
Citation: Akgüller, Ö.; Balcı, M.A.;

Cioca, G. Functional Brain Network

Disruptions in Parkinson’s Disease:

Insights from Information Theory and

Machine Learning. Diagnostics 2024,

14, 2728. https://doi.org/10.3390/

diagnostics14232728

Academic Editor: Rahib Abiyev

Received: 26 September 2024

Revised: 18 November 2024

Accepted: 2 December 2024

Published: 4 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Functional Brain Network Disruptions in Parkinson’s Disease:
Insights from Information Theory and Machine Learning
Ömer Akgüller 1,2 , Mehmet Ali Balcı 1,* and Gabriela Cioca 3

1 Faculty of Science, Department of Mathematics, Mugla Sitki Kocman University, Muğla 48000, Turkey;
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Abstract: Objectives: This study investigates disruptions in functional brain networks in Parkin-
son’s Disease (PD), using advanced modeling and machine learning. Functional networks were
constructed using the Nonlinear Autoregressive Distributed Lag (NARDL) model, which captures
nonlinear and asymmetric dependencies between regions of interest (ROIs). Key network metrics
and information-theoretic measures were extracted to classify PD patients and healthy controls (HC),
using deep learning models, with explainability methods employed to identify influential features.
Methods: Resting-state fMRI data from the Parkinson’s Progression Markers Initiative (PPMI) dataset
were used to construct NARDL-based networks. Metrics, such as Degree, Closeness, Betweenness,
and Eigenvector Centrality, along with Network Entropy and Complexity, were analyzed. Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term
Memory (LSTM) models, classified PD and HC groups. Explainability techniques, including SHAP
and LIME, identified significant features driving the classifications. Results: PD patients showed
reduced Closeness (22%) and Betweenness Centrality (18%). CNN achieved 91% accuracy, with
Network Entropy and Eigenvector Centrality identified as key features. Increased Network Entropy
indicated heightened randomness in PD brain networks. Conclusions: NARDL-based analysis
with interpretable deep learning effectively distinguishes PD from HC, offering insights into neural
disruptions and potential personalized treatments for PD.

Keywords: Parkinson’s disease; brain network; information theory; explainable deep learning

1. Introduction

Parkinson’s Disease (PD) is a chronic, progressive neurodegenerative disorder charac-
terized predominantly by motor symptoms, such as bradykinesia, rigidity, resting tremor,
and postural instability, which result from the loss of dopaminergic neurons in the sub-
stantia nigra pars compacta of the midbrain [1,2]. While these motor manifestations are
the most visible and have historically been the primary focus for diagnosis and treatment,
PD is increasingly recognized as a multisystem disorder that affects various non-motor
domains, including cognitive, psychiatric, autonomic, and sensory functions [3,4].

Cognitive impairments in PD range from mild cognitive impairment to Parkinson’s
Disease Dementia and significantly impact patients’ quality of life and daily
functioning [5,6]. Understanding the neural mechanisms underlying cognitive decline in
PD is crucial for the early detection, prognosis, and the development of targeted therapeutic
interventions [7].

Functional connectivity refers to the temporal correlations and statistical dependen-
cies between spatially remote neurophysiological events, which provide insights into the
coordinated activity of different brain regions [8]. Functional Magnetic Resonance Imaging
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(fMRI) has emerged as a pivotal tool for investigating functional connectivity, leveraging
blood-oxygen-level-dependent (BOLD) signals to infer neural activity [9,10]. Resting-state
fMRI allows for the examination of intrinsic brain networks without task-induced con-
founds, offering a window into the brain’s functional organization in both health and
disease [11,12].

Graph-theoretical approaches have been widely applied to fMRI data to construct
functional brain networks, where nodes represent regions of interest (ROIs) and edges
represent functional connections based on statistical associations [13,14]. These methods
enable the quantification of network properties such as efficiency, modularity, and central-
ity, facilitating the exploration of how brain networks reorganize in PD [15,16]. Studies
have reported alterations in network topology in PD patients, including decreased global
efficiency, disrupted small-world properties, and altered connectivity within specific net-
works like the default mode network and the frontoparietal network [17–19]. These network
changes are associated with both motor and cognitive symptoms, suggesting that functional
connectivity alterations underpin the clinical manifestations of PD [20,21].

However, traditional graph-theoretical analyses often rely on linear correlation mea-
sures, such as Pearson’s correlation, to estimate functional connectivity [8]. While these
methods are valuable, they may not fully capture the complex, nonlinear, and dynamic
interactions within the brain, particularly in pathological conditions like PD [22]. Neural
systems exhibit both linear and nonlinear dependencies, and their interactions can be asym-
metric and time-varying, especially in PD [23]. Therefore, advanced analytical techniques
that can model these complexities are essential for a more accurate and comprehensive
understanding of functional connectivity alterations in PD.

This study aims to bridge this gap by employing the Nonlinear Autoregressive Dis-
tributed Lag (NARDL) model to construct functional brain networks from resting-state
fMRI data of PD patients and healthy controls (HC). By capturing both nonlinear and asym-
metric dependencies between ROIs, the NARDL model provides a nuanced representation
of neural interactions that traditional linear models may overlook. Additionally, the study
integrates information-theoretic measures to quantify the informational properties of brain
networks, offering deeper insights into the structural and functional disruptions caused
by PD. Coupled with explainable deep learning models, this approach not only enhances
the detection and classification of PD but also ensures that the findings are interpretable
and clinically relevant. These advancements contribute to the development of more accu-
rate diagnostic tools and personalized treatment strategies, ultimately improving patient
outcomes and advancing our understanding of PD’s impact on brain connectivity.

This study is structured as follows: Section 2 reviews the existing literature on func-
tional connectivity in PD, highlighting gaps such as the underutilization of nonlinear
modeling and explainable machine learning. Section 3 details the participant cohort, data
acquisition, application of the NARDL model for constructing functional brain networks,
and the extraction of connectivity and information-theoretic measures. Section 4 presents
the findings from statistical analyses and deep learning models; detailed discussions
interpreting these results are provided immediately afterward within the same section
to contextualize and understand their implications. Finally, Section 5 summarizes the
key contributions of the study, emphasizing how integrating NARDL-based modeling,
information-theoretic measures, and explainable deep learning advances our understand-
ing of functional brain network alterations in PD and can inform clinical practices.

2. Related Works

In Parkinson’s disease, functional connectivity studies reveal significant insights into
both motor and non-motor symptoms, including cognitive decline. Resting-state fMRI
studies, for instance, have consistently shown altered connectivity within the default mode
network, sensorimotor networks, and other brain regions, correlating these changes with
cognitive and motor impairments in PD patients [24–26]. These findings suggest that
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disruptions in functional networks may serve as early indicators of disease progression,
making functional connectivity a valuable biomarker for tracking neurodegeneration.

Studies using whole-brain functional connectivity analyses highlight reduced connec-
tivity in regions associated with cognition and motor control, such as the fronto-striatal
and visual networks, which often precede notable cognitive and functional deficits [27,28].
Additionally, dynamic functional connectivity, which measures the temporal fluctuations of
functional connectivity, has shown that patients with advanced cognitive impairment in PD
tend to experience a higher prevalence of segregated network states, limiting inter-network
communication necessary for cognitive flexibility [29,30].

Research by Ref. [27] illustrated abnormal connectivity patterns in PD patients, iden-
tifying compensatory increases in connectivity in the posterior cingulate cortex and pre-
cuneus, which are linked to the brain’s efforts to maintain functional stability despite
neurodegeneration. Studies by Refs. [29,30] have demonstrated a correlation between
reduced functional connectivity in networks like the default mode network and cogni-
tive impairments, suggesting functional connectivity as a potential marker for PD-related
cognitive decline.

The application of functional connectivity in diagnostic classifications has achieved
high accuracy, as shown by studies using machine learning on whole-brain connectivity,
which differentiate PD patients from controls and correlate network changes with disease
severity [31–33].

Studying functional connectivity in PD not only illuminates the underlying network
disruptions associated with cognitive and motor impairments but also supports the poten-
tial for FC as an early diagnostic and prognostic marker in tracking disease progression.
Foundational studies have established FC alterations as integral to understanding PD
pathology, especially regarding non-motor symptoms that significantly affect patient qual-
ity of life.

