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Abstract: Background: Bleomycin is an oncolytic and antibiotic agent used to treat various human
cancers because of its antitumor activity. Unfortunately, up to 46% of the patients treated with
bleomycin develop drug-induced interstitial lung disease (DIILD) and potentially life-threatening
interstitial pulmonary fibrosis. Tools and biomarkers for predicting and detecting DIILD are limited.
Therefore, we aimed to evaluate the feasibility of 8E_FDG PET/CT, PET radiomics, and machine
learning in distinguishing DIILD in an explorative pilot study. Methods: Eighteen Hodgkin’s
lymphoma (HL) patients, of whom 10 developed DIILD after treatment with bleomycin, were
retrospectively included. Five diffuse large B-cell lymphoma (DLBCL) patients were included as
a control group since they were not treated with bleomycin. All patients underwent '8F-FDG
PET/CT scans before (baseline) and during treatment (interim). Structural changes were assessed
by changes in Hounsfield Units (HUs). The '8F-FDG PET scans were used to assess metabolic
changes by examining the feasibility of 504 radiomics features, including the mean activity of the
lungs (SUVmean). A Random Forest (RF) classifier evaluated the identification and prediction of
DIILD based on PET radiomics features. Results: HL patients who developed DIILD showed a
significant increase in standard SUV metrics (SUVmean; p = 0.012, median increase 37.4%), and in
some regional PET radiomics features (texture strength; p = 0.009, median increase 101.6% and zone
distance entropy; p = 0.019, median increase 18.5%), while this was not found in HL patients who did
not develop DIILD and DLBCL patients. The RF classifier correctly identified DIILD in 72.2% of the
patients and predicted the development of DIILD correctly in 50% of the patients. There were no
significant differences in HUs over time within all three patient groups. Conclusions: Our explorative
longitudinal pilot study suggests that certain regional ®F-FDG PET radiomics features can effectively
identify DIILD in HL patients treated with bleomycin, as significant longitudinal increases were
observed in SUVmean, texture strength, and zone distance entropy after the development of DIILD.
The metabolic activity of these features did not significantly increase over time in DLBCL patients
and HL patients who did not develop DIILD. This indicates that 'F-FDG PET radiomics, with and
without machine learning, might serve as potential biomarkers for detecting DIILD.

Keywords: drug-induced interstitial lung disease; bleomycin; 'F-FDG PET/CT; machine learning
and radiomics

1. Introduction

Bleomycin was discovered by Umezawa et al. [1] as an antibiotic agent with anti-
tumor activity. Nowadays, bleomycin treats various human cancers such as germ cell
tumors, squamous cell carcinoma, testicular cancer, and Hodgkin’s lymphoma (HL) [2,3].
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Unfortunately, up to 46% of the patients treated with bleomycin can develop drug-induced
interstitial lung disease (DIILD) due to the limited hydrolysis of bleomycin in the lungs [4,5].
Additionally, life-threatening interstitial pulmonary fibrosis occurs in approximately 1% to
2% of patients [4]. Although nintedanib and pirfenidone can effectively decelerate the pro-
gression of interstitial pulmonary fibrosis, the disease remains progressive and fatal [6,7].

Parenchymal abnormalities are typically detected with high-resolution computed
tomography (HRCT) scans due to their high sensitivity [8]. However, HRCT scans expose
patients to high radioactive dosages, and it remains unclear whether structural changes
can predict DIILD in patients treated with bleomycin. The development of DIILD is
associated with several risk factors, such as age, cumulative bleomycin dose, impaired
renal function, smoking, and pulmonary radiation [4,9], yet clear biomarkers are still lim-
ited. Several case studies using '®F-fluoro-deoxy-glucose (8F-FDG) positron emission
tomography-computed tomography (PET/CT) imaging in HL and seminoma patients
did not find structural differences in patients with DIILD [10-14]. In contrast, a review
by Exarchos et al. [15] highlighted the potential for combining CT scans with machine
learning in classifying and predicting interstitial lung disease (ILD). Additionally, the
aforementioned case studies indicated elevated metabolic activity during DIILD, suggest-
ing a potential alteration in pulmonary metabolic processes secondary to DIILD [10-14].
Notably, the study by Beyhan Sagmen et al. [16] observed increased 8F-FDG pulmonary
uptake in HL patients after the initiation of doxorubicin, bleomycin, vinblastine, and
dacarbazine (ABVD) chemotherapy, indicative of subsequent development of DIILD com-
pared to pre-treatment levels. This was not found in HL patients who did not develop
DIILD after treatment with ABVD chemotherapy [16]. These promising results suggest
that metabolic alterations in the lungs could serve as biomarkers for DIILD. However, it
remains unclear whether these results apply solely to conventional standardized uptake
value (SUV) metrics or if they also apply to more advanced PET features, including inter-
and intravoxel-based features.

