVIEW 3 of 14 
 

 

measurements was calculated. The general inclusion criteria for the study were as follows: 
patients with well-controlled systemic diseases, patients requiring cephalometric radio-
graphs and CBCT, patients without maxillofacial deformities, patients with fully erupted 
incisors and first molars, and patients without any previous orthodontic treatment. 

All CBCT images were obtained using the GALILEOS Comfort system (Sirona Dental 
Systems GmbH, Bensheim, Germany) with the following acquisition settings: tube voltage 
of 98 kV, tube current of 5 mAs, scanning time of 14 s, field of view (FOV) of 15 × 15 cm, 
and isotropic voxel size of 0.25 mm. During the scan, the patients were positioned in ha-
bitual occlusion, with their lips and tongue at rest. Their heads were stabilized using head 
and chin supports, ensuring that no excessive pressure was applied. 

2.2. 3D Cephalometric Analysis 
The 3D cephalometric analysis was conducted using two methods. The first method 

involved manual tracing performed with the Invivo 6 software (Anatomage Inc., Santa 
Clara, CA, USA). The number of landmarks was predetermined to ensure consistency in 
the cephalometric measurements across the methods studied. Initially, the CBCT images 
were aligned using specific landmarks: Ba, Or R, Or L, Po R, and Na. Following this align-
ment, all landmarks were traced according to the established definitions [18,19] (Figure 
1). 

 
Figure 1. Manual 3D cephalometry tracings. 

  

Figure 1. Manual 3D cephalometry tracings.

The second method involved using AI for cephalometric measurements as part of an
orthodontic report generated by the Diagnocat system (Diagnocat Ltd., San Francisco, CA,
USA). The Diagnocat AI system produces an orthodontic report by utilizing a pipeline
composed of multiple pre-trained fully convolutional networks, along with algorithmic
slice extraction and AI-driven tracings (Figure 2). This system leverages a set of pre-
trained semantic segmentation networks, which are based on an internally modified fully
convolutional 3D U-Net architecture, to achieve voxel-perfect segmentation masks of the
teeth and anatomical elements present in the images [20].
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Figure 2. The 3D cephalometry tracings obtained with AI Diagnocat.

The cephalometric measurements are detailed in Table 1. Each result was evaluated
separately and independently, without any prior knowledge of the AI results, to determine
the reliability of the AI-generated diagnostic reports.

Table 1. The measurements and norms of the compared parameters (values are taken from the current
Diagnocat orthoreport).

Variable Norm SD

Mandibular plane to SN 32◦ 2

Mandibular plane to FH 9◦ 4

Gonial angle right 130◦ 7

Gonial angle left 130◦ 7

Wits 0 mm 1

SNA 82◦ 2

SNB 80◦ 2

ANB 2◦ 2

Overjet 3 mm 1

Overbite 3 mm 1

Upper incisor U1-SN R 105◦ 2

Upper incisor U1-SN L 105◦ 2

Lower incisor L1-MP R 90◦ 5

Lower incisor L1-MP L 90◦ 5

Interincisal angle U1-L1(R) 130◦ 6

Interincisal angle U1-L1(L) 130◦ 6
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2.3. Statistical Analysis

The R language for statistical computing was used for the data analysis. Illustrations
were created using the package “ggplot2”. Quantitative variables were represented with
the minimum (min), maximum (max), median (M), first (Q1) and third (Q3) quartiles,
average/mean (mean), and standard deviation (SD). Statistical comparisons were carried
out using Student’s t-test for normally distributed quantitative variables and the Mann–
Whitney U test for non-normally distributed quantitative variables.

Categorical data were represented with fractions and percentages. For categorical data,
statistical comparisons were carried out using Fisher’s exact test. The agreement between
the methods was estimated using the intraclass correlation coefficient (ICC). This utilized a
two-factor analysis of variance as implemented in the package irr. The statistical significance
cutoff was selected as p < 0.05. No correction for multiple comparisons was carried out.

3. Results

In the initial stage of the study, the data were organized into a visual format to identify
any CBCT scans where the two methods did not correlate. This approach, described in the
Materials and Methods section, was used to ensure that 3D cephalometry was accurately
performed by both methods (Figure 3). In the subsequent stage, Q-Q plots were generated
to validate the statistical parameters (Figure 4). Table 2 and Figure 5 illustrate the differences
between the Diagnocat and Invivo methods for each variable. Depending on the results of
the Shapiro–Wilk test and the examination of the normal Q-Q plots, either parametric or
non-parametric methods were applied.

