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Abstract: Background: Cephalometric analysis is important in diagnosing and planning treatments for
patients, traditionally relying on 2D cephalometric radiographs. With advancements in 3D imaging,
automated landmark detection using deep learning has gained prominence. However, 3D imaging
introduces challenges due to increased network complexity and computational demands. This study
proposes a multi-scale 3D CNN-based approach utilizing direct regression to improve the accuracy
of maxillofacial landmark detection. Methods: The method employs a coarse-to-fine framework, first
identifying landmarks in a global context and then refining their positions using localized 3D patches.
A clinical dataset of 150 CT scans from maxillofacial surgery patients, annotated with 30 anatomical
landmarks, was used for training and evaluation. Results: The proposed method achieved an average
RMSE of 2.238 mm, outperforming conventional 3D CNN architectures. The approach demonstrated
consistent detection without failure cases. Conclusions: Our multi-scale-based 3D CNN framework
provides a reliable method for automated landmark detection in maxillofacial CT images, showing
potential for other clinical applications.

Keywords: cephalometric landmark detection; 3D convolutional neural network (CNN); cephalometric
analysis

1. Introduction

Cephalometric analysis involves the quantitative measurements of anatomical land-
marks in the craniofacial region and plays an important role in patient diagnosis and
surgical planning. Traditionally, cephalometric analysis has been conducted with 2D
cephalometric radiographs using lateral view analysis. However, with advancements in
computer vision technology, 3D imaging techniques such as computed tomography (CT)
and cone beam computed tomography (CBCT) are being applied, leading to research on
3D cephalometric analysis.

Cephalometric analysis is conducted by detecting craniofacial anatomical landmarks
and performing linear and angular measurements between the landmarks. In the process
of landmark analysis, the accurate detection of anatomical landmarks is an essential step
for accurate analysis. However, conventional landmark detection involves time-consuming
manual measurement by medical professionals, which are prone to measurement vari-
ability [1,2]. To address these issues, several studies reported an automated detection of
anatomical landmarks using deep learning technologies, which improved the accuracy of
cephalometric landmark detection.
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Automatic 2D cephalometric measurement focuses on landmark detection in lateral
radiographs, with various methods developed to enhance accuracy. Yao et al. applied
self-supervised learning with a multi-task U-Net, leveraging cascade cosine similarity
maps and pseudo-labels [1]. Chen et al. developed a semi-supervised approach using
shape-regulated self-training with U-Net and the spatial configuration network (SCN) [2].
Zhu et al. proposed a universal anatomical landmark detection model consisting of a local
network and a global network [3]. Yao et al. proposed a cephalometric landmark detection
network comprising a global module and a local module based on a U-Net architecture [4].

While 2D cephalograms remain commonly used in medical practice, which contains
clear limitations, such as the superimposition of anatomical structures, 3D cephalometric
imaging (e.g., CT, CBCT) provides detailed access to complex craniofacial and maxillo-
mandibular structures, enabling precise analysis. However, the increased dimensionality
of 3D imaging introduces more trainable parameters and network complexity in deep
learning-based approaches. Consequently, training with 3D images presents challenges,
and various approaches have been developed to address these difficulties in 3D cephalo-
metric landmark detection.

A method for automatic 3D landmark detection is the 2.5-dimensional approach,
which involves learning slices of 3D images. Ma et al. proposed a patch-based deep
learning model that uses 2D convolution on extracted patches to achieve 3D landmark
extraction [5]. Dot et al. developed a model incorporating a coarse-to-fine structure into
the SCN [6]. This approach detects landmark regions of interest (ROIs) through coarse
detection, and then performs fine detection using heatmaps within each ROI to extract
3D landmarks.

A widely used approach for 3D landmark detection is to localize landmark coordinates
using regression methods with the 3D convolutional filter [7]. Zheng et al. proposed
a method combining 3D CNNs with a bootstrapped detector, leveraging Haar wavelet
features for landmark detection [8]. Yun et al. proposed a coarse-to-fine structure integrated
with a variational auto-encoder (VAE) to detect 93 3D landmarks [9]. Liu et al. reported a
multi-stage CNN model that employs a 3D U-Net for cephalometric landmark detection
and bone segmentation, treating these tasks as voxel classification [10]. Nishimoto et al.
proposed a multi-phased deep regression model that uses progressively smaller cropped
voxels to achieve refined localization [11].

