Near-Infrared Spectroscopy (NIRS) to Assess Infection Complications During the Acute Phase of Acute Pancreatitis
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Measurement Methods
2.3. Study Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wu, D.; Zhang, H.; Li, P. New insights into regulatory cell death and acute pancreatitis. Heliyon 2023, 7, e18036. [Google Scholar] [CrossRef] [PubMed]
- Boxhoom, L.; Voemans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boemeester, M.A.; van Santvoort, H.C.; Besselink, M.G. Acute pancreatitis. Lancet 2020, 396, 726–734. [Google Scholar]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis 2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- O’Reilly, D.A.; Kingsnorth, A.N. A brief history of pancreatitis. J. R. Soc. Med. 2001, 94, 130–132. [Google Scholar] [CrossRef]
- Van Laethem, J.L.; Marchant, A.; Delvaux, A.; Goldman, M.; Robberecht, P.; Velu, T.; Deviére, J. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 1995, 108, 1917–1922. [Google Scholar] [CrossRef]
- Sandoval, D.; Gukovskaya, A.; Reavey, P.; Gukovsky, S.; Sisk, A.; Braquet, P.; Pandol, S.J.; Poucell-Hatton, S. The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 1996, 111, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Lisboa, T.; Martin-Loeches, I.; Diaz, E.; Trefler, S.; Restrepo, M.I.; Rello, J. Mortality and regional oxygen saturation index in septic shock patients: A pilot study. J. Trauma 2011, 70, 1145–1152. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef]
- Nitzan, M.; Nitzan, I.; Arieli, Y. The Various oximetric techniques used for the evaluation of blood oxygenation. Sensors 2020, 20, 4844. [Google Scholar] [CrossRef]
- Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 2007, 12, 062104. [Google Scholar]
- Owens, G.E.; King, K.; Gurney, J.G.; Charpie, J.R. Low renal oximetry correlates with acute kidney injury after infant cardiac surgery. Pediatr. Cardiol. 2011, 32, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Creteur, J.; Carollo, T.; Soldati, G.; Buchele, G.; Backer, D.D.; Vincent, J.L. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007, 33, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, N.I.; Arnold, R.; Sherwin, R.; O’Connor, J.; Najarro, G.; Singh, S.; Lundy, D.; Nelson, T.; Trzeciak, S.W.; Jones, A.E. for the Emergency Medicine Shock Research Network (EMSockNet). The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit. Care 2011, 15, R223. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Barberio, M.; Urade, T.; Pop, R.; Seyller, E.; Pizzicannella, M.; Mascagni, P.; Charles, A.L.; Abe, Y.; Geny, B.; et al. Intraoperative perfusion assessment in enhanced reality using quantitative optical imaging: An experimental study in a pancreatic partial ischemia model. Diagnostics 2021, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Sucher, R.; Scheuermann, U.; Rademacher, S.; Lederer, A.; Sucher, E.; Hau, H.M.; Brandacher, G.; Schneeberger, S.; Gockel, I.; Seehofer, D. Intraoperative reperfusion assessment of human pancreas allografts using hyperspectral imaging (HIS). HepatoBliary Surg. Nutr. 2022, 11, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Yokoe, M.; Takada, T.; Kataoka, K.; Yoshida, M.; Gabeta, T.; Hirota, M.; Mayumi, T.; Kadoya, M.; Yamanouchi, E.; et al. Assessment of severity of acute pancreatitis according to new prognostic factors and CT grading. J. Hepatobiliary Pancreat. Sci. 2010, 17, 37–44. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shakar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Lipcsey, M.; Woinarski, N.C.Z.; Bellomo, R. Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care. Ann. Intensive Care 2012, 2, 11. [Google Scholar] [CrossRef]