Inter- and intravoxel-based features of regional I8E_FDG PET uptake, commonly re-
ferred to as radiomics, are gaining importance in oncology [17,18]. They are extensively
studied for prognostic assessments and predicting treatment responses, effectively forming
a comprehensive set of biomarkers [17,18]. Exploring the feasibility of radiomics fea-
tures through a longitudinal pilot study could enhance DIILD understanding, as these
features can reveal biological characteristics and capture more repeatable and reproducible
quantitative image information [17,18]. This may enable early detection and disease on-
set prediction by identifying advanced PET characteristics beyond the conventional SUV
metrics. Additionally, integrating PET radiomics features with artificial intelligence (AI)
could be valuable, since previous studies have shown that combining radiomics with
machine learning methods, such as a Random Forest (RF), improves the robustness of the
statistical analysis [15,19].

In this study, we aimed to analyze, through an exploratory longitudinal pilot study,
the feasibility of standard I8E_-FDG PET/CT features and advanced 3F-FDG PET radiomics
features combined with an RF classifier to classify DIILD in HL patients treated with
bleomycin. To achieve this, we included HL patients who developed DIILD and HL patients
who did not develop DIILD after several cycles of chemotherapy, including bleomycin as
an antitumor agent. We also included diffuse large B-cell lymphoma (DLBCL) patients as a
control group since they did not receive bleomycin during treatment.

2. Materials and Methods
2.1. Patient Datasets

Patients were retrospectively included from 2009 to 2021. We included ten HL patients
who developed DIILD and eight HL patients who did not develop DIILD after several
treatment cycles with bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine,
procarbazine, and prednisolone (BEACCOPP) or ABVD. Additionally, seven DLBCL pa-
tients were included as a control group since they were not treated with bleomycin as an
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oncolytic agent. Clinical data and the '8F-FDG PET/CT scans of the HL patients were
collected at different hospitals (n = 8) in the Netherlands. The ®F-FDG PET/CT scans
and clinical data of the DLBCL patients were collated and harmonized by the HOVON-84
study [20]. All ¥¥F-FDG PET/CT scans were collected and harmonized according to the
European Association of Nuclear Medicine Research Ltd. (EARL) guidelines for multicenter
PET images. The VU Medical Centre ethics review board waived the use of anonymized
clinical data (IRB ID: 2022.072).

Patients were retrospectively included when they received at least two longitudinal
8F-FDG PET/CT scans. The first ®F-FDG PET/CT scan needed to be before treatment
(baseline), and the other scan must have been performed during treatment (interim).
Furthermore, patient data such as patient weight, age, and gender needed to be available.
For HL patients, treatment with either BEACCOPP or ABVD was required. Additionally,
the development of DILLD during interim PET imaging needed to be documented, as
assessed by HRCT scan or clinical data such as respiratory information. All scans were
subject to strict quality control (QC) requirements. Scans passed QC when (1) whole-body
I8F_-FDG PET/CT scans were complete, (2) essential Digital Imaging and Communications
in Medicine (DICOM) information was available, (3) plasma glucose levels were within the
ranges suggested by the EARL guidelines [18], and (4) the liver SUVmean was within the
suggested range (1.3-3.0) measured using a volume of interest (VOI) with a diameter of
3 cm placed in the (unaffected) right upper lobe of the liver [18]. Patients were excluded
if their scans did not meet QC requirements or if they experienced active infectious lung
injury unrelated to DIILD. Moreover, DLBCL patients treated with bleomycin between
baseline and interim imaging were excluded as well.