Recent studies have introduced 3D detection methods to simultaneously address
3D localization and classification problems. These studies commonly employ two-stage
networks, which include a region proposal network (RPN) and Bounding Box Recognition,
to identify regions containing landmarks and estimate the coordinates. Lang et al. reported
a method for automatic landmark detection applying a 3D R-CNN [12]. The approach
applied a 3D Mask R-CNN with a coarse-to-fine structure considering three stages of low-
and high-resolution images. A root/leaf structured loss function was introduced to group
anatomical landmarks by dividing them into nine geometric regions, and the method was
validated using CBCT images from 49 patients. Chen et al. proposed a landmark detection
method using 3D Faster R-CNN and 3D U-Net [13]. By applying a coarse-to-fine structure,
the method first identifies approximate locations within CBCT images and then uses a
multi-scale U-Net to detect landmark coordinates. Heatmap regression was used to train
the U-Net, and the proposed method was validated using 80 sets of clinical CBCT data.
Sahlsten et al. implemented a deep learning method using a stacked hourglass network to
automate the identification of 3D cephalometric landmarks [14]. This single-stage model,
built on a stacked hourglass network architecture, incorporated 3D convolutional layers
optimized for computational efficiency. Model performance was evaluated based on the
mean Euclidean distance and success detection rate across 46 cephalometric landmarks,
using a dataset of 309 CBCT scans.

Previous studies have proposed methods for automatically detecting anatomical land-
marks in 3D medical images. These methods are based on training 3D convolutional filters
in deep learning and aim to improve accuracy through the application of auto-encoders,
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detection, segmentation, or stacked hourglass network architectures. Studies applying
RCNN-type networks have shown relatively high accuracy by incorporating region pro-
posal networks or heatmap regression. This study employed a stacked hourglass network
architecture that achieved an accuracy of less than 2 mm. However, these approaches can
still result in failure cases when detecting cephalometric anatomical landmarks, which
may limit their applicability in clinical settings. In contrast, direct regression methods can
produce trained landmarks without failure cases, but the accuracy required for clinical
application has not yet been reported.

In this paper, a method for 3D cephalometric landmark detection by applying a
coarse-to-fine structure into direct regression is presented. The proposed method employs
multi-scale direct regression with a 3D CNN to extract 3D local patches for each landmark
from the global maxillofacial region, followed by refining the landmark coordinates within
local patches. The optimal base network was identified through performance comparisons
of previous 3D CNN architectures for direct regression, and the proposed method was
validated using 150 clinical datasets. The contributions of this study are summarized
as follows:

(1) Performance comparison of 3D CNN architectures for landmark direct regression;
(2) Development of an automatic cephalometric landmark detection network using multi-

scale direct regression;
(3) Validation using 150 sets of maxillofacial clinical data (CT).

2. Methods
2.1. Method Overview

A multi-scale cephalometric landmark detection method based on direct regression
with 3D CNN aims to enhance detection accuracy through a hierarchical learning strategy
on multi-scale volumes. This method includes coarse detection to extract the class and
coordinates of all landmarks from the global input volume, 3D region of interest (ROI)
processing to transform these results into local volumes, and fine localization to precisely
determine the landmark coordinate within a local volume, as illustrated in Figure 1.

Figure 1. Diagram of multi-scale cephalometric landmark detection architecture. Stage 1 involves
coarse detection to identify coordinates and classes from the entire input volume, followed by
generating local volumes through 3D region of interest (ROI) processing. Stage 2 focuses on fine
localization using these local volumes and classes.

Stage 1 involves coarse detection to determine the coordinates and classes of landmarks
across the entire input volume, resulting in the identification of classes and coordinates
for 30 anatomical landmarks. Subsequently, 3D ROI processing is performed to generate
local volumes corresponding to each landmark. Stage 2 focuses on fine localization, using
the local volumes and classes obtained from Stage 1. Sub-sampled local volumes at a
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scale of 64 × 64 × 64 with the corresponding class are used to precisely localize landmark
coordinates at the local scale. Further details on the networks employed in each stage are
discussed in Section 2.5.

2.2. Data Description

CT or CBCT imaging is a widely accepted modality for modern maxillofacial diagno-
sis and treatment planning. Clinical maxillofacial CT images from 150 patients between
1 January 2010 and 31 July 2022 were collected retrospectively at Samsung Medical Center,
with approval from the Institutional Review Board of the Department of Oral and Max-
illofacial Surgery, Samsung Medical Center, Seoul, Korea (SMC 2022-08-091-001). Data
from patients with severe diseases, those still in growth, and those with craniofacial anoma-
lies were excluded to ensure the dataset was suitable for normal oral and maxillofacial
diagnosis and treatment planning.