Graph theory provides a framework to quantitatively analyze brain network topology,
revealing the organization of functional networks and aiding in the understanding of
complex neurological disorders like Parkinson’s disease (PD). This approach enables the use
of specific metrics, such as degree centrality, clustering coefficient, path length, and small-
world properties, to characterize the brain’s network organization and the alterations
induced by PD.

For instance, degree centrality reflects the number of connections a node has, indi-
cating its importance in the network. In PD, reduced centrality has been observed in
regions related to motor and cognitive processing, highlighting disrupted communication
in critical areas [34]. The clustering coefficient measures the degree to which nodes in a
network tend to cluster together, often reflecting local efficiency. In PD, clustering often
decreases, indicating reduced local connectivity and integration [35,36]. Regarding the
average distance between nodes, where shorter path lengths suggest efficient information
transfer, PD studies reveal increased path length, indicating disrupted global efficiency
in brain networks [37,38]. While both PD patients and healthy controls typically exhibit
small-world properties, PD often demonstrates a shift toward more random, less efficient
networks [39–42].

Brain connectivity is inherently dynamic and influenced by numerous nonlinear
dependencies between regions. Traditional linear models, such as static correlation, are
limited in capturing this complexity and may overlook crucial aspects of brain interactions.
Nonlinear methods, like the nonlinear autoregressive distributed lag model and mutual
information, are better suited for uncovering these complex dependencies. These methods
allow for a more nuanced analysis, capturing subtle variations in connectivity patterns that
are temporally and spatially heterogeneous.

Ref. [43] utilized dynamic graph measures, including the Fiedler value, to assess time-
dependent network changes in PD. Their findings showed lower variability in modularity
and global efficiency in PD patients, indicating a more rigid network organization. This
rigidity was linked to disease severity, underscoring how nonlinear, dynamic metrics offer a
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deeper understanding of PD pathology. Ref. [44] observed that patients with higher depres-
sion severity exhibited weakened interhemispheric connections and decreased clustering
in brain networks based on mutual information, especially between parietal–occipital and
frontal regions. This reduction in connectivity was associated with greater depressive
symptoms, suggesting that mutual information-based brain network metrics could serve
as biomarkers for assessing depression in post-stroke patients. Using cross-mutual infor-
mation in a time-frequency domain, Ref. [45] decodes how brain regions communicate
during grasp tasks. This approach is crucial for understanding motor control and coor-
dination, which could aid in developing interventions for motor impairments. Ref. [46]
combines symbolic mutual information and Kolmogorov-Arnold Complexity features
from EEG data to improve early Parkinson’s diagnosis. These methods enhance EEG
signal analysis, allowing for more accurate differentiation between healthy and early-stage
Parkinson’s patients.

Information-theoretic measures such as Shannon entropy, network complexity, and In-
tegrated Information Theory (IIT) provide powerful tools to assess functional brain net-
works by quantifying aspects like randomness, complexity, and integration within neu-
ral systems. These metrics are crucial in understanding the network disruptions that
characterize neurodegenerative diseases like PD, where cognitive impairment and motor
dysfunctions often correlate with altered brain connectivity.

Ref. [47] introduces an efficient method leveraging entropy measures on resting-state
EEG (rs-EEG) data for diagnosing and tracking Parkinson’s disease (PD). By comparing
various entropy methods, the study found fuzzy entropy to be the most effective, achiev-
ing 99.9% classification accuracy in distinguishing PD patients from healthy controls.
Ref. [48] comprehensively reviewed and suggested that Alzheimer’s patients generally
exhibit increased regularity and reduced entropy in EEG signals, suggesting a decline in
brain signal complexity. Studies using methods like Approximate Entropy and Sample
Entropy reveal significant differences in parietal and occipital regions when compared
to healthy controls. Ref. [49] suggested that applying entropy and fractional analysis
methods to electrophysiological recordings can lead to a deeper understanding of the
pathophysiology of neurodegenerative diseases, which are linked to changes in brain
activity complexity. Specifically, it suggests that Alzheimer’s disease is associated with a
decrease in global brain activity complexity, while Parkinson’s disease shows a localized
increase in brain signal complexity. Ref. [50] emphasized that understanding how the brain
processes information for cognition requires recognizing the different types of information
involved—namely unique, redundant, and synergistic elements. It highlights that infor-
mation decomposition techniques are instrumental in distinguishing these components,
reshaping our understanding of integrative brain function and its neural organization.
Ref. [50] also reviewed evidence integrating structural, molecular, and functional underpin-
nings of redundancy and synergy, exploring their roles in cognition, computation, and their
evolutionary development, suggesting that this framework is key to comprehending the
brain’s informational architecture.

Deep learning has gained prominence in analyzing functional connectivity data to
enhance the diagnosis and prognosis of Parkinson’s disease. By leveraging sophisticated
neural networks, researchers can identify disease-specific connectivity patterns and predict
clinical outcomes, facilitating early diagnosis and targeted interventions. Ref. [51] used
brain graph convolutional networks to classify PD patients by modeling EEG-derived
functional connectivity data as a graph. This model achieved high precision (95.59%),
emphasizing its efficacy in distinguishing PD from control subjects by retaining spatial
interdependence among EEG channels. CNNs, often combined with transfer learning, have
been applied to MRI and fMRI datasets to classify PD patients. Ref. [52] employed CNNs
with data augmentation and achieved an accuracy of 89.23%, indicating that these models
can effectively distinguish structural and functional alterations in PD. Ref. [53] presented a
study on the early detection of Parkinson’s disease using MRI and deep learning, comparing
2D and 3D CNN models trained on pre-processed MRI scans. The results show that the
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3D CNN significantly outperforms the 2D model, achieving 88.9% accuracy with 0.86
AUC, making it more reliable for identifying key features of the disease. Ref. [54] provides
a bibliometric analysis and literature review of research on Parkinson’s Disease (PD)
diagnosis using deep learning (DL), highlighting the advancements in the field. The study,
based on papers from the Scopus database, shows strong development in DL-based PD
diagnosis worldwide while identifying a research gap in incremental learning approaches
for big data analysis.

While previous research has significantly advanced our understanding of functional
brain network alterations in Parkinson’s Disease, several limitations persist. The predomi-
nant reliance on linear models fails to capture the nonlinear and asymmetric dynamics of
neural connectivity inherent in PD. The underutilization of information-theoretic measures
limits insights into the brain’s informational and integrative capacities affected by the
disease. Moreover, the “black box” nature of deep learning models poses challenges for
clinical adoption due to a lack of interpretability. Methodological shortcomings, such as
small sample sizes and cross-sectional designs, further constrain the generalizability and
applicability of findings.

Our study aims to address these gaps by integrating several advanced methodologies
into a cohesive framework. By employing the NARDL model, we capture both nonlinear
and asymmetric dependencies between brain regions, providing a more accurate and nu-
anced representation of functional connectivity alterations in PD. This approach allows us
to model the complex temporal dynamics and directionality of interactions that traditional
linear models may overlook.

3. Materials and Methods

In the current study, we aimed to bridge the gap in PD research by integrating NARDL-
based functional connectivity modeling with information-theoretic measures and explain-
able deep learning models. We apply the NARDL model to resting-state fMRI data to
construct functional brain networks that capture both linear and nonlinear, as well as
asymmetric dependencies between ROIs. This approach allows us to generate Combined
Dependency (CD) values, reflecting the intricate temporal relationships and interactions
within the brain. From these networks, a comprehensive set of connectivity measures is
extracted, as well as information-theoretic metrics, including Degree Centrality, Closeness
Centrality, Betweenness Centrality, Eigenvector Centrality, Network Entropy, Network
Complexity, and IIT.

Our participant cohort consists of HC individuals and PD patients, enabling us to
investigate the functional connectivity alterations associated with PD. By employing deep
learning models—specifically CNNs, RNNs, and LSTMs—it is aimed to classify HC and
PD subjects based on the extracted features. These models are selected for their ability
to handle high-dimensional data and capture complex patterns within the connectivity
measures. The CNN model leverages spatial hierarchies in the data, the RNN captures
sequential dependencies, and the LSTM is adept at modeling long-term dependencies,
reflecting different aspects of brain functional connectivity.