- Cortés, D.O.; Puflea, F.; Backer, D.D.; Creteur, J.; Vincent, J.L. Near infrared spectroscopy (NIRS) to assess the effect of local ischemic preconditioning in the muscle of healthy volunteers and critically ill patients. Microvasc. Res. 2015, 102, 25–32. [Google Scholar] [CrossRef]
- Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022, 82, 1251–1276. [Google Scholar] [CrossRef]
- Rau, B.; Schilling, M.K.; Beger, H.G. Laboratory markers of severe acute pancreatitis. Dig. Dis. 2004, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.D.; Jacobson, J.A.; Maslove, D.M.; Muscedere, J.G.; Boyd, J.G.; The Cerebral Oxygenation and Neurological Outcomes Following Critical Illness (CONFOCAL) Research Group. The physiological determinants of near-infrared spectroscopy-derived regional cerebral oxygenation in critically ill adults. Intensive Care Med. Exp. 2019, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Van Bommel, J.; Sikorska, K.; Van Genderen, M.; Klijn, E.; Lesaffre, E.; Lnce, C.; Bakker, J. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit. Care Med. 2011, 39, 1649–1654. [Google Scholar] [CrossRef]
- Soga, T.; Sakatani, K.; Yagi, T.; Kawamorita, T.; Yoshino, A. The relationship between hyperlactatemia and microcirculation in the thenar eminence as measured using near-infrared spectroscopy in patients with sepsis. Emerg. Med. J. 2014, 31, 654–658. [Google Scholar] [CrossRef]
- Skarda, D.E.; Mulier, K.E.; Myers, D.E.; Taylor, J.H.; Beilman, G.J. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 2007, 27, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Mederos, M.A.; Reber, H.A.; Girgis, M. Acute pancreatitis. JAMA 2021, 325, 382–390. [Google Scholar] [CrossRef]
- Soares, R.N.; Mclay, K.M.; George, M.A.; Murias, J.M. Differences in oxidative metabolism modulation induced by ischemia/reperfusion between trained and untrained individuals assessed by NIRS. Physiol. Rep. 2017, 5, e13384. [Google Scholar] [CrossRef]
- Futier, E.; Christophe, S.; Robin, E.; Petit, A.; Pereira, B.; Desbordes, J.; Bazin, J.E.; Vallet, B. Use of near-infrared spectroscopy during a vascular occlusion test to assess the microcirculatory response during fluid challenge. Crit. Care 2011, 15, R214. [Google Scholar] [CrossRef]
- Wang, G.; Iv, J.C.; Wu, L.F.; Li, L.; Dong, D.L.; Sun, B. From nitric oxide to hyperbaric oxygen: Invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis. Pancreas 2014, 43, 511–517. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wernly, B.; Binneboessel, S.; Baldia, P.; Duse, D.A.; Erkens, R.; Kelm, M.; Mamandipoor, B.; Osmani, V.; Jung, C. Failure of lactate clearance predicts the outcome of critically ill septic patients. Diagnostics 2020, 10, 1105. [Google Scholar] [CrossRef]
- Pino, R.M.; Singh, J. Appropriate clinical use of lactate measurements. Anesthesiology 2021, 134, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, C.M.; Christophi, C. Disturbances of the microcirculation in acute pancreatitis. Br. J. Surg. 2006, 93, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wan, J.; He, W.; Zhu, Y.; Zeng, H.; Liu, P.; Gong, M.; Liu, F.; Shao, Q.; Xia, L.; et al. Prognostic value of arterial lactate metabolic clearance rate in moderate and severe acute pancreatitis. Dis. Markers 2022, 9, 9233199. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ning, J.; Li, Q.; Kuang, W.; Jiang, H.; Qin, S. Prediction of acute pancreatitis complications using routine blood parameters during early admission. Immun. Inflamm. Dis. 2022, 10, e747. [Google Scholar] [CrossRef]
- Yoshitani, K.; Kawaguchi, M.; Tatsumi, K.; Kitaguchi, K.; Furuya, H. A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers. Anesth. Analg. 2002, 94, 586–590. [Google Scholar] [CrossRef]
Volunteer (n = 15) | Acute Pancreatitis (n = 13) | Sepsis (n = 12) | p Value | |
---|---|---|---|---|
(A) Characteristics | ||||