Collected data were anonymized and processed to create the medical imaging dataset.
The dataset comprised only the 3D reconstructed volume data of the skull, excluding
facial soft tissues. Volumes were generated by segmenting the maxillofacial skull regions,
and all patient metadata were removed for anonymization. For supervised learning, 3D
anatomical landmark data were established as ground truths. The ground truth consisted
of 30 anatomical landmarks: (11apex, 13, 16, 21apex, 23, 26, A_point, ANS, B, Ba, CoL, CoR,
Gn, GoL, GoR, L1, Lt_FZS, Menton, Na, Nasaltip, OrL, OrR, PNS, PoL, PoR, Pog, Rt_FZS,
S, Sp, U1). Clinical experts at Samsung Medical Center manually identified 30 anatomical
landmarks used in maxillofacial surgical planning, and 3D coordinates for these landmarks
were annotated on each anonymized maxillofacial volume.

2.3. Data Preprocessing

Data preprocessing is required to convert maxillofacial volumetric data (or seg-
mented mesh data) into a normalized format suitable for 3D CNN application. In prior
studies [7–13], voxel data have been used as the input format for the training of inference
of 3D CNNs. In this study, maxillofacial data were provided in mesh format (e.g., STL)
due to the internal policy for personal medical information protection. Consequently, a
preprocessing algorithm was developed and applied to prepare the maxillofacial volume
data for CNN training, as shown in Figure 2.

Figure 2. Steps for data preprocessing to convert volumetric CT data into normalized voxel data.

The preprocessing algorithm was developed using Open3D [15] and the Visualization
Toolkit [16] open-source libraries. To standardize the coordinate system for the maxillofacial
volumetric data, the origin was set at the front bottom left point of a bounding cube
encompassing the 3D data. To expedite the voxelization process, uniform sampling was
applied to select 50,000 points. The sampled volume was voxelized using the Open3D
library, and the data were normalized to the scale of 128 × 128 × 128 voxels.

2.4. Three-Dimensional CNN Architectures

Convolutional Neural Networks (CNNs) are deep learning architectures optimized for
feature extraction and regression in spatially structured data, such as images. Consisting
of multiple layers (e.g., convolutional, pooling, Fully Connected Layers), CNNs automati-
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cally extract and learn features from low to high levels, making them effective for object
recognition and classification.

Three-dimensional CNNs extend conventional CNNs to handle three-dimensional
data. By using 3D Convolution and 3D pooling, these networks can learn from additional
spatial or temporal dimensions and are applied in areas like robotics, autonomous driving,
and medical imaging (e.g., CT, MRI). Three-dimensional CNNs have also been employed
in diagnostics, particularly for predicting protein–ligand interactions [17–19] and assessing
the binding affinity between RNA and small molecules [20]. Notably, 3D CNNs have
shown promising results in medical imaging tasks such as tumor detection, classification,
and tissue segmentation using 3D images such as CT, MRI, and PET [21–24].

In this study, 3D CNNs were applied to solve detection tasks in 3D maxillofacial
images via voxel-wise regression. Three-dimensional CNN architectures, including ResNet,
DenseNet, Inception, and InceptionResNet, as shown in Figure 3, were trained on 3D
maxillofacial images to assess landmark detection accuracy. We trained and evaluated
each network using the maxillofacial clinical dataset and compared the landmark detection
accuracy to select the optimal network for 3D maxillofacial landmark detection.

Figure 3. Convolutional Neural Network (CNN) architectures including ResNet, DenseNet, Inception,
and InceptionResNet.

2.4.1. ResNet Architecture

ResNet is a model that introduced residual learning to overcome the degradation of
learning performance associated with increased network depth [25]. Typically, deepening
a neural network to solve complex problems leads to a significant increase in trainable
parameters, causing the gradient vanishing problem. Residual learning addresses this by
having each layer learn a residual function F(x) = H(x) − x instead of the direct mapping
H(x). By approximating the residuals to zero, optimization becomes easier, allowing identity
mapping without adding parameters or computational complexity. This approach mitigates
the gradient vanishing issue, enabling the training of deeper networks. ResNet is available
in configurations with various depths, such as 50, 101, or 152 layers, and its effectiveness
has been validated using datasets like ImageNet and CIFAR-10.

2.4.2. DenseNet Architecture

DenseNet (Densely Connected Convolutional Networks) is a CNN architecture de-
signed to maximize feature map reuse by connecting all layers in a feed-forward fashion [26].
In DenseNet, each layer receives input from all preceding layers and passes its output to all
subsequent layers, creating a dense connectivity pattern within dense blocks. This approach
enhances feature integration and reuse, differing from ResNet by connecting features rather
than summing them. A network with L layers will have L (L + 1)/2 direct connections. To
handle the increasing number of feature maps, the growth rate k is set as a hyper-parameter,
typically k = 12, allowing for narrower layers and fewer parameters. Dense blocks reduce
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network complexity and alleviate gradient vanishing through feature reuse. By stacking
dense blocks, structural expansion is possible, leading to improved performance as net-
work depth increases. The effectiveness of the architecture has been validated using object
recognition benchmarks such as CIFAR-10, CIFAR-100, SVHN, and ImageNet.