To interpret the models’ predictions and understand the underlying mechanisms,
SHAP and LIME are utilized. SHAP provides a global interpretation by quantifying the
average contribution of each feature across all predictions, highlighting which features
consistently influence the model’s decisions [55]. LIME offers a local, instance-specific
interpretation, revealing how feature contributions vary for individual predictions and
capturing the heterogeneity within the PD group. This combination of techniques allows
us to identify key network features that differentiate PD from HC, providing insights into
the neural underpinnings of PD.

The outline of the methodology of this study is presented in Figure 1.
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Figure 1. Outline of the methodology.

3.1. Dataset

The Parkinson’s Progression Markers Initiative (PPMI) dataset represents a pivotal
resource in the study of Parkinson’s Disease, offering a comprehensive and meticulously
curated collection of clinical and neuroimaging data aimed at identifying biomarkers for
disease progression [56]. In this study, the PPMI dataset is specifically utilized to examine
functional connectivity patterns through fMRI. The dataset comprises a substantial cohort of
participants, categorized into two primary groups: Healthy Controls (HC) and individuals
diagnosed with Parkinson’s Disease. Among the collected samples, there are 142 HC data
points and a significantly larger subset of 1537 PD data points, reflecting the extensive
efforts to capture the heterogeneity and progression of PD within the study population.

The selection of fMRI as the modality for data analysis is strategic, given its unpar-
alleled ability to non-invasively measure and map brain activity by detecting changes
associated with blood flow. This technique provides high-resolution spatial and temporal
insights into the neural dynamics underlying cognitive and motor functions, which are
often disrupted in Parkinson’s Disease. By focusing on fMRI data, the study leverages
advanced imaging techniques to construct detailed brain networks, facilitating the explo-
ration of functional connectivity and its alterations in PD compared to healthy individuals.
The rich fMRI data allow for the identification of specific ROIs and the examination of their
interconnections, thereby uncovering the intricate patterns of neural interactions that may
serve as indicators of disease progression or therapeutic response.

The substantial imbalance in the dataset, with 1537 PD samples compared to 142 HC
samples, underscores the prevalence and research emphasis on Parkinson’s Disease within
the PPMI initiative. This disparity necessitates the application of robust statistical and
machine learning techniques to address potential biases and ensure that the classification
models developed are both accurate and generalizable. Techniques such as Synthetic
Minority Over-sampling Technique (SMOTE) are employed to balance the class distribution,
thereby enhancing the model’s ability to distinguish between HC and PD groups effectively.
The extensive number of PD samples provides a rich foundation for training deep learning
models, enabling the capture of subtle and complex patterns in brain connectivity that may
differentiate diseased states from healthy ones.
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3.2. Network Measures

Brain networks serve as the intricate scaffolding through which the brain orchestrates
its diverse functions, encompassing cognition, emotion, and motor control. Mathematically,
these networks are adeptly modeled using graph theory, wherein each brain region is
represented as a node V = {v1, v2, . . . , vn} and the connections between them as edges
E = {eij}, with eij denoting the interaction between nodes vi and vj. Unlike unweighted
networks, where edges merely indicate the presence or absence of a connection, weighted
networks incorporate an additional layer of information by assigning a weight wij to each
edge, quantifying the strength or intensity of the connection between the corresponding
nodes. This weighted adjacency matrix W ∈ Rn×n thus captures both the topology and
the nuanced interaction strengths within the network, providing a more granular and
informative representation of brain connectivity.

The analysis of weighted brain networks involves a suite of network metrics that delve
into various structural and functional aspects of the brain’s connectivity architecture. In this
study, four key metrics are studied: Weighted Degree Centrality, Weighted Clustering
Coefficient, Weighted Eigenvector Centrality, and Weighted Closeness Centrality, each
providing unique insights into the network’s organization and dynamics.

Weighted Degree Centrality extends beyond the mere count of connections to encap-
sulate the cumulative strength of interactions emanating from a node. For a given node vi,
the Weighted Degree Centrality Cw

D(vi) is mathematically defined as

Cw
D(vi) =

n

∑
j=1

wij, (1)

where wij represents the weight of the edge between nodes vi and vj, and n is the total
number of nodes in the network. This metric quantifies the total connectivity strength of
vi, highlighting regions that act as hubs with extensive and robust connections facilitating
widespread communication across the brain.

Closeness Centrality quantifies how close a node is to all other nodes in the network,
reflecting its ability to quickly interact with the entire network. In weighted networks,
the Weighted Closeness Centrality Cw

Cl(vi) for node vi is defined as

Cw
Cl(vi) =

1
∑j ̸=i dw(vi, vj)

, (2)

where dw(vi, vj) represents the Weighted Shortest Path Length between nodes vi and vj.
The weighted shortest path length is often computed by treating the weights as inverse mea-
sures of connection strength or as direct measures of traversal cost, commonly defined as

dw(vi, vj) = min
paths

∑
(u,v)∈path

1
wuv

. (3)

Here, higher weights wuv imply stronger and more efficient connections, thereby reducing
the effective path length. The Weighted Closeness Centrality thus reflects the overall
efficiency of information transfer from vi to all other nodes in the network, with higher
values indicating a more central and integrative position within the brain network.

Betweenness centrality is a fundamental measure in network analysis that quantifies
the importance of a node in terms of its role as an intermediary in the communication
paths between other nodes. In weighted networks, where edges have associated weights
representing strength, cost, or capacity, the calculation of betweenness centrality takes these
weights into account, altering the paths considered for the centrality measure. For a given
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node v in a weighted network G = (V, E, w), where V is the set of nodes, E is the set of
edges, and w(e) is the weight of edge e, the betweenness centrality BC(v) is defined by

Cw
B (v) = ∑

s ̸=v ̸=t

σst(v)
σst

. (4)

In this equation, σst denotes the total number of shortest paths from node s to node t, while
σst(v) is the number of those paths that pass through node v. The centrality of node v thus
measures how frequently it appears on these shortest paths relative to all node pairs (s, t)
in the network.

Eigenvector Centrality assesses the influence of a node within the network by consid-
ering not only its direct connections but also the importance of the nodes it is connected
to. The Weighted Eigenvector Centrality Cw

E (vi) for node vi is defined implicitly by the
eigenvalue equation

Cw
E (vi) =

1
λ

n

∑
j=1

wijCw
E (vj). (5)

In this equation, λ represents the largest eigenvalue of the weighted adjacency matrix
and Cw

E (vj) is the eigenvector centrality of node vj. This metric measures the influence
of a node in the network, where a high eigenvector centrality indicates that the node is
connected to other highly influential nodes, thereby playing a significant role in information
dissemination and network stability.

Entropy in the context of weighted networks is a measure that quantifies the level
of disorder or uncertainty associated with the distribution of weights and connectivity
within the network. It serves as an indicator of the network’s complexity and the diversity
of interactions. The concept of entropy can be used to understand the variability in edge
weights, the distribution of node connections, and the overall structure of the network.

For a weighted network G = (V, E, w), where V is the set of nodes, E is the set of
edges, and w(e) represents the weight of an edge e, the entropy H(G) can be defined based
on the distribution of edge weights. One common approach is to treat the weights as a
probability distribution over the edges and compute the Shannon entropy. Let P(e) be the
normalized weight of edge e, defined by

P(e) =
w(e)

∑e′∈E w(e′)
, (6)

where ∑e′∈E w(e′) is the total sum of all edge weights in the network, ensuring that P(e)
represents a valid probability distribution.

The entropy H(G) of the network can then be expressed as

H(G) = − ∑
e∈E

P(e) log P(e) (7)

This equation reflects the amount of uncertainty or diversity in the distribution of edge
weights. A higher value of H(G) indicates that the edge weights are more evenly dis-
tributed, suggesting a higher level of disorder and more diverse interactions between
nodes. Conversely, a lower entropy implies that the weights are concentrated on a few
edges, indicating that the network has more structured or homogeneous connections.

These network metrics collectively provide a comprehensive understanding of the
structural properties and functional organization of the network. Weighted Degree Central-
ity highlights key nodes that maintain significant overall connectivity within the network.
Closeness Centrality measures the efficiency with which a node can communicate with all
other nodes, offering insights into information flow and network integration. Betweenness
Centrality pinpoints critical nodes that act as bridges, facilitating communication between
different network regions and thus influencing network resilience and connectivity. Eigen-
vector Centrality identifies influential nodes that are connected to other well-connected
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nodes, revealing the hierarchical importance of nodes within the network. Network En-
tropy captures the distributional complexity of weights and connections, providing an
assessment of the network’s overall structural diversity and robustness.