Age | 50.9 (7.1) | 52.7 (16.6) | 68.0 (10.7) | <0.001 |
Sex (male), n (%) | 9 (60.0) | 9 (69.2) | 8 (66.7) | 0.869 |
BMI | 23.6 (2.7) | 23.3 (3.5) | 23.9 (4.9) | 0.942 |
HR | 70.8 (9.1) | 93.8 (26.5) | 80.9 (25.5) | 0.026 |
MAP | 99.2(14.1) | 106 (21.9) | 81.6 (16.4) | 0.004 |
(B) Scoring | ||||
APACHE II score, mean (SD) | N/A | 9.77 (4.49) | 17.00 (6.78) | 0.006 |
SOFA score, median (IQR) | N/A | 3 (1–4) | 4.5 (2.5–8) | 0.046 |
SIRS score, median (IQR) | N/A | 2 (1–2) | 2 (2–3) | 0.225 |
(C) Blood sample, mean (SD) | ||||
Hb (g/dL), mean (SD) | N/A | 14.26 (2.00) | 11.28 (2.56) | 0.004 |
Hematocrit (%), mean (SD) | N/A | 41.51 (6.93) | 34.17 (7.70) | 0.020 |
LD (U/L), mean (SD) | N/A | 423.9 (245.9) | 397.0 (293.6) | 0.807 |
CRP (mg/dL), mean (SD) | N/A | 12.86 (12.85) | 16.32 (9.48) | 0.450 |
Lac (mmol/L), mean (SD) | N/A | 1.95 (0.75) | 2.81 (1.17) | 0.039 |
(D) Outcome | ||||
ICU stay, median (IQR) | N/A | 12 (10–16) | 7 (5–9) | 0.002 |
Hospital stay, median (IQR) | N/A | 15 (12–39) | 10 (6–16) | 0.087 |
On Admission | 7 Days After Admission | |||||
---|---|---|---|---|---|---|
Non-Infection | Infection | p Value | Non-Infection | Infection | p Value | |
Cases: numbers | 6 | 7 | ||||
(A) Baseline characteristics | ||||||
Age | 50.3 (13.4) | 54.7 (19.9) | 0.657 | |||
Sex (male), n (%) | 5 (83.3) | 4 (57.1) | 0.308 | |||
BMI | 24.7 (3.6) | 22.1 (3.3) | 0.205 | |||
HR | 78.3 (19.3) | 107.1 (25.6) | 0.046 | 73.33 (10.05) | 88.86 (17.02) | 0.008 |
MAP | 115.2 (22.2) | 98.1 (19.6) | 0.400 | 101.33 (6.89) | 77.86 (11.15) | 0.001 |
(B) Scoring | ||||||
APACHE II score, mean (SD) | 8.33 (2.25) | 11.00 (5.68) | 0.306 | 3.83 (2.48) | 11.57 (3.45) | 0.001 |
SOFA score, median (IQR) | 1 (1–4) | 4 (2–6) | 0.101 | 0 (1–1.25) | 2 (2–4) | 0.005 |
SIRS score, median (IQR) | 1.5 (0–2) | 2 (2–4) | 0.117 | 0 (0–0.25) | 2 (1–3) | 0.003 |
Prognostic factor, median (IQR) | 0.5 (0–2) | 4 (1–5) | 0.092 | |||
Revised Atlanta classification, n (%) | 0.060 | |||||
Mild | 3 (50.0) | 0 (0.0) | ||||
Moderate | 2 (33.3) | 2 (28.6) | ||||
Severe | 1 (16.7) | 5 (71.4) | ||||
(C) Blood sample, mean (SD) | ||||||
Hb (g/dL), mean (SD) | 15.18 (2.44) | 13.47 (1.20) | 0.129 | 12.95 (1.55) | 8.87 (0.62) | <0.001 |
Hematocrit (%), mean (SD) | 38.12 (4.62) | 45.46 (7.41) | 0.064 | 37.78 (3.44) | 26.61 (2.03) | <0.001 |
LD (U/L), mean (SD) | 333 (219.34) | 501.86 (255.91) | 0.232 | 257.33 (97.49) | 517.43 (226.03) | 0.024 |
CRP (mg/dL), mean (SD) | 8.14 (14.86) | 16.91 (10.23) | 0.235 | 8.65 (11.13) | 21.95 (8.18) | 0.031 |
Lac (mmol/L), mean (SD) | 1.71 (0.57) | 2.08 (1.03) | 0.450 | 0.86 (0.17) | 2.05 (0.81) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiba, N.; Yagi, T.; Mizuochi, M.; Sato, J.; Saito, T.; Sakurai, A.; Kinoshita, K. Near-Infrared Spectroscopy (NIRS) to Assess Infection Complications During the Acute Phase of Acute Pancreatitis. Diagnostics 2024, 14, 2647. https://doi.org/10.3390/diagnostics14232647
Chiba N, Yagi T, Mizuochi M, Sato J, Saito T, Sakurai A, Kinoshita K. Near-Infrared Spectroscopy (NIRS) to Assess Infection Complications During the Acute Phase of Acute Pancreatitis. Diagnostics. 2024; 14(23):2647. https://doi.org/10.3390/diagnostics14232647
Chicago/Turabian StyleChiba, Nobutaka, Tsukasa Yagi, Minori Mizuochi, Jun Sato, Takeshi Saito, Atsushi Sakurai, and Kosaku Kinoshita. 2024. "Near-Infrared Spectroscopy (NIRS) to Assess Infection Complications During the Acute Phase of Acute Pancreatitis" Diagnostics 14, no. 23: 2647. https://doi.org/10.3390/diagnostics14232647
APA StyleChiba, N., Yagi, T., Mizuochi, M., Sato, J., Saito, T., Sakurai, A., & Kinoshita, K. (2024). Near-Infrared Spectroscopy (NIRS) to Assess Infection Complications During the Acute Phase of Acute Pancreatitis. Diagnostics, 14(23), 2647. https://doi.org/10.3390/diagnostics14232647