Table 2. Differences between the methods of Diagnocat and Invivo for each variable. LCL—lower
limit of the 95% confidence interval for the difference. UCL—upper limit of the 95% confidence
interval for the difference. SD—standard deviation. In the case of a normal distribution, parametric
methods were used, Student’s t-test was used for comparisons, the difference was represented by
the average/mean value, and the 95% confidence interval for it was parametric. In the case of a
non-normal distribution, non-parametric methods were used, the Mann–Whitney U test was used for
comparisons, the difference was represented by the pseudomedian, and the 95% confidence interval
for it was non-parametric. Values of p less than 0.05 * indicate a statistically significant difference
between the methods of Diagnocat and Invivo.

Variable Method Difference LCL UCL p

Mandibular plane to SN parametric −1.36 −3.42 0.69 0.186

Mandibular plane to FH non-parametric −0.42 −1.47 0.60 0.411

Gonial angle right parametric −7.29 −9.82 −4.77 <0.001 *

Gonial angle left parametric −7.07 −9.27 −4.87 <0.001 *

Wits right non-parametric 0.15 −0.48 0.70 0.648

SNA parametric −0.43 −0.72 −0.13 0.006 *

SNB parametric −0.55 −0.87 −0.23 0.001 *

ANB non-parametric 0.08 −0.09 0.25 0.347

Overjet non-parametric 0.01 −0.27 0.34 0.945

Overbite parametric −0.25 −0.57 0.07 0.126

Upper incisor U1-SN R non-parametric −0.49 −1.91 0.69 0.447

Upper incisor U1-SN L non-parametric −1.92 −2.88 −0.90 0.001 *

Lower incisor L1-MP R parametric 2.77 0.03 5.51 0.048 *

Lower incisor L1-MP L parametric −0.56 −2.96 1.84 0.637

Interincisal angle U1-L1(R) parametric −0.56 −2.30 1.19 0.519

Interincisal angle U1-L1(L) parametric 2.82 0.97 4.67 0.004
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Figure 4. Q-Q plots for each variable (by method). The better the alignment of the dots with the line
of the corresponding color, the closer the distribution to normality.
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Figure 5. Differences between the methods of Diagnocat and Invivo for each variable. In the case of a
normal distribution, parametric methods were used, Student’s t-test was used for comparisons, the
central diamond represents the average/mean value of the difference, and the whiskers denote the
parametric 95% confidence interval for it. In the case of a non-normal distribution, non-parametric
methods were used, the Mann–Whitney U test was used for comparisons, the central diamond
represents the pseudomedian of the difference, and the whiskers denote the non-parametric 95%
confidence interval for it. Green line—zero; yellow lines—one standard deviation of the method;
orange lines—two standard deviations of the method; red lines—three standard deviations of the
method. Units of measurement are individual per variable.
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When comparing the measured values between manual tracing and AI, statistically
significant differences were observed. A statistically significant difference within one
standard deviation of the parameter was found in the following measurements: SNA, SNB,
and the left interincisal angle. Statistically significant differences within two standard
deviations were noted in the following measurements: the right and left gonial angles, the
left upper incisor, and the right lower incisor. No statistically significant differences were
observed beyond two standard deviations.

4. Discussion

CBCT is increasingly utilized in orthodontics because of its capability to provide
detailed three-dimensional (3D) images of dental structures, soft tissue, nerve pathways,
and bone [20]. This study compared the automated 3D cephalometric analysis performed
using AI Diagnocat with manual tracings performed using Invivo 6. Recent studies have
consistently demonstrated the superior accuracy of 3D cephalometric analysis over tradi-
tional 2D methods [21], as well as the enhanced efficiency of deep learning (DL) algorithms
compared to conventional machine learning techniques in the field of bioimaging [22].
Consequently, there is a growing trend toward developing DL-based algorithms for the
automatic identification of landmarks in 3D images.