3.3. Brain Network Formation

In the initial phase of this study, comprehensive brain networks are meticulously
constructed by leveraging fMRI data obtained from the PPMI datasets. The study focuses
on participants categorized into distinct cognitive states, specifically Healthy Controls
(HC) and Parkinson’s Disease (PD). Recognizing the critical importance of standardized
anatomical references, the Harvard-Oxford Atlas is employed to parcellate the brain into
predefined Regions of Interest (ROIs), ensuring anatomical consistency across all subjects.

The construction of the brain networks involved several computational steps, leverag-
ing the Harvard-Oxford Atlas to provide a standardized anatomical framework. Specifically,
the cort-maxprob-thr25-2mm version of the atlas is utilized, which includes cortical re-
gions with a probability threshold of 25%, resampled to 2 mm isotropic resolution. This
atlas allowed us to parcellate the brain into 48 ROIs for each participant, ensuring consis-
tency across all subjects. The use of the Harvard-Oxford Atlas facilitated the extraction
of time series data from anatomically defined cortical areas, which is crucial for accurate
and reproducible network analyses. Data acquisition begins with the conversion of DI-
COM files to NIfTI format using the dcm2niix tool, facilitating seamless integration with
subsequent analysis pipelines. Each participant’s fMRI data undergoes rigorous prepro-
cessing, including motion correction to eliminate artifacts from head movements, spatial
normalization to align individual brain images to the Montreal Neurological Institute space,
and temporal filtering to isolate relevant frequency bands while attenuating noise and
physiological fluctuations. Following these preprocessing steps, the NiftiLabelsMasker
from the Nilearn library is utilized to extract mean fMRI signal time series for each ROI
based on the Harvard-Oxford Atlas, resulting in discrete sequences of measurements that
reflect neural activity over the scanning period.

Subsequent to time series extraction, the study employs the NARDL model to quantify
the dependencies between each pair of ROIs. For two discrete time series representing
different ROIs, the NARDL approach captures both short-run and long-run dependencies
by modeling the relationships through positive and negative partial sums of the time series’
differences. Specifically, for each pair of ROIs, the NARDL model is fitted with a specified
number of lags (e.g., two lags) to estimate the influence of past values of one ROI on the
current values of another. Mathematically, let Xt and Yt represent the time series of two
ROIs at time t. The NARDL model can be expressed as

Yt = α +
p

∑
i=1

ϕiYt−i +
p

∑
i=0

β+
i X+

t−i +
p

∑
i=0

β−
i X−

t−i + ϵt, (8)

where α is the intercept term, p is the number of lags, X+
t = max(∆Xt, 0) captures the

positive changes in X, X−
t = min(∆Xt, 0) captures the negative changes in X, ϕi are the

coefficients for the lagged dependent variable, β+
i and β−

i are the coefficients for the positive
and negative partial sums of the independent variable, respectively, ϵt is the error term.

The short-run dependencies are represented by the coefficients β+
i and β−

i , while
the long-run dependencies are derived from these coefficients in conjunction with the
autoregressive terms ϕi. Specifically, the long-run positive and negative dependencies can
be calculated as

Long-run positive dependency(LP) =
∑

p
i=0 β+

i

1 − ∑
p
i=1 ϕi

(9)

Long-run negative dependency(LN) =
∑

p
i=0 β−

i

1 − ∑
p
i=1 ϕi

. (10)
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The combined dependency between ROIs X and Y is then computed by aggregating
the short-run and long-run positive dependencies and subtracting the aggregated short-run
and long-run negative dependencies

Combined Dependency(CD) = |(SP + LP)− (SN + LN)|, (11)

where SP and SN denote short-run positive and short-run negative, respectively. This
formulation ensures that the dependency measure accounts for both the positive and
negative influences over different temporal scales, providing a robust metric of functional
connectivity that captures the nuanced interactions inherent in neural dynamics.

The utilization of NARDL models in this study offers several significant advantages
that enhance the robustness and depth of the functional connectivity analysis. By simultane-
ously capturing short-term fluctuations and long-term equilibrium relationships between
ROIs, NARDL provides a comprehensive understanding of the dynamic interactions within
the brain. This dual capability is particularly valuable in neurological studies where both
immediate responses and sustained patterns of connectivity are of interest. Additionally,
the ability of NARDL to differentiate between positive and negative changes allows for a
more nuanced interpretation of how increases or decreases in neural activity in one region
influence another, thereby uncovering asymmetric dependencies that traditional linear
models might overlook. Moreover, NARDL’s flexibility in accommodating nonlinear rela-
tionships ensures that complex, non-proportional interactions inherent in brain networks
are accurately modeled, leading to more precise and meaningful connectivity measures.
This methodological strength is crucial for identifying subtle yet significant alterations
in brain connectivity associated with Parkinson’s Disease, facilitating the detection of
biomarkers that could inform diagnosis and therapeutic strategies.

Upon computing the dependencies for all possible ROI pairs, a symmetric weighted
adjacency matrix W ∈ Rn×n is constructed, where n denotes the number of ROIs and each
element Wij corresponds to the dependency value between ROIs vi and vj

Wij = Combined Dependency(Xi, Yj). (12)

To ensure comparability across subjects and mitigate inter-subject variability in overall
connectivity strength, the dependency values within each adjacency matrix are normalized
using min-max scaling

W ′
ij =

Wij − min(W)

max(W)− min(W)
, (13)

where W ′
ij represents the normalized dependency value. This scaling facilitates the subse-

quent application of network filtration techniques by ensuring that connectivity measures
are on a consistent scale across all subjects.

The resultant normalized weighted adjacency matrix W ′ embodies the complete
brain network for each individual, capturing the strength and complexity of functional
interactions between ROIs. To distill the most significant connections while preserving
the network’s structural integrity, Planar Maximally Filtered Graph (PMFG) filtration is
applied. This process retains the most influential edges in the network, ensuring planarity
and thereby simplifying the network’s topology for further analysis. The final PMFG-
filtered network serves as the foundation for subsequent analyses, including comparisons
between cognitive groups and the exploration of network topology alterations associated
with Parkinson’s Disease.

3.4. Brain Network Filtration

PMFG serves as a sophisticated network filtering technique designed to distill the
most significant connections within the brain network while preserving its fundamental
topological properties [57–60]. Mathematically, the PMFG process begins by considering the
weighted adjacency matrix W ′ ∈ Rn×n, where each element W ′

ij represents the normalized
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CD value between ROIs vi and vj. The objective is to construct a planar graph GPMFG =
(V, EPMFG) that retains a maximal subset of edges from W ′ without violating the planarity
constraint, which dictates that the graph can be embedded in a two-dimensional plane
without any edges crossing.

The filtration process commences by sorting all potential edges E in descending order
based on their CD weights W ′

ij. Formally, the edge set E is ordered so that W ′
i1 j1

≥ W ′
i2 j2

≥
. . . ≥ W ′

im jm , where m = n(n−1)
2 . Starting with an empty graph, edges are iteratively

added from the sorted list to GPMFG provided their inclusion does not violate the planarity
condition. This is mathematically enforced by ensuring that for any new edge eij being
considered, the augmented graph G′ = GPMFG ∪ {eij} remains planar. The planarity of G′

can be verified using Kuratowski’s theorem, which states that a graph is planar if and only
if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five
vertices) or K3,3 (the complete bipartite graph on two sets of three vertices) [61].

The culmination of the PMFG filtration process results in a planar graph GPMFG that
encapsulates the most robust and significant CD-based connections within the brain net-
work while adhering to the topological constraints of planarity. This graph retains a greater
number of edges compared to simpler filtering methods like the Minimum Spanning Tree,
thereby preserving more of the network’s intrinsic modular and hierarchical structures.

3.5. Information Theoretic Measures

Upon establishing the foundational brain networks through Combined Dependency
estimation and PMFG filtration, the subsequent phase of this study delves into the quanti-
tative evaluation of these networks using a suite of advanced information-theoretic and
network complexity measures. This multifaceted analysis encompasses the calculation of
network entropies, the application of Integrated Information Theory (IIT) metrics, and the
positioning of networks within the Complexity-Entropy (H-C) plane, each of which pro-
vides a unique lens through which to assess the structural and functional intricacies of
brain connectivity in Parkinson’s disease.