2.2. BF-FDG PET/CT Analysis

All scans were performed and reconstructed according to the EARL guidelines to ob-
tain images adhering to the European guidelines for multicenter PET image harmonization
and quantification [21]. In short, all patients fasted for 4-6 h before tracer administration,
had plasma glucose levels < 7.0 mmol/L, and received 3.0 MBq/kg radioactive tracer
through an intravenous bolus injection. Low-dose CT (LDCT) scans were used to correct
the PET images for attenuation.

The lungs were segmented with the in-house-build semi-automated analysis software
tool ACCURATE (developed in IDL version 8.4 (Harris Geospatial Solutions, Bloomfield,
NJ, USA)) [22]. The lungs were initially automatically segmented based on the LDCT
images using a convolutional neural network (CNN). All segmentations were eroded to
minimize the overlap of the VOI with other organs or blood vessels when applying the VOI
to the PET images. The VOIs were then applied to the PET images and visually inspected
by a (+5-year experienced) nuclear medicine physician. Manual adjustments were made
if tumor tissue or other organs were included in the VOI. Figure 1 illustrates the lung
VOI after adjustment in the LDCT fused with the PET image (Figure 1a) and in the PET
image (Figure 1b).

J [ ‘

Figure 1. The lung volume of interest (VOI) applied to the (a) CT fused with the PET and (b) PET image.
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The delineations from the LDCT scans were used to assess differences in Hounsfield
Units (HUs). The mean activity from the IBE-FDG PET delineations was extracted to
assess metabolic changes by examining the mean activity in the VOI normalized by body
weight (SUVmean).

2.3. PET Radiomics

Image biomarker standardization initiative (IBSI)-compliant PET radiomics features
were extracted for all '8F-FDG PET images using the RaCaT software (version 1.27) [23]. To
avoid multicollinearity, we first assessed the PET radiomics features for strong correlations
(r < —0.7 or r > 0.7) [24] with SUVmean, volume, or other features within HL patients
who developed DIILD. Features strongly correlating with either SUVmean or volume
were excluded from further analysis. The remaining features were then tested for strong
correlations (r < —0.7 or r > 0.7) with each other. For the strong correlating features,
those with the strongest association with all other features were excluded from further
analyses (i.e., pairwise elimination). The final set of features that did not show a strong
correlation with SUVmean, volume, or each other was used to assess the feasibility of
radiomics in identifying DIILD in patients treated with bleomycin. These features along
with SUVmean and volume were employed in an RF classifier, within the ‘/RandomForest’
R package (version 4.7.1.1), to explore the potential of PET radiomics combined with
machine learning for classifying and predicting DIILD. We analyzed the interim scans of
HL patients who developed DIILD versus those who did not and evaluated the accuracy
with which the features classified DIILD. The baseline scans examined how well the features
could predict DIILD.

The mean decrease in the Gini index assessed the importance of the features. The RF
classifiers were optimized for the number of trees (ntree) and the number of input vari-
ables (mtry), with cross-validation performed using the Leave-One-Out Cross-Validation
(LOOCYV) method in the ‘caret’ R package to provide an unbiased estimate of model per-
formance. From the best model, the out-of-bag (OOB) predictions of the probability of
developing DIILD were obtained for each patient. Subsequently, the Euclidean distance ma-
trix based on the OOB prediction probabilities, which represents the dissimilarity between
patients based on their probability of developing DIILD, was calculated. The dissimilarity
between patients was visualized in a reduced dimensional space (2D) with classic multidi-
mensional scaling (MDS). Therefore, the Euclidean distance matrix was subjected to double
centering to obtain the eigendecomposition. The top two dimensions (MDS1 and MDS2),
corresponding to the two largest eigenvalues, were extracted to create a 2D representation
of the data. This reduction aims to preserve the pairwise distances between patients as
accurately as possible.