Several reviews and meta-analyses have explored the use of AI in 3D cephalometric
analysis within orthodontics [17,23]. Deep learning (DL) algorithms have consistently
demonstrated greater accuracy in automated 3D cephalometric landmark identification
compared to other machine learning (ML) algorithms. Over the years, promising DL models
have been developed, leading to significant improvements in the accuracy of landmark
annotation. However, the main limitations of the existing reviews and meta-analyses
stem from the studies included for qualitative and quantitative assessment, which do not
feature Diagnocat. Additionally, the practical application of such AI algorithms in routine
orthodontic practice remains underexplored, as previous studies have primarily focused
on landmark detection, without adequately assessing the accuracy of the cephalometric
parameters [24] or providing sufficient statistical evaluation.

This study identified statistically significant differences in the following parameters:
SNA, SNB, left interincisal angle, right and left gonial angles, left upper incisor, and
right lower incisor. Cephalometric analysis typically represents a three-dimensional (3D)
structure in a two-dimensional (2D) format. As a result, these measurements on radio-
graphic images can be prone to projection and measurement errors, as well as individual
variations [25]. Thus, the null hypothesis is rejected.

The SNA and SNB are angles that measure the relationship between the SN plane and
the NA or NB points, respectively. These angles have long been recognized as important
indicators of upper and lower facial prognathism and are valuable tools in diagnosing and
treating malocclusion [26]. Ariwa et al. [27] observed differences between conventional
cephalometric analysis and 3D analysis using CBCT in measuring the ANB angle, which
reflects the anteroposterior intermaxillary relationship by connecting points A, N, and B.
The regression equations from their study highlighted the influence of the A-point plot.
However, our study found no significant difference in the ANB angle (p = 0.347), indicating
that both methods provided consistent definitions of the skeletal class.

The differences observed in the SNA and SNB angles in our study might be attributed
to variations in defining the S-point (midpoint of the shadow of the sella turcica). Addi-
tionally, in 3D analysis, unlike traditional cephalometrics, the ANB angle may not simply
represent the difference between the SNA and SNB [28]. When 3D cephalometric mea-
surements are projected onto the midsagittal plane, they retain the same significance as
in 2D cephalometry. However, traditional cephalometric indices may not fully capture
the nuances of 3D analysis using CBCT [27]. Das et al. [25] concluded that cephalometric
landmarks that are challenging to identify on 2D cephalograms can be more accurately and
reliably located and measured on 3D CBCT-generated cephalograms. Both angular and
linear measurements tend to be significantly greater in 3D CBCT-generated values
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Regarding the incisor parameters, the statistically significant difference was unilateral.
Kunz et al. [29] compared the accuracy of AI-based analysis to the current gold standard—
analyses performed by human experts—to assess its precision and clinical applicability in
routine orthodontic practice. They found that the inclination of the upper incisors showed
a statistically higher absolute difference of 2.18◦ between the AI’s predictions and the
human experts’ gold standard, compared to a mean absolute difference of 1.50◦ between
the human examiners and the gold standard. The accurate placement of anatomical
cephalometric landmarks is crucial for the linear, angular, and planar comparison of the
selected landmarks, which is essential in planning both orthodontic and orthognathic
surgery procedures.

Chen et al. [30] studied the skill involved in placing anatomical and cephalometric
points and concluded that specialists with more years of active clinical practice demon-
strated greater proficiency in accurately placing these reference points for precise cephalo-
metric analysis [31]. It is also important to consider that clinicians, dentists, surgeons,
and orthodontists who regularly perform these analyses have more experience compared
to those who do so only sporadically. Despite a well-conducted analysis, errors can still
occur. For example, Zamrik et al. [32] highlighted such an instance in their study, where
the measurement of the U1-A point was inaccurately performed.

In terms of the effectiveness of individual programs, some studies did not find sig-
nificant differences between analyses conducted by software and those performed by
a specialist [33]. Kunz et al. [29] noted that it could be seen as an “unfair” competi-
tion for the AI, given that the human raters themselves establish the gold standard used
for comparison.

The statistically significant difference observed in the bilateral gonial angle may be
attributed to the standardization of landmarks. The gonion is a specific point on the contour
of the mandible, identified by bisecting the angle formed by the mandibular and ramus
planes [34]. The overall localization error reported in various studies reflects the different
types and numbers of annotated landmarks, ranging from 5 to 105 [17]. Currently, there
is no standardized threshold for localization errors in 3D cephalometric analysis, and
the required accuracy can vary depending on the positioning and type of the landmark,
whether anatomical or geometrical.