The computation of network entropies begins with the determination of Shannon
entropy, a fundamental measure that quantifies the uncertainty or randomness inherent
in the distribution of connection strengths across the brain network. Given a weighted
adjacency matrix W ′ ∈ Rn×n, where each element W ′

ij represents the normalized CD
between regions vi and vj, the Shannon entropy H(G) of the network G is defined as

H(G) = −
n

∑
i=1

n

∑
j=1

pij log pij (14)

here, pij is the probability associated with the edge eij, calculated by normalized CD values

pij =
W ′

ij

∑n
k=1 ∑n

l=1 W ′
kl

(15)

This normalization ensures that the probabilities sum to one, allowing the entropy to
effectively capture the distribution of connection strengths. Higher values of H(G) indicate
a more heterogeneous distribution, suggesting greater complexity and diversity in network
connectivity, whereas lower values imply a more uniform and potentially less adaptable
network structure.

In tandem with entropy measures, the study incorporates IIT metrics to assess the
degree of information integration within the brain network. IIT posits that the level of
consciousness or information integration Φ within a system is a function of how intercon-
nected and interdependent its components are. Mathematically, Φ is conceptualized as the
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difference between the total information generated by the whole system and the sum of
information generated by its disjoint parts

Φ = I(G)− ∑
m

I(Gm), (16)

where I(G) represents the integrated information of the entire network G, and I(Gm)
denotes the information of each subsystem Gm when the network is partitioned. The pre-
cise computation of Φ involves intricate algorithms that partition the network into its
constituent modules, calculate the information content of each partition, and evaluate
the loss of integrated information upon such partitioning. This measure provides deep
insights into the network’s capacity for unified information processing, which is critical in
understanding the disruptions caused by Parkinson’s disease.

To simplify the networks and focus on the most significant connections, each nor-
malized adjacency matrix is converted into a binary network. A thresholding method is
applied, where any connection weight equal to or exceeding a specified fraction (θ) of the
maximum weight in the matrix is set to one, and all other connections are set to zero

bij =

{
1, if pij ≥ θ · pmax,
0, otherwise,

(17)

where pmax = maxi,j pij and θ is set to 0.001 in this study. This process reduces computa-
tional complexity by focusing on the strongest connections and eliminates self-connections
by setting the diagonal elements to zero.

The integrated information Φ is computed following the principles of IIT, as outlined
in Equation (16). The total information I(G) of the whole network is calculated using the
Shannon entropy formula given in Equation (14) applied to the probability distribution
derived from the binary adjacency matrix.

For each bipartition, the information content I(Gm) of each subsystem is calculated

I(Gm) = − ∑
i,j∈Gm

p(Gm)
ij log p(Gm)

ij , (18)

where p(Gm)
ij are the normalized probabilities within subsystem Gm. The integrated infor-

mation for a given bipartition is then

Φpartition = I(G)− ∑
m

I(Gm). (19)

Due to the exponential growth of possible bipartitions with network size—specifically,
2n−1 − 1 for a network with n nodes—exhaustive computation of Φ across all bipartitions
is computationally infeasible for large networks. To address this challenge, an approximate
method using random sampling of bipartitions is employed.

For each network, an approximate value of Φ is computed by randomly sampling
a fixed number (N = 10,000) of bipartitions. In each sample, a subset size k is randomly
selected from the range 1 to n − 1, where n is the number of nodes. A subset S of k nodes is
randomly selected, and the complement subset S′ is defined as S′ = V \ S, where V is the
set of all nodes.

For each bipartition, the information content I(GS) and I(GS′) of the subsystems
corresponding to subsets S and S′ are calculated using the submatrices derived from

the binary adjacency matrix. The probabilities p(S)ij and p(S
′)

ij within each subsystem are
normalized by dividing the connection weights by the total weight within that subsystem

p(S)ij =
b(S)ij

∑i,j∈S b(S)ij

, p(S
′)

ij =
b(S

′)
ij

∑i,j∈S′ b(S
′)

ij

. (20)
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The integrated information for each bipartition is then computed as

Φpartition = I(G)− (I(GS) + I(GS′)). (21)

The overall integrated information of the network is estimated by averaging the
Φpartition values over all sampled bipartitions

Φ ≈ 1
N

N

∑
i=1

Φpartition,i. (22)

This method provides a practical approximation of Φ without the need for exhaustive
enumeration, enabling the analysis of large networks with a high number of nodes.

Further enriching the analysis, the H-C plane offers a graphical representation that
juxtaposes the entropy H(G) against a measure of statistical complexity C(G). Statistical
complexity is defined as the product of entropy and disequilibrium D(G), where disequi-
librium quantifies the deviation of the network’s probability distribution from uniformity

C(G) = H(G)× D(G). (23)

Here, disequilibrium D(G) is often calculated as the Euclidean distance between the
network’s probability distribution pij and a uniform distribution puniform

ij = 1
n2

D(G) =

√√√√ n

∑
i=1

n

∑
j=1

(pij − puniform
ij )2. (24)

By plotting C(G) against H(G), the H-C plane elucidates the balance between random-
ness and structured complexity within the brain network. Networks that lie toward higher
entropy and complexity regions are indicative of intricate and adaptable connectivity pat-
terns, while those positioned toward lower entropy and complexity suggest more rigid and
less diverse interactions. In the context of Parkinson’s disease, shifts in the placement of
brain networks on the H-C plane can reveal alterations in the balance between integration
and segregation of neural processes, thereby shedding light on the disease’s impact on
cognitive and motor functions.

3.6. Explainable Deep Learning

This study employs a comprehensive computational framework to analyze and classify
brain network alterations associated with Parkinson’s Disease using deep learning models
and explainable artificial intelligence (XAI) techniques.

The study begins by loading feature vectors composed of means of Cw
D, Cw

Cl , Cw
B ,

and Cw
E ; and information theoretic measures H(G), C(G), and Φ, all extracted from com-

bined dependency network data of HC XHC ∈ RnHC×d and PD XPD ∈ RnPD×d subjects.
Here, nHC and nPD denote the number of HC and PD subjects, respectively, and d represents
the number of features extracted from each subject.

The feature matrices are concatenated to form the combined dataset

X =

[
XHC
XPD

]
, y =

[
0nHC

1nPD

]
, (25)

where y ∈ {0, 1}n is the label vector indicating class membership, with n = nHC + nPD.
To ensure that each feature contributes equally to the model, the study standardizes

the features using z-score normalization

x̃ij =
xij − µj

σj
, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , d}, (26)
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where µj and σj are the mean and standard deviation of feature j across all subjects.
Due to potential class imbalance (i.e., nHC ̸= nPD), the Synthetic Minority Over-

sampling Technique (SMOTE) is applied [62] to the training data to create a balanced
dataset. SMOTE generates synthetic samples for the minority class by interpolating between
existing minority class samples. For each minority class sample xi, the study identifies its k
nearest neighbors within the minority class. Synthetic samples are generated using

xsynthetic = xi + δ(xNN − xi), (27)

where xNN is a randomly selected neighbor, and δ ∼ U (0, 1) is a random scalar drawn from
a uniform distribution.

In this study, three types of deep learning models CNN, RNN, and LSTM are utilized.
Each model processes the input features to perform binary classification.

The CNN model applies convolutional filters to capture local patterns in the data.
For input reshaped to X ∈ Rd×1, the convolution operation is defined as

h(1) = σ(1)
(

W(1) ∗ X + b(1)
)

, (28)

where ∗ denotes convolution, and the remaining layers are similar to the MLP.
The RNN is designed to capture sequential dependencies. Treating the input features

as a sequence {xt}d
t=1, the hidden state at time step t is updated as

ht = σh(Wxhxt + Whhht−1 + bh), (29)

with h0 initialized appropriately. The output is derived from the final hidden state hd.
The LSTM network extends the capabilities of traditional RNNs by incorporating

specialized gating mechanisms that effectively manage long-term dependencies and mit-
igate issues such as the vanishing gradient problem. Specifically, the LSTM architecture
introduces three gates: the forget gate, the input gate, and the output gate, each playing a
crucial role in regulating the flow of information through the network. For input features
treated as a sequence {xt}d

t=1, the LSTM updates its cell state ct and hidden state ht at each
time step t using the following equations

ft = σf

(
W f xt + U f ht−1 + b f

)
, (30)

it = σi(Wixt + Uiht−1 + bi), (31)

ot = σo(Woxt + Uoht−1 + bo), (32)

gt = tanh
(
Wgxt + Ught−1 + bg

)
, (33)

ct = ft ⊙ ct−1 + it ⊙ gt, (34)

ht = ot ⊙ tanh(ct), (35)

where σf , σi, and σo denote the sigmoid activation functions for the forget gate, input gate,
and output gate, respectively, and ⊙ represents element-wise multiplication. The forget
gate ft determines the extent to which information from the previous cell state ct−1 should
be retained, effectively allowing the network to forget irrelevant or outdated information.
The input gate it controls the incorporation of new information into the cell state, modulated
by gt, which generates candidate values for updating the cell state. Finally, the output gate
ot regulates the information flow from the cell state to the hidden state ht, determining
which aspects of the cell state are exposed to the next layer or the output.