2.4.3. Inception Architecture

Inception networks aim for high performance and computational efficiency by in-
corporating dimensional reduction and parallel structures [27]. The key element of the
Inception architecture is the Inception module, which simultaneously utilizes multiple
filter sizes, such as 1 × 1, 3 × 3, and 5 × 5 convolution layers, combined with pooling
layers. This design allows for balanced expansion in both depth and width, facilitating
the extraction and reuse of diverse features through parallel convolutional filters. The
use of 1 × 1 convolutions within these parallel structures also aids in dimensional reduc-
tion, enhancing computational efficiency. Inception-v3 introduced additional optimization
techniques based on the Inception module. By stacking 3 × 3 convolution layers, as in
VGGNet [28], an effective 7 × 7 convolution layer was created, further improving compu-
tational efficiency. Label smoothing was also employed to reduce overfitting and enhance
generalization performance. Inception networks have shown high performance on large-
scale image classification benchmarks like ImageNet, demonstrating their versatility across
various computer vision tasks.

2.4.4. InceptionResNet Architecture

InceptionResNet is a network model that combines the Inception module, which uses
multiple filter sizes simultaneously, with identity mapping via shortcut connections [29].
The main feature of the InceptionResNet architecture is the addition of residual connections
following the Inception module, which uses parallel combinations of filters. This setup
allows the network to perform residual learning on the Inception module’s parallel struc-
tures. By adjusting the activation scaling value of the residual connections, the model’s
training stability is improved, alleviating gradient vanishing and increasing the learning
speed. InceptionResNet has demonstrated high performance on the ImageNet dataset and
has shown that applying residual connections can significantly enhance training speed.

2.5. Proposed Architecture

In order to achieve multi-scale 3D cephalometric landmark detection based on direct
regression with the 3D CNN, we sought to experimentally identify the suitable base
architecture for landmark detection from existing 3D CNN structures. A comparative
experiment was conducted to identify the optimal CNN architecture for cephalometric
landmark detection, with detailed results provided in Section 3. Among the existing CNN
architectures, the 169-layer DenseNet demonstrated the lowest error in landmark detection
experiments using the maxillofacial clinical dataset. Consequently, DenseNet169 was
selected as the base architecture for developing the multi-scale CNN structure in this study.

For the implementation of multi-scale direct regression, a coarse detection architecture
was designed to detect the coordinates and classes of all landmarks across the entire
volume, while a fine localization architecture was developed to precisely localize individual
landmark coordinates within local regions, as depicted in Figures 4 and 5. This study used
30 landmarks for training and inference. In the coarse detection, all landmarks were
regressed simultaneously to generate 30 local volumes and classes. The fine localization
then used these local volumes and classes to localize landmark coordinates at a local scale.
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Figure 4. DenseNet169-based multi-output learning model for coarse detection.

Figure 5. DenseNet169-based multi-input learning model for fine localization.

2.5.1. Coarse Detection

Coarse detection utilizes a multi-output learning model to extract the coordinates
and classes of all 30 landmarks from a scale of 128 × 128 × 128 input volume. The model
is designed to learn the coordinates and classes of the 30 landmarks simultaneously. To
address the regression problem of landmark coordinates, mean absolute error (MAE) loss
and mean squared error (MSE) metrics are employed. For classifying landmark classes,
binary cross-entropy loss and binary accuracy metrics are used. The loss weights for the
multi-output model are set to 0.9 for regression and 0.1 for classification to ensure balanced
learning for both outputs. With this network configuration, the coarse detection structure
processes a scale of 128 × 128 × 128 input volume and outputs the 30 × 3 coordinates and
30 × 30 classes for the 30 landmarks.

2.5.2. Three-Dimensional Region of Interest (ROI) Processing

Coarse detection provides the coordinates of 30 anatomical landmarks and their
corresponding classes from the maxillofacial image. In this study, local patches were
generated for multi-scale learning based on the coarse detection results by creating 3D ROIs
using the inferred landmark coordinates. To create these 3D ROIs, each of the 30 landmarks
identified in the 128 × 128 × 128 input volume was used as a central coordinate. A local
volume with dimensions of 64 along the x, y, and z axes was then defined around each
landmark. As a result, 30 sets of 64 × 64 × 64 local volumes were generated from an input
volume, each centered on a landmark, to support local learning.