The quality of landmark identification and their precise placement is critical to the
reliability of 3D linear and angular measurements [35]. For a landmark to be used effec-
tively in evaluating a particular dimension, it must demonstrate good consistency and
precision. Although manual identification is considered the gold standard, it is susceptible
to human error, which is not always quantified in the literature. Nonetheless, from a clinical
perspective, the repeatability and reproducibility of manually placing landmarks in 3D
images are generally acceptable for most anatomical reference points [17].

Moreover, because 2D cephalometry remains the gold standard, there is no univer-
sally defined set of points for 3D analysis [36]. The studies reviewed often used different
landmarks, making it difficult to precisely compare the performance of landmark annota-
tions across various algorithms. Alsubai [24] concluded that existing research on AI-based
cephalometric landmark annotation, reliability, and accuracy in automatic 3D cephalometric
landmarking has generally assessed these factors at an equal rate of 6%.

AI-driven tools have the potential to streamline workflows in dental practices by
automating tasks such as image registration, data management, and report generation [37].
This automation enables dental professionals to dedicate more time to patient care and less
to administrative duties. Various studies have utilized the Diagnocat software to investigate
different aspects of dental practice [38–40]. For instance, one study successfully explored the
software’s ability to detect periapical lesions. Another study by Orhan et al. [39] examined
the effectiveness of AI in diagnosing impacted third molars, assessing their relationship
with adjacent anatomical structures and determining the number of root canals.

While Diagnocat offers a range of reports that have been studied in various contexts,
there has been no specific research focused on its use in generating orthodontic reports.
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Although the minimal field of view (FOV) for Diagnocat’s CBCT analysis is 15 × 13 cm, it
is still capable of producing the necessary parameters within the reduced volume of the
CBCT scan. Kissel et al. [41] demonstrated that minimized large FOVs could meet the
requirements for 3D cephalometric analyses using the caudal reference plane, such as the
FH plane. In these cases, Diagnocat proves to be a useful tool as well.

The first limitation encountered during the study was the insufficient number of
specialists involved. The experience and expertise of clinicians, as well as the proficiency
of younger clinicians, significantly influence the accuracy of cephalometric tracings [42].
Manual tracings depend heavily on the clinician’s experience and knowledge to accurately
identify craniometric reference points, whereas automatic or AI-driven software processes
images based on algorithms and other automated tools. Specialists with more years of active
clinical practice tend to be more proficient in accurately placing the necessary reference
points for precise cephalometric analysis [31]. Moreover, clinicians, dentists, surgeons, and
orthodontists who perform such analyses regularly have more experience than those who
do so only occasionally.

Another issue identified in some studies is the reproducibility crisis in AI, where the
same research results cannot be consistently replicated if the experiment is performed by a
different set of researchers. This issue stems from deficiencies in metric knowledge and
algorithm design. Additionally, many researchers overlook the sensitivity of the results to
various hyper-parameters, including the initialization strategy, iteration times, and learning
rates [43,44].

The second limitation is the insufficiency of Diagnocat’s data. Inconsistencies in the
training data raise questions about the reliability of various algorithmic models. While
supervised models are preferred for the diagnosis of malocclusions, the high costs and
the need for extensive labeling make it challenging to create high-quality, standardized
datasets for orthodontics [44].

The third limitation is the reduced number of parameters available in Diagnocat. This
limitation restricts the ability to separate several parameters into distinct groups, such as
the growth direction, skeletal class, and others.

5. Conclusions

This study compared 3D cephalometric analyses conducted by specialists with those
performed using artificial intelligence. The findings indicated an acceptable correlation
between the two methods. The AI tool Diagnocat proved to be effective in assessing
the mandibular growth direction, defining the skeletal class, and estimating the overbite,
overjet, and Wits parameter. However, discrepancies in other parameters, such as those
describing the upper and lower jaw positions, the incisor inclination, and the angle of the
mandibula, could potentially be addressed by standardizing the guidelines for both AI and
manual tracings. Additionally, since the exact methodology of the AI tool Diagnocat for
3D cephalometry is not fully understood, it remains unclear whether the measurement
inaccuracies stem from the AI, the specialist, or both.
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