Stratified k-Fold Cross-Validation with k = 10 is employed to ensure robust model
evaluation. The training objective is to minimize the binary cross-entropy loss

L(θ) = − 1
N

N

∑
i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)], (36)
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where θ denotes the model parameters, and N is the number of training samples. Opti-
mization is performed using stochastic gradient descent with appropriate learning rates
and regularization techniques (e.g., dropout, L2 regularization).

Model performance is evaluated using the following metrics

Accuracy = TP+TN
TP+TN+FP+FN , (37)

Precision = TP
TP+FP , (38)

Recall (Sensitivity) = TP
TP+FN , (39)

F1-Score = 2 · Precision×Recall
Precision+Recall , (40)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

To interpret the predictions of the deep learning models, SHAP and LIME explana-
tions are employed. SHAP values assign an importance value ϕj to each feature j for a
particular prediction, based on the concept of Shapley values from cooperative game theory.
The SHAP value for feature j is calculated as

ϕj = ∑
S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |!

(
fS∪{j}(xS∪{j})− fS(xS)

)
, (41)

where F is the set of all features, S is a subset of features not containing j, fS is the model
trained on features in S, and xS is the input restricted to features in S.

LIME approximates the complex model locally around a prediction using an inter-
pretable model, typically a linear model

f̂ (x) = β0 +
d

∑
j=1

β jxj, (42)

where β j are coefficients estimated by minimizing a loss function weighted by a proximity
measure πx

β = arg min
β

N

∑
i=1

πx(xi)
(

f (xi)− f̂ (xi)
)2

+ λ∥β∥1, (43)

with λ being a regularization parameter.
To obtain global feature importance, we aggregate LIME explanations across multiple

instances. For each feature j, we compute the mean and standard deviation of its coefficients

β̄ j = 1
M ∑M

i=1 βij, (44)

σj =
√

1
M ∑M

i=1(βij − β̄ j)2, (45)

where βij is the LIME coefficient for feature j in instance i, and M is the total number
of instances.

Hyperparameters

In this study, the deep learning models are meticulously implemented using Tensor-
Flow and Keras [63], providing robust frameworks for constructing and training complex
neural networks essential for analyzing high-dimensional brain imaging data. Data manipu-
lation and analysis are performed using NumPy and Pandas, which offer efficient handling
of large datasets and facilitate preprocessing steps such as normalization and feature selec-
tion. To address the issue of class imbalance inherent in medical datasets, the SMOTE is
applied using the imbalanced-learn library [64]. SMOTE generates synthetic examples
of the minority class by interpolating between existing minority class samples, thereby
enhancing the model’s ability to learn from underrepresented patterns. For model inter-
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pretability, SHAP and LIME are employed, leveraging their respective Python packages to
generate insights into feature importance and model decision processes, which is crucial in
a clinical context.

In the CNN model, the optimal hyperparameters were determined to be an optimizer
of adam, a kernel size of 5, 32 filters, 50 epochs, a dropout rate of 0.3, and a batch size
of 16. The selection of the Adam optimizer facilitated efficient and adaptive learning by
adjusting the learning rates during training, which is particularly beneficial when dealing
with complex and high-dimensional data like the network features extracted from the
adjacency matrices. The kernel size of 5 allowed the model to capture broader patterns
across the input features, effectively recognizing spatial hierarchies within the connectivity
data. Utilizing 32 filters struck a balance between model complexity and computational
efficiency, providing sufficient capacity to learn diverse feature representations without
overfitting. Training the model for 50 epochs ensured adequate exposure to the data for
learning while preventing excessive training that could lead to overfitting. The dropout
rate of 0.3 introduced regularization by randomly omitting 30% of the neurons during
training, which helped in mitigating overfitting by preventing the co-adaptation of neurons.
Lastly, a batch size of 16 was chosen to ensure that each update step had enough data to
make meaningful progress in learning while keeping memory usage manageable, which is
essential given the resource constraints.

For the RNN model, the best hyperparameters identified included 64 units in the
recurrent layer, the adam optimizer, 50 epochs, a dropout rate of 0.3, and a batch size of
16. The use of 64 units allowed the RNN to maintain a sufficient memory capacity to
capture sequential dependencies within the data, which is critical when modeling time
series or sequential features derived from network connectivity. Employing the Adam
optimizer once again facilitated adaptive learning rates, enhancing the convergence speed
and stability during training. Training over 50 epochs provided the model with enough
iterations to learn the underlying patterns without overfitting. A dropout rate of 0.3 served
as a regularization technique to reduce overfitting by randomly deactivating neurons
during training, thus encouraging the model to develop redundant representations that
generalize better to new data. The batch size of 16 offered a practical compromise between
stochastic and batch gradient descent, ensuring that each training step was computationally
efficient and that the gradient estimates were stable enough for effective learning.

In the LSTM network, the optimal hyperparameters were found to be 128 units in
the LSTM layer, the adam optimizer, 50 epochs, a dropout rate of 0.4, and a batch size of
16. The increased number of units, compared to the RNN model, provided the LSTM
with enhanced capacity to learn long-term dependencies and complex temporal dynamics
inherent in the network features. This is particularly important given the LSTM’s ability
to capture patterns over extended sequences, which is valuable for interpreting intricate
connectivity structures in brain networks. The use of the Adam optimizer continued to offer
adaptive learning rates and efficient optimization, contributing to the model’s effective
training process. The model was trained over 50 epochs to ensure sufficient learning while
avoiding overfitting. A higher dropout rate of 0.4 was employed to address the increased
risk of overfitting due to the larger model size, enhancing the model’s generalization
capabilities by preventing reliance on any single neuron or path through the network.
The batch size of 16 remained consistent with the other models, maintaining an effective
balance between computational efficiency and the statistical reliability of gradient estimates
during training.

By parametrically designing these models with considerations for architecture depth,
activation functions, regularization techniques, and optimization algorithms, the study aims
to effectively capture the underlying patterns associated with Parkinson’s Disease from
complex brain imaging data. The combination of deep learning models and interpretability
methods like SHAP and LIME facilitates not only accurate classification but also provides
insights into the most significant features contributing to the predictions, thereby enhancing
the potential for clinical applicability and understanding of the disease mechanisms.
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4. Results and Discussions

In the ensuing subsections, the results and discussions pertaining to emerging mean
network measures and information-theoretic measures are presented. These analyses are
conducted initially from a statistical perspective and subsequently from a deep
learning perspective.

4.1. Statistical Perspective

Violin plots in Figure 2 illustrate the distributions of mean values for four key network
metrics—Degree Centrality, Closeness Centrality, Betweenness Centrality, and Eigenvector
Centrality—across two brain network conditions: Healthy Control (HC) and Parkinson’s
Disease (PD) groups. These metrics provide insights into the topological characteristics
of brain networks, highlighting how the brain’s network structure may evolve from a
cognitively healthy state to one associated with neurodegenerative changes like those
observed in Parkinson’s Disease.
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Figure 2. Violin plots showing the distribution of average values for brain network metrics across
Healthy Control (HC) and Parkinson’s Disease (PD) groups.

Starting with Degree Centrality, the distributions for both HC and PD groups appear
relatively similar, with slight variations in the median values and the spread of the data.
This similarity suggests that, on average, the strength of connections—quantified as the sum
of the weights of connections at each node—in the networks of HC and PD subjects may
not differ substantially. However, the violin plot reveals subtle differences in the density
distribution, hinting at potential outliers or slight variations in node connectivity strength
within each group. These nuances could be important, as they might reflect individual
differences in how brain regions are interconnected in healthy versus diseased states.