2.4. Statistical Analysis

Statistical analyses and data visualization were performed in R (version 4.2.2). Lon-
gitudinal differences in HUs and SUVmean (between baseline and interim scans) were
described using the median and interquartile ranges (IQRs) and represented with line plots.
Within the three groups, differences in HUs and SUVmean over time were represented
with Tukey’s boxplots. Statistical differences over time within the groups were tested for
significance (p < 0.050) with a Wilcoxon signed-rank test. The Wilcoxon signed-rank test
was used to test the remaining PET radiomics features for significance (p < 0.050) between
baseline and interim values within HL patients who developed DIILD. The features that
showed significant longitudinal differences between baseline and interim scans in HL
patients who developed DIILD were also evaluated for significant differences between
baseline and interim values in HL patients who did not develop DIILD and in DLBCL
patients. Additionally, the remaining PET radiomics features together with SUVmean
and volume were used in an RF classifier to examine the feasibility of PET radiomics
features in classifying and predicting DIILD in HL patients. All tests were performed
non-parametrically due to the small sample size.
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3. Results
3.1. Patient Demographics

Initially, 18 HL patients and 7 DLBCL patients were included. After visual inspection,
two DLBCL patients were excluded from further analysis due to active infectious lung
injury during the interim F-FDG PET/CT scan. This resulted in 18 HL patients (44.4% fe-
male) and 5 DLBCL patients (40.0% female). Ten (55.6%) HL patients developed DIILD
(30.0% female) during treatment. There were no significant group differences in age and
gender (p > 0.050). Patient demographics are summarized in Table 1.

Table 1. Patient demographics.

Characteristics HL with DIILD (n = 10) HL Without DIILD (n = 8) DLBCL (n = 5)
Gender (F/M), number 3/7 5/3 2/3
Age (years), mean (range) 48.4 (23-69) 31.8 (18-46) 57.8 (30-68)
Injected dose (MBq), mean (SD)
Baseline 190.8 (27.6) 274.2 (72.8) 233.3 (57.6)
Interim 195.4 (38.2) 268.3 (52.1) 243.6 (34.6)
Weight (kg), mean (SD)
Baseline 66.7 (11.2) 78.8 (17.5) 73.8 (11.5)
Interim 66.3 (11.3) 78.9 (14.8) 70.6 (10.2)
Uptake time (min), mean (range)
Baseline 70.8 (50-107) 66.3 (26-120) 68.7 (64-102)
Interim 71.9 (50-104) 68.7 (49-94) 65.2 (59-82)
Interval scans (week), mean (range) 22.6 (13-39) 13.8 (8-21) 10.2 (7-20)

Abbreviations: DIILD, drug-induced interstitial lung disease; DLBCL, diffuse large B-cell lymphoma; E female;
HL, Hodgkin’s lymphoma; kg, kilogram; M, male; MBq, mega Becquerel; min, minutes; 1, number; SD, standard deviation.

3.2. CT Analysis Using Hounsfield Units

Differences in HUs of the lungs over time are illustrated in Figure 2a,b. Individual
differences over time are illustrated in Figure 2a, and group differences over time are
illustrated in Figure 2b. Within every group, HUs decreased, increased, or stayed stable
over time (Figure 2a). There were no significant differences in HUs between baseline and
interim LDCT scans for all three patient groups (p > 0.050). HL patients who developed
DIILD (median —762.53 and IQR 48.18 at baseline, median —741.96 and IQR 32.60 at
interim) showed a median HU decrease of 2.7% between baseline and interim LDCT scans.
HL patients without DIILD (median —738.94 and IQR 54.73 at baseline, median —719.71
and IQR 36.92 at interim) had a median HU decrease of 2.6%, and DLBCL patients (median
—768.40 and IQR 40.91 at baseline, median —774.67 and IQR 32.07 at baseline) showed a
median HU increase of 0.8% between the baseline and interim scans.