2.5.3. Fine Localization

The objective of fine localization is to precisely localize the coordinates of landmarks
within a local volume that includes the landmark, focusing on the local-scale features.
To accomplish this, a multi-input learning model was employed, using the local volume
and corresponding class from the coarse detection results to infer the final landmark
coordinates. The fine localization network uses two inputs—a 64 × 64 × 64 local volume
and the corresponding class—and it outputs 3 × 1 fine coordinates. The local volume is
processed through dense blocks and then concatenated with the class input before the final
dense layer for learning. Since the task is to predict landmark coordinates, a regression
approach was applied using mean absolute error (MAE) as the loss function and mean
squared error (MSE) as the metric. With this network configuration, the fine localization
network utilizes the multi-inputs of local volume and class to localize coordinates within
the local region. The resulting coordinates are initially specific to the local region but are
converted to the global scale to serve as the final landmark coordinates.
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3. Experimental Results

This section presents a comparative experiment with existing 3D CNN architectures
and the performance evaluation of the proposed method. We assessed 3D CNN models,
including ResNet [25], DenseNet [26], Inceptionv3 [27], and Inception-ResNetV2 [29], for
their performance in 3D cephalometric landmark detection. Additionally, we tested the
landmark detection capabilities of the proposed method.

The 150 sets of maxillofacial clinical CT images from Samsung Medical Center, men-
tioned in Section 2.2, were normalized and used for network training and evaluation. Of
the 150 datasets, 120 were used for training and 30 were used for validation and testing.

Each CNN model was trained with the following hyper-parameters: Adam opti-
mizer, MSE loss function, batch size of 41,000 epochs, and a learning rate of 0.001. The
proposed method involved two training phases: coarse (using Adam optimizer, MAE-
BinaryCrossEntropy loss function, batch size of 41,000 epochs, learning rate of 0.001) and
fine (using Adam optimizer, MAE loss function, batch size of 15,1000 epochs, learning rate
of 0.001).

Experiments were conducted on a Precision 7920 workstation (Dell, Round Rock, TX,
USA) with Microsoft Windows 10 Pro for Workstations, an Intel Xeon Gold 5218R CPU,
and an NVIDIA RTX A6000 GPU, using Python 3.9.16, Keras 2.10.0, Open3D 0.17.0 [15],
and Visualization Toolkit 9.2.6 [16].

Table 1 compares the network parameters, accuracy, and inference time for max-
illofacial landmark detection. Accuracy is measured as the mean and variance of the
root-mean-square error (RMSE) between network predictions and the ground truth. Pa-
rameters indicate the number of trainable parameters, and times represent the average
inference time per prediction. Regarding the accuracy of existing CNN architectures,
Inception-ResNetV2 had the highest error at 2.978 ± 0.493 mm, while DenseNet169
had the lowest error at 2.464 ± 0.382 mm. The proposed method achieved an error of
2.238 ± 0.364 mm, reducing the error by approximately 0.74 mm compared to Inception-
ResNetV2 and by about 0.226 mm compared to DenseNet169. Table 2 shows the RMSE for
each of the 30 maxillofacial landmarks across different networks. The proposed method
achieved the lowest error of 1.457 ± 0.674 mm for landmark GN and the highest error of
3.038 ± 1.862 mm for landmark GoL.

Table 1. Comparison of trainable parameters, accuracy, and inference time for landmark detection of
the proposed method and existing CNN architectures.

Parameters Accuracy (mm) Time (s)

Inception-ResNetV2 67,647,802 2.978 ± 0.493 0.246
Inceptionv3 34,299,770 2.917 ± 0.501 0.225

ResNet50 46,377,501 2.787 ± 0.545 0.118
ResNet101 85,475,869 2.754 ± 0.473 0.142
ResNet152 117,680,669 2.783 ± 0.490 0.302

DenseNet201 25,732,762 2.505 ± 0.391 0.172
DenseNet121 11,418,522 2.467 ± 0.435 0.232
DenseNet169 18,850,970 2.464 ± 0.382 0.334

DenseNet169 + Coarse-to-fine (Proposed) 39,056,605 2.238 ± 0.364 3.835

Table 2. The accuracy for each of the 30 cephalometric landmark coordinates across the proposed
method and existing CNN architectures.