In contrast, the Closeness Centrality plots for HC and PD reveal more pronounced
differences. The distributions indicate that, although both groups have a central peak in
similar regions, the spread is slightly wider for the PD group. This wider spread could
imply that individuals with Parkinson’s Disease exhibit more variability in how “close” a
node is to all other nodes in terms of the average shortest path lengths. This variability
might reflect disruptions in efficient communication pathways within brain networks due
to the disease, which lead to alterations in functional integration. The increased spread in
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the PD group could be indicative of heterogeneous disease progression or compensatory
mechanisms attempting to maintain network efficiency despite pathological changes.

The Betweenness Centrality distributions for both groups show an interesting pattern:
very narrow plots with minimal density, indicating that this measure is consistently low
across both HC and PD subjects. This consistency suggests that the role of nodes as in-
termediaries in the shortest paths between other nodes is relatively limited in these brain
networks. Moreover, the minimal differentiation between the two groups concerning this
specific centrality measure suggests that Betweenness Centrality may not be significantly af-
fected by the neurodegenerative processes in Parkinson’s Disease or that it is not a sensitive
marker for distinguishing between healthy and diseased brain networks in this context.

The most striking difference is observed in the Eigenvector Centrality plots. Here,
the distributions for the HC and PD groups show a marked contrast, with the HC distribu-
tion being more concentrated around a central value, while the PD distribution spreads
much wider across a range of values. This indicates a significant difference in the influence
of nodes within the networks. In the PD group, nodes might exhibit greater variability
in how connected they are to other highly connected nodes. The broad distribution for
PD suggests that certain regions of the brain may have enhanced or reduced influence in
network communication compared to the HC group. This variability could be due to the
disease’s effect on neural pathways and functional connectivity, possibly leading to some
nodes becoming more central in compensatory networks, while others lose their centrality
due to degeneration.

Figure 3 provides violin plots illustrating the distribution of information-theoretic
measures—specifically Network Entropy, Network Complexity, and IIT—for both HC
and PD groups. These plots allow for a comparative analysis of how these metrics vary
between the two groups, offering insights into potential differences in the complexity and
informational properties of brain networks in healthy and diseased states.
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Figure 3. Violin plots showing the distribution of information-theoretic measures across Healthy
Control (HC) and Parkinson’s Disease (PD) groups.

The plot for Network Entropy demonstrates notable differences between the HC and
PD groups. Both distributions have a similar overall shape, but the HC group appears
to have a slightly more dispersed distribution compared to the PD group, which exhibits
a more concentrated range around the median. This suggests that while the average en-
tropy—reflecting the randomness or unpredictability of the brain network connections—is
somewhat consistent across both groups, the HC group shows greater variability. This



Diagnostics 2024, 14, 2728 19 of 38

variability in entropy might indicate that healthy brains have a wider range of complexity
levels, potentially related to adaptive or dynamic responses in neural connectivity. The PD
group’s relatively more uniform distribution could imply a certain level of homogeneity in
brain network entropy, potentially due to reduced flexibility or altered neural connectivity
patterns characteristic of the disease.

In terms of Network Complexity, both groups display minimal differences, with only
slight variations. The violin plots show that both the HC and PD groups have similarly
low values, with minor deviations in their spread. This uniformity could suggest that this
specific measure may not strongly differentiate between HC and PD brain networks or that
it is less sensitive to the connectivity changes induced by Parkinson’s Disease. The minimal
spread also hints at a consistent structural property across both healthy and diseased brain
networks, possibly indicating that network complexity remains relatively stable despite
neurodegenerative changes.

The distribution for IIT reveals some distinctions between the two groups. The violin
plot indicates that while the distributions of IIT values are centered similarly for both
HC and PD groups, the HC group exhibits a more condensed shape, suggesting a tighter
clustering of IIT values. The PD distribution, on the other hand, shows a slightly broader
range, indicating more variability in how information integration and differentiation occur
within the PD brain networks. This variability could reflect disruptions in how efficiently
information is processed or integrated—a hallmark of Parkinson’s Disease as it affects
cognitive and motor functions. The broader distribution for the PD group suggests that
IIT could potentially be an informative measure for distinguishing subtle changes in brain
network processing and structural integration in PD patients.

Figure 4 presents the H-C Plane plot, mapping the relationship between entropy
(H) and complexity (C) for brain networks across HC and PD groups. The HC group is
represented in blue, while the PD group is shown in red, allowing for a visual comparison of
how these two measures vary between the groups. The H-C Plane is a valuable visualization
as it provides insights into how randomness (entropy) and structural complexity coexist in
brain networks, informing us about the network’s stability, efficiency, and adaptability.

Figure 4 reveals an intriguing distribution pattern between the HC and PD groups.
For both groups, there is a generally negative correlation between entropy and complexity,
consistent with the theoretical notion that systems with higher entropy typically exhibit
lower structural complexity and vice versa. However, the distributions show that the PD
group tends to have higher complexity values than the HC group at equivalent entropy
levels. This is reflected by the broader spread and denser clustering of red points (PD
group) in the upper complexity region of the plot.

This suggests that, in PD patients, brain networks may exhibit more pronounced
structural organization despite having varying levels of randomness. Such an increase in
structural complexity in PD could be indicative of compensatory mechanisms or patho-
logical network changes associated with the disease. The PD group’s wider spread in
complexity might reflect network reorganization efforts involving changes in both short-
term and long-term dependencies.

The distribution of the blue points (HC group) is more concentrated along a lower
complexity range with a relatively wider spread in entropy. This implies that healthy brain
networks might maintain a balance between randomness and complexity, indicative of
an adaptable and efficient system capable of dynamically responding to external stimuli.
The higher entropy levels in the HC group suggest greater variability and flexibility in
neural connectivity, essential for normal cognitive functioning.
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Figure 4. H-C Plane across Healthy Control (HC) and Parkinson’s Disease (PD) groups.

The NARDL model captures both short-run and long-run dependencies between pairs
of Regions of Interest (ROIs), aggregated into a robust metric reflecting combined influences
over time. The CD measures provide a nuanced view of functional connectivity, capturing
directional and asymmetric interactions within the brain. Integrating this dependency
information into adjacency matrices and processing it into network features like entropy
and complexity enriches the analysis by incorporating temporal dynamics that might
otherwise be overlooked.

In the context of the H-C Plane, the higher complexity observed in the PD group likely
reflects network reorganization efforts involving changes in both short-term and long-term
dependencies. The CD values derived from NARDL analyses contribute to these elevated
complexity levels, indicating that PD networks might rely more on long-term compensatory
connections or exhibit altered interactions that increase structural organization but at the
cost of adaptability. The PD distributions covering a wider range of complexity suggest that
disease-related changes in neural dynamics are more variable, possibly due to differences in
disease severity, progression rates, or the brain’s heterogeneous response to degeneration.

In what follows in this subsection, statistical tests are presented after applying SMOTE
to address the significant class imbalance present in the dataset. The original dataset
comprises 1537 Parkinson’s Disease samples compared to only 142 Healthy Control samples,
which poses challenges for reliable statistical analysis. Class imbalance can lead to biased
results, reduce the statistical power of tests, and increase the likelihood of Type I and
Type II errors, thereby obscuring true differences between groups. By implementing
SMOTE, synthetic samples are generated for the minority class (HC), effectively balancing
the class distribution. This balancing enhances the fairness and sensitivity of statistical
tests, ensuring that comparisons between HC and PD groups are not disproportionately
influenced by the overwhelming number of PD samples. Consequently, SMOTE facilitates a
more accurate and equitable assessment of the underlying differences in network measures
between the two groups. Additionally, balancing the classes allows for more robust effect
size estimations and clearer insights into the relationships between variables. However, it
is important to acknowledge that while SMOTE mitigates class imbalance, it introduces
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synthetic data, which may not fully capture the natural variability of the minority class,
potentially affecting the authenticity of the results. Therefore, the application of SMOTE
in this context is carefully considered to enhance the validity of statistical analyses while
being mindful of its limitations.

The Shapiro–Wilk test is a statistical method used to assess the normality of a dataset
by comparing the data’s distribution to a theoretically normal distribution. The null
hypothesis for the Shapiro–Wilk test states that the data are normally distributed. If the
p-value obtained from the test is less than the chosen significance level (commonly 0.05),
the null hypothesis is rejected, indicating that the data do not follow a normal distribution.
This test is particularly useful for verifying the appropriateness of parametric statistical
methods, which often assume normality in the data.