3.3. B8F-FDG PET Standardized Uptake Value

Differences in lung SUVmean are illustrated in Figure 3a,b. Figure 3a illustrates
individual differences, and group differences over time are illustrated in Figure 3b. The
SUVmean increased over time in almost all HL patients who developed DIILD (Figure 3a).
This was not observed in HL patients who did not develop DIILD and in DLBCL patients
since the SUVmean of these patients increased, decreased, or stayed stable over time. HL
patients who developed DIILD showed a significantly higher lung SUVmean at the interim
I8F-FDG PET scan compared with baseline '®F-FDG PET scans (p = 0.012, median 0.42
and IQR 0.17 at baseline, median 0.58 and IQR 0.12 at interim). There were no significant
differences in lung SUVmean between baseline and interim '8F-FDG PET scans for HL
patients who did not develop DIILD (p > 0.050, median 0.62 and IQR 0.19 at baseline,
median 0.63 and IQR 0.20 at interim) and DLBCL patients (p > 0.050, median 0.40 and IQR
0.18 at baseline, median 0.41 and IQR 0.02 at interim). The median increase in the lung
SUVmean between baseline and interim '®F-FDG PET scans was 37.4% for HL patients
who developed DIILD, 2.4% for the HL patients who did not develop DIILD, and 4.6% for
DLBCL patients.
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Figure 2. Differences in Hounsfield Units (HUs) between baseline and interim LDCT scans for
Hodgkin’s lymphoma (HL) patients who developed drug-induced interstitial lung disease (DIILD),
HL patients who did not develop DIILD, and patients with diffuse large B-cell lymphoma (DLBCL)
(a) for each patient individually and (b) for each patient group. The central line of the box represents
the median, and the edges are the 25th and 75th percentiles. The extreme data points which are not
considered outliers are illustrated with the black dots.
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Figure 3. Differences in lung SUVmean between baseline and interim ®F-FDG PET scans for
Hodgkin’s lymphoma (HL) patients who developed drug-induced interstitial lung disease (DIILD),
HL patients who did not develop DIILD, and patients with diffuse large B-cell lymphoma (DLBCL)
(a) for each patient individually and (b) for each patient group. The central line of the box represents
the median, and the edges are the 25th and 75th percentiles. The extreme data points which are not
considered outliers are illustrated with the black dots.

3.4. 8F-FDG PET Radiomics and Machine Learning Analysis

Eight radiomics features (90th intensity percentile, D max bulk, elongation, coefficient
of variance, coarseness, small zone emphasis, texture strength, and zone distance entropy)
did not correlate significantly with SUVmean, volume, or each other within HL who
developed DIILD. Even though all features showed an absolute correlation smaller than 0.7,
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the 90th intensity percentile feature was still excluded to avoid multicollinearity due
to its high correlations with texture strength (r = 0.692) and SUVmean (r = 0.647). The
seven remaining features together with SUVmean and volume were used in the RF classifier.
After model optimization and validation with the LOOCV method, the best RF classifier
based on interim values of HL patients who developed DIILD and HL patients who did
not develop DIILD contained 50 trees with seven input variables. The accuracy of the best
model was 72.22% (OOB error rate: 27.78%) with texture strength as the most important
feature. Feature importance based on the mean decrease in the Gini index is summarized in
Table 2. The predicted probabilities of the development of DIILD are illustrated in Figure 4a
with an MDS plot. The data points in the plot are colored based on the actual occurrence of
DIILD and patients with similar predictions are clustered together. The MDS plot shows
that there is a clear clustering between HL patients who developed DIILD and patients who
did not. The baseline values of HL patients who will develop DIILD and HL patients who
will not were used to predict the development of DIILD before treatment with bleomycin.
After cross-validation, the best RF classifier based on baseline values contained 50 trees
with two input variables. The accuracy of the best model was 50% (OOB error rate: 50%)
with zone distance entropy as the most important feature. Feature importance based on
the mean decrease in the Gini index is summarized in Table 2. The predicted probabilities
of the development of DIILD based on baseline values are illustrated in Figure 4b with
an MDS plot. The data points in the plot are colored based on the actual development of
DIILD, and patients with similar predictions are clustered together. Figure 4b shows a clear
clustering between HL patients who will develop DIILD and HL patients who will not
after several cycles of BEACOPP or ABVD.

Table 2. Feature importance based on the mean decrease in the Gini index.