Inception
ResNetV2 Inceptionv3 ResNet50 ResNet101 ResNet152 DenseNet201 DenseNet121 DenseNet169 Proposed

11apex 2.497 ± 0.922 2.620 ± 1.177 2.302 ± 1.136 2.087 ± 0.956 2.379 ± 1.081 1.959 ± 0.889 2.068 ± 0.873 1.925 ± 0.876 1.815 ± 0.945
13 2.412 ± 1.090 2.473 ± 1.085 2.268 ± 0.936 2.330 ± 0.889 2.450 ± 1.106 2.145 ± 1.098 2.197 ± 0.944 2.153 ± 0.940 2.028 ± 0.913
16 3.221 ± 1.180 3.343 ± 1.270 2.865 ± 1.146 2.823 ± 1.388 3.201 ± 1.463 2.882 ± 1.226 2.956 ± 1.121 2.973 ± 1.247 2.875 ± 1.208

21apex 2.477 ± 0.865 2.506 ± 1.255 2.221 ± 0.931 2.130 ± 0.976 2.475 ± 0.900 1.947 ± 0.776 1.951 ± 0.819 1.838 ± 0.785 1.953 ± 0.731
23 2.748 ± 1.226 3.008 ± 1.524 2.574 ± 1.065 2.572 ± 1.159 2.803 ± 1.265 2.278 ± 1.166 2.345 ± 1.228 2.286 ± 1.129 2.053 ± 1.074
26 3.097 ± 1.147 3.395 ± 1.452 2.996 ± 1.300 2.969 ± 1.271 3.243 ± 1.652 2.886 ± 1.288 2.986 ± 1.192 2.978 ± 1.357 2.900 ± 1.244

A-point 2.484 ± 1.001 2.595 ± 1.062 2.265 ± 0.953 2.306 ± 0.995 2.319 ± 0.843 2.083 ± 0.860 2.133 ± 0.913 2.179 ± 0.954 2.106 ± 0.985
ANS 2.778 ± 1.356 3.003 ± 1.367 2.611 ± 1.205 2.869 ± 1.422 2.394 ± 1.188 2.416 ± 1.325 2.414 ± 1.379 2.495 ± 1.322 2.656 ± 1.676
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Table 2. Cont.

Inception
ResNetV2 Inceptionv3 ResNet50 ResNet101 ResNet152 DenseNet201 DenseNet121 DenseNet169 Proposed

B 2.933 ± 1.408 2.824 ± 1.255 2.537 ± 1.407 2.746 ± 1.328 2.550 ± 1.198 2.821 ± 1.148 2.354 ± 1.255 2.515 ± 1.207 2.041 ± 1.118
Ba 3.271 ± 1.822 2.427 ± 1.132 3.102 ± 1.661 3.124 ± 1.631 3.051 ± 1.742 2.680 ± 1.504 2.418 ± 1.226 2.683 ± 1.386 2.131 ± 1.135

CoL 3.444 ± 1.073 3.383 ± 1.522 3.661 ± 1.861 3.821 ± 1.767 3.847 ± 1.285 3.274 ± 1.445 3.319 ± 1.300 2.907 ± 1.373 2.832 ± 1.393
CoR 3.618 ± 1.532 3.351 ± 1.486 3.549 ± 1.435 3.543 ± 1.236 3.326 ± 1.459 3.060 ± 1.306 2.946 ± 1.117 2.862 ± 1.035 2.860 ± 1.126
Gn 3.189 ± 1.438 2.650 ± 1.440 2.367 ± 1.219 2.373 ± 0.961 2.319 ± 0.800 2.196 ± 1.171 1.884 ± 1.075 1.938 ± 0.927 1.457 ± 0.674

GoL 4.448 ± 2.079 4.608 ± 1.949 4.104 ± 2.034 4.184 ± 2.197 4.104 ± 2.099 3.567 ± 2.101 3.660 ± 1.779 3.666 ± 1.866 3.038 ± 1.862
GoR 4.213 ± 1.623 3.740 ± 1.476 3.875 ± 1.459 3.741 ± 1.731 3.417 ± 1.574 3.473 ± 1.579 3.386 ± 1.654 3.469 ± 1.745 2.664 ± 1.444
L1 2.645 ± 1.051 2.803 ± 1.029 2.932 ± 0.981 2.900 ± 0.979 2.924 ± 0.963 2.730 ± 0.877 2.502 ± 0.937 2.734 ± 0.942 2.291 ± 0.934

Lt. FZS 2.281 ± 1.198 2.654 ± 1.282 2.592 ± 1.180 2.419 ± 1.020 2.367 ± 1.254 2.053 ± 0.843 2.040 ± 0.853 2.120 ± 0.845 1.860 ± 0.891
Menton 3.048 ± 1.743 2.687 ± 1.249 2.358 ± 1.294 2.292 ± 0.884 2.253 ± 0.951 2.091 ± 1.107 2.042 ± 1.079 1.935 ± 0.981 1.533 ± 0.746

Na 2.297 ± 1.193 2.394 ± 1.102 2.228 ± 1.073 2.197 ± 0.912 2.218 ± 0.991 1.732 ± 0.930 1.708 ± 0.918 1.767 ± 0.992 1.699 ± 0.805
Nasal tip 3.001 ± 1.598 3.009 ± 1.184 2.574 ± 1.273 2.657 ± 1.163 2.756 ± 1.211 2.662 ± 1.125 2.795 ± 1.407 2.710 ± 1.400 2.689 ± 1.535