Feature Mean Decrease in Gini Mean Decrease in Gini
Index (Interim) Index (Baseline)

Zone distance entropy 0.287 1.373
Texture strength 2.703 1.351
SUVmean 0.412 1.049
Volume 0.797 0.971
D max Bulk 0.715 0.844
Elongation 0.566 0.730
Coarseness 0.822 0.726
Coefficient of variation 0.488 0.603
Small zone emphasis 1.341 0.590

After the seven features were tested for significance between baseline and interim
values within HL patients who developed DIILD, two features (texture strength and zone
distance entropy) exhibited a significant longitudinal increase (p = 0.009 and p = 0.019,
respectively). The median increase over time was 101.6% (median 0.0025 and IQR 0.0011
at baseline, median 0.0051 and IQR 0.0027 at interim) for the texture strength feature and
18.5% for zone distance entropy (median 1.72 and IQR 0.36 at baseline, median 2.04 and
IOR 0.34 at interim). There were no significant differences between baseline and interim
PET scans for the texture strength and zone distance entropy features within HL patients
who did not develop DIILD and DLBCL patients (p > 0.050). The median increase over time
for texture strength was 26.0% (median 0.0035 and IQR 0.0020 at baseline, median 0.0026
and IQR 0.0015 at interim) in HL patients who did not develop DIILD and 34.2% (median
0.0016 and IQR 0.0037 at baseline, median 0.0010 and IQR 0.0007 at interim) for DLBCL
patients. The median increase over time for zone distance entropy was 6.1% (median 1.89
and IQR 0.34 at baseline, median 2.01 and IQR 0.45 at interim) for HL patients who did not
develop DIILD and 4.1% (median 1.91 and IQR 0.19 at baseline, median 1.83 and IQR 0.32 at
interim) for DLBCL patients. The differences in texture strength and zone distance entropy
over time for all three patient groups are illustrated in Figures 5a and 5b, respectively.
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Figure 4. Multidimensional scaling (MDS) plot derived from the Random Forest out-of-bag pre-
dictions from the (a) interim and (b) baseline samples of Hodgkin’s lymphoma (HL) patients who
developed drug-induced interstitial lung disease (DIILD) and HL patients who did not develop
DIILD. The data are represented in two dimensions and capture the primary source of variance in the
predicted probabilities of developing DIILD. Each data point corresponds to an individual patient,
and the color indicates the actual occurrence of DIILD.
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Figure 5. (a) Texture strength and (b) zone distance entropy in the lungs at baseline and interim
I8E_FDG PET scans for Hodgkin’s lymphoma (HL) patients who developed drug-induced interstitial
lung disease (DIILD), HL patients who did not develop DIILD, and patients with diffuse large B-cell
lymphoma (DLBCL). The central line of the box represents the median, and the edges are the 25th
and 75th percentiles. The extreme data points which are not considered outliers are illustrated with
the black dots.

4. Discussion

In this study, we aimed to examine the feasibility of standard ¥F-FDG PET/CT metrics
and '8F-FDG PET radiomics features, combined with machine learning, to potentially
classify and predict bleomycin-induced ILD in HL patients. While our data did not reveal
longitudinal differences in HUs in the lungs across all three patient groups, they identified
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that conventional SUV metrics, along with some advanced regional '®F-FDG PET radiomics
features, may effectively indicate DIILD. Furthermore, machine learning approaches using
advanced PET radiomics exhibit promise in classifying DIILD in HL patients treated
with bleomycin.

Consistent with previous case studies [10-14], our findings indicated no structural
differences over time based on LDCT scans. The inability to distinguish DIILD from
LDCT scans reinforces the notion that LDCT scans cannot replace HDCT scans in detecting
DIILD or even predicting the occurrence of DIILD when combining HDCT scans with
Al [15]. Nevertheless, we did find increased metabolic lung activity, as reflected by a
median increase of 37.4% in standard SUV metrics from baseline to interim '®F-FDG PET
scans in HL patients who developed DIILD. In contrast, no significant metabolic changes
were noted in HL patients who did not develop DIILD and DLBCL patients, aligning
with previous studies [10-14,16]. Moreover, the regional I8F-FDG PET radiomics features
texture strength and zone distance entropy may serve as effective metabolic classifiers to
determine DIILD. Our preliminary results showed significant increases in texture strength
(median increase of 101.6%) and zone distance entropy (median increase of 18.5%) over
time in HL patients who developed DIILD, while these features remained stable in HL
patients who did not develop DIILD and DLBCL patients. Differences in zone distance
entropy were expected since this metric reflects the inhomogeneity of the lungs [17,25].
The inhomogeneity increases after the development of DIILD, as interim PET scans mostly
showed inflammation in the lower part of the lungs during active DIILD. Texture strength,
representing spatial changes in voxel intensity, belongs to second-order histograms with
Neighborhood Grey-Tone Difference Matrices (NGTDMs) [17,25].

Our preliminary results suggest that combining advanced radiomics features with
machine learning techniques can potentially classify DIILD in HL patients. The RF classifier
based on interim values achieved a classification accuracy of 72%, and the MDS plot based
on the Euclidian distance of the OOB prediction probabilities showed a clear distinction
between patients who developed DIILD and those who did not. However, model accuracy
dropped to 50% when predicting the development of DIILD in HL patients based on
baseline PET radiomics values. Nonetheless, the MDS plot based on the baseline values
showed a clear distinction between HL patients who will develop DIILD and those who
will not, indicating that there might be a potential utility in predicting DIILD in HL patients
treated with bleomycin. This is important since the use of baseline and interim 8F-FDG
PET/CT scans in HL patients is becoming more common in clinical practice [26]. Utilizing
these '8F-FDG PET/CT scans for the detection and prediction of DIILD might help in
earlier detection.

To our knowledge, this is the first study to explore the potential of advanced PET
radiomics features in classifying bleomycin-induced ILD. However, it should be empha-
sized that this is an explorative pilot study with preliminary results based on limited data.
The small sample size limits our results. Several limitations were identified, including
the small sample size, which restricted our ability to fully evaluate the feasibility of CT
and PET features in classifying and predicting the occurrence of DIILD. A larger cohort
is necessary for robust validation of our results. Additionally, the current RF classifier
was trained exclusively on HL patients who either developed or did not develop DIILD
during bleomycin treatment. As a result, external validation is warranted to assess the
potential of the currently selected radiomics features combined with machine learning in
classifying or predicting DIILD. The small sample size precluded statistical group com-
parisons. Although visual interpretation suggested possible group differences, it remains
uncertain whether these differences are genuinely associated with an increased risk of
developing drug-induced interstitial lung disease (DIILD) or are coincidental, potentially
influenced by confounding factors such as age, smoking status, renal function, or the
specific chemotherapy combination. Other limitations include variations in uptake times.
Sometimes, the uptake times exceeded the recommendations of the EARL guidelines [21],
which could influence the semi-quantitative analysis. Replicating the results with an uptake
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time between 55 and 75 min is therefore crucial [21]. Finally, we observed discrepancies
in the intervals between baseline and interim scans among the groups since HL patients
who developed DIILD had a longer mean interval compared to those who did not and the
DLBCL cohort.

5. Conclusions

In conclusion, our exploratory pilot study assessed the feasibility of '®F-FDG PET/CT
and '8F-FDG PET radiomics combined with machine learning to detect and predict
bleomycin-induced ILD in HL patients. Our results underscore the potential for some
regional '8F-FDG PET radiomics features, with and without machine learning, as valu-
able tools for identifying DIILD in HL patients treated with bleomycin. However, further
research with a larger sample size, including an external validation cohort, is crucial to
validate our findings and to establish '®F-FDG PET imaging as a reliable biomarker for
DIILD detection and prediction. In addition, it is essential to extend this research to other
patient groups receiving bleomycin beyond HL patients. While our study has limitations,
it is noteworthy as the first longitudinal investigation into advanced PET radiomics as
potential biomarkers for early DIILD detection. Early identification of DIILD is critical
to help patients switch earlier to another antitumor agent to prevent the development of
DIILD or life-threatening interstitial pulmonary fibrosis.
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