OrL 2.967 ± 1.505 3.093 ± 1.484 2.864 ± 1.418 2.559 ± 1.264 2.863 ± 1.424 2.644 ± 1.090 2.639 ± 1.028 2.633 ± 1.129 2.318 ± 1.211
OrR 3.183 ± 1.184 3.092 ± 1.210 2.601 ± 0.841 2.876 ± 1.166 2.785 ± 1.325 2.572 ± 0.996 2.624 ± 1.062 2.664 ± 1.003 2.312 ± 0.980
PNS 2.889 ± 1.574 2.698 ± 1.851 2.826 ± 1.787 2.828 ± 1.740 2.855 ± 1.741 2.687 ± 1.656 2.604 ± 1.636 2.804 ± 1.438 2.597 ± 1.451
PoL 3.570 ± 1.553 3.031 ± 1.229 3.583 ± 1.591 3.295 ± 1.649 3.321 ± 1.554 3.041 ± 1.300 2.830 ± 1.413 2.819 ± 1.216 2.774 ± 1.251
PoR 3.310 ± 1.419 2.704 ± 1.114 3.402 ± 1.627 2.865 ± 1.199 2.886 ± 1.338 2.459 ± 1.169 2.525 ± 1.024 2.658 ± 0.973 2.253 ± 0.978
Pog 3.045 ± 1.369 2.681 ± 1.247 2.467 ± 1.169 2.508 ± 0.966 2.603 ± 0.721 2.324 ± 0.937 1.968 ± 0.984 2.018 ± 0.847 1.687 ± 0.813

Rt. FZS 2.838 ± 1.253 2.594 ± 1.061 2.140 ± 1.025 2.371 ± 1.516 2.307 ± 1.172 2.140 ± 1.173 2.102 ± 1.085 1.991 ± 1.091 1.747 ± 1.102
S 2.232 ± 1.374 2.606 ± 1.300 2.544 ± 1.213 2.319 ± 1.311 2.381 ± 1.305 1.971 ± 1.119 2.039 ± 1.046 1.872 ± 1.109 1.845 ± 0.940

Sp 2.780 ± 1.808 2.879 ± 1.241 2.662 ± 1.551 2.537 ± 1.426 2.699 ± 1.589 2.149 ± 1.288 2.297 ± 1.370 2.122 ± 1.308 2.033 ± 1.374
U1 2.430 ± 1.016 2.659 ± 1.062 2.532 ± 0.970 2.375 ± 1.053 2.382 ± 1.047 2.224 ± 1.062 2.272 ± 0.969 2.201 ± 0.897 2.091 ± 0.872

4. Discussion

In this study, a multi-scale 3D CNN architecture for automatic cephalometric landmark
detection is proposed. This approach employs a coarse-to-fine strategy, performing global-
scale detection followed by local-scale localization to automatically extract landmarks. The
coarse-to-fine architecture enables the use of both global-scale and local-scale features,
allowing for localization refinement by subdividing the volume scale. In the proposed
method, multi-output learning and multi-input learning structures were applied. This
approach enabled feature learning across the entire maxillofacial volume to regress land-
mark coordinates and classes, while also allowing for local refinement within a subdivided
volume scale in the local region. Unlike previous landmark detection studies [5–13], to
the best of the authors’ knowledge, this is the first research integrates both a coarse-to-fine
structure and direct regression.

To validate the proposed method, 150 sets of clinical CT data and 30 anatomical
landmarks identified by clinical experts were used. The network’s ability to detect cephalo-
metric landmarks was evaluated by comparing the RMSE between the network-predicted
coordinates and those determined by experts. Comparative experiments with existing
CNN architectures revealed that the proposed method achieved 2.238 mm of the low-
est average accuracy and 0.364 mm of the lowest standard deviation. In comparison to
conventional CNN models, our results show an accuracy improvement of approximately
25% over Inception-ResNetV2, 23% over InceptionV3, 20% over ResNet152, and 9% over
DenseNet169. In the proposed method, DenseNet169 was applied as the backbone network
for feature reuse, suggesting that the application of a multi-stage structure contributed to
a 9% improvement in accuracy. An individual error comparison for the 30 cephalometric
anatomical landmarks showed that the proposed method achieved the lowest error for
24 landmarks, followed by DenseNet201, which recorded the lowest error for two land-
marks. DenseNet169, ResNet152, ResNet101, and ResNet50 each recorded the lowest
error for one landmark. Among the 3D CNN structures, deep learning architectures de-
signed for feature reuse (e.g., DenseNet) were found to potentially lower the accuracy of
landmark detection.

Objective accuracy comparisons across 3D cephalometric landmark detection studies
are challenging due to variations in clinical data (e.g., the number of images and landmarks).
Some state-of-the-art studies [12,13] reported ~1 mm accuracy with 80 CBCT scans and
18 landmarks, and ~2 mm accuracy with 49 CBCT scans and 105 landmarks. These studies
have the advantage of generating ROIs through the network, enabling precise localization
refinement. However, they use region-proposal-based approaches, resulting in failure cases,
with reported accuracies excluding these failure cases. In contrast, the proposed method,
utilizing multi-scale direct regression for landmark inference, achieved a ~2.24 mm error
without failure cases.
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In the design of the multi-scale detection architecture, the trainable parameter was
achieved at 39,056,605, with an average inference time of 3.835 s. In the process of de-
signing and training deep learning networks, trainable parameters are directly related
to computational cost, training time, and network complexity. From this perspective,
the DenseNet169 backbone network was chosen in the proposed method for its efficient
feature reuse capability, which minimizes the number of trainable parameters and en-
ables deeper learning without adding a significant computational burden. The two-stage
learning strategy increases network complexity; although the trainable parameters have
increased compared to the base architecture (DenseNet169), it remains lower than that of
the shallower ResNet50 architecture. The inference time, representing the time taken for a
single prediction, was higher compared to existing 3D CNN architectures. Since the goal of
this study is to apply the method in pre-operative procedures such as patient diagnosis or
surgical planning, prioritizing higher accuracy over reduced inference time will improve
its clinical applicability.

For clinical applicability, cephalometric analysis generally requires an accuracy below
2 mm [1–3], indicating the need for further accuracy enhancements in future research.
Specifically, achieving a detection accuracy below 2 mm is important for clinical acceptance,
but the absence of detection failures is also crucial to maintain clinical viability. In this
study, we aimed to achieve landmark detection accuracy without any failure cases to ensure
this viability. Furthermore, the capability to detect 30 landmarks without failure cases
suggests potential clinical utility, especially if post-processing steps are introduced to allow
clinicians to refine landmarks.

In deep learning, model generalization is important for applicability across diverse
clinical environments, making the construction of high-quality, massive datasets an impor-
tant task. Building those clinical datasets for research presents practical challenges, such as
the volume of data accumulated at hospitals and patient protection policies. Particularly
in medical fields with relatively low demand, building extensive datasets can remain a
challenging issue. In this research, due to these limitations, 150 CT datasets were used to
implement the proposed method. However, in future studies, methods such as federated
learning, which enables data collaboration across multiple hospitals, may provide a viable
solution for these limitations.

Some limitations remain. First, although the multi-scale design enhances accuracy, it
also increases inference time due to the multi-stage detection process. For applications in
broader fields, especially during surgical procedures, further optimization may be needed
to reduce computation time. Secondly, this study focused only on the skull region of the
maxillofacial volume, excluding surrounding soft tissues to ensure patient privacy. This
approach required additional preprocessing steps for anonymization and limited the ability
to learn features of soft tissues.

Considering recent advancements in deep learning model structures, there remains
potential to further enhance accuracy in future research. In this study, a 3D CNN architec-
ture and a coarse-to-fine strategy were applied to improve landmark detection accuracy.
The coarse-to-fine structure has been reported to enhance localization accuracy [12,13], a
result also demonstrated in this study for cephalometric landmark detection. However,
studies have been published that advance conventional CNNs, and future research could
consider applying Vision Transformer (ViT) [30] or stacked hourglass architecture [14] to
further improve accuracy.

This study focused on using only the skull from maxillofacial images, requiring
segmentation to isolate the skull for deep learning network learning. To ensure patient
privacy, soft tissues surrounding the skull were removed during the anonymization process
and were not used in this study. Future research aims to develop deep learning networks
that can directly utilize clinical data by implementing training servers within healthcare
institutions and exporting only the trained models (e.g., deep network weights).
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5. Conclusions

In this paper, a multi-scale image-based CNN architecture was proposed for automatic
3D cephalometric landmark detection. This method applies direct regression in multi-
scale learning, enabling landmark detection without failure cases. Experimental results
with clinical data indicate that the proposed approach enhances cephalometric landmark
detection performance compared to existing CNN methods. Although the proposed
method requires prior segmentation of the skull volume, future research aims to develop
algorithms that can be directly used in clinical settings by operating training servers within
healthcare institutions. We expect that the concept of the proposed method has the potential
for application in surgical planning and medical analysis involving maxillofacial imaging.
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