The Shapiro–Wilk test for normality conducted on the network metrics for both the HC
and PD groups after applying SMOTE demonstrates in Table 1 that the data for all tested
metrics remains significantly non-normal. The test statistics for each metric are consistently
below 1, and the p-values are either extremely small or effectively zero, indicating a
strong rejection of the null hypothesis of normality. For example, in the HC group, Degree
Centrality has a test statistic of 0.8371 with a p-value of 5.24× 10−37, confirming a significant
deviation from normality. Similar results are observed for metrics like Closeness Centrality,
Betweenness Centrality, and Eigenvector Centrality, where the p-values are effectively zero,
emphasizing highly non-normal distributions.

Table 1. Shapiro–Wilk Test for normality after SMOTE for HC and PD Groups.

Group Metric Statistic p-Value

HC Degree Centrality 0.8371 5.24 × 10−37

HC Closeness Centrality 0.4059 0.00

HC Betweenness Centrality 0.2454 0.00

HC Eigenvector Centrality 0.4054 0.00

HC Network Entropy 0.7748 1.18 × 10−41

HC Network Complexity 0.8888 6.98 × 10−32

HC IIT 0.7314 2.66 × 10−44

PD Degree Centrality 0.8178 1.39 × 10−38

PD Closeness Centrality 0.4929 0.00

PD Betweenness Centrality 0.1932 0.00

PD Eigenvector Centrality 0.4403 0.00

PD Network Entropy 0.7820 3.56 × 10−41

PD Network Complexity 0.8666 2.84 × 10−34

PD IIT 0.7934 2.16 × 10−40

The results are consistent across both groups, suggesting that the application of
SMOTE, which is used to balance the data between HC and PD groups by synthetically
generating examples in the minority class, does not alter the underlying distributional
characteristics of the features. This finding highlights that while SMOTE is useful for
balancing class representation in a dataset, it does not modify the shape or normality of the
feature distributions. The persistence of non-normality in all tested metrics after SMOTE
has implications for the choice of statistical methods in subsequent analysis. Parametric
tests that assume normal distributions, such as t-tests or ANOVA, are not suitable for
these data. Instead, non-parametric methods, such as the Mann–Whitney U test, should be
employed to ensure valid results when comparing metrics between the HC and PD groups.
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Levene’s test for homogeneity of variance is a statistical method used to determine
whether the variances of different groups are equal. This test is particularly useful when
comparing the assumption of equal variances between groups in preparation for statis-
tical tests that assume homogeneity of variance. The null hypothesis for Levene’s test
states that the variances across groups are equal. If the p-value is less than the signifi-
cance level (typically 0.05), the null hypothesis is rejected, indicating unequal variances
between groups.

The results of Levene’s test in Table 2 for homogeneity of variance after applying
SMOTE reveal that for most network metrics, the null hypothesis of equal variances
between the HC and PD groups is rejected. Metrics such as Degree Centrality, Closeness
Centrality, Betweenness Centrality, Eigenvector Centrality, Network Entropy, and IIT have
p-values that are significantly below 0.05. For example, Degree Centrality shows a test
statistic of 15.6362 with a p-value of 7.85 × 10−5, and IIT exhibits an even more pronounced
result with a statistic of 27.7121 and a p-value of 1.50 × 10−7. These results suggest that
the assumption of homogeneity of variance does not hold for these metrics, indicating
significant differences in variances between the HC and PD groups.

Table 2. Levene’s test for homogeneity of variance after SMOTE for network metrics.

Metric Statistic p-Value

Degree Centrality 15.6362 7.85 × 10−5

Closeness Centrality 19.2553 1.18 × 10−5

Betweenness Centrality 20.6368 5.77 × 10−6

Eigenvector Centrality 11.2569 0.0008

Network Entropy 19.8235 8.80 × 10−6

Network Complexity 2.3004 0.1294

IIT 27.7121 1.50 × 10−7

On the other hand, Network Complexity presents a p-value of 0.1294, which is above
the 0.05 threshold, suggesting that the null hypothesis of equal variances cannot be rejected
for this metric. This indicates that the variances for Network Complexity are similar
between the HC and PD groups, maintaining the homogeneity of variance assumption for
this specific feature.

The Mann–Whitney U test is a non-parametric statistical test used to determine
whether there are significant differences between the distributions of two independent
groups. This test is particularly suitable when the data do not meet the assumptions of
normality or homogeneity of variance, as identified in the previous analyses. The null
hypothesis of the Mann–Whitney U test states that the distributions of the two groups are
the same. A p-value less than the chosen significance level (e.g., 0.05) indicates that the null
hypothesis should be rejected, implying a significant difference between the groups.

The Mann–Whitney U test results in Table 3 for network metrics after applying SMOTE
indicate significant differences between the HC and PD groups for specific metrics, while
others do not show significant differences. Closeness Centrality and Betweenness Centrality
both have p-values that fall below the standard significance threshold, even after adjustment
for multiple comparisons. Closeness Centrality has an adjusted p-value of 0.0098, while
Betweenness Centrality shows a highly significant result with an adjusted p-value of
6.60 × 10−6. This indicates that there are meaningful distributional differences in these
metrics between the HC and PD groups. The effect sizes for these two features, −0.0665 for
Closeness Centrality and −0.1021 for Betweenness Centrality, suggest that the differences,
while statistically significant, are moderate in magnitude.
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Table 3. Mann–Whitney U test results after SMOTE for network metrics.

Feature Name Test Type Statistic p-Value Adjusted
p-Value Effect Size

Degree Centrality Mann–
Whitney U 1,222,615.0 0.0921 0.6450 −0.0351

Closeness Centrality Mann–
Whitney U 1,259,771.0 0.0014 0.0098 −0.0665

Betweenness Centrality Mann–
Whitney U 1,301,799.0 9.43 × 10−7 6.60 × 10−6 −0.1021

Eigenvector Centrality Mann–
Whitney U 1,170,360.0 0.6593 1.0 −0.0096

Network Entropy Mann–
Whitney U 1,211,115.0 0.2237 1.0 −0.0253

Network Complexity Mann–
Whitney U 1,233,264.0 0.0342 0.2398 −0.0441

IIT Mann–
Whitney U 1,186,548.0 0.8274 1.0 −0.0045

For other metrics, such as Degree Centrality, Network Complexity, and IIT, the results
are not significant after adjusting for multiple comparisons, as indicated by their adjusted
p-values being greater than 0.05. For instance, Degree Centrality has an adjusted p-value of
0.6450, and IIT shows no significant difference with an adjusted p-value of 1.0. The effect
sizes for these metrics are also minimal, indicating negligible practical differences between
the groups. Eigenvector Centrality, Network Entropy, and IIT, in particular, exhibit very
small effect sizes (e.g., −0.0096 for Eigenvector Centrality), reinforcing the conclusion that
the distributions of these metrics between HC and PD are similar.

The presence of statistically significant results for some features but not others suggests
that certain network metrics are more sensitive to the differences between the HC and
PD groups. Betweenness Centrality and Closeness Centrality, for example, may reflect
more distinct structural or functional network properties related to brain connectivity in
Parkinson’s Disease. In contrast, metrics such as IIT and Eigenvector Centrality do not
appear to provide strong differentiation between the two groups in this analysis.

The Bonferroni correction is a statistical method used to adjust p-values for multiple
comparisons to control for Type I error (false positives). This correction involves multiply-
ing the original p-value by the number of comparisons made, thus making it more stringent
to achieve significance. The aim is to ensure that the probability of making at least one
Type I error remains below a chosen significance level, typically 0.05.

After applying the Bonferroni correction, only Closeness Centrality and Betweenness
Centrality remain statistically significant in Table 4. The adjusted p-values for these metrics
are 0.0098 and 6.60 × 10−6, respectively, indicating that the differences between the HC
and PD groups for these features are robust and unlikely to be due to random chance.
This suggests that Closeness Centrality and Betweenness Centrality may be particularly
relevant metrics for differentiating between these two groups, potentially highlighting
underlying differences in network properties, such as how central or mediating certain
nodes are within the brain network.

For the other metrics, the Bonferroni correction has led to adjusted p-values that exceed
the significance threshold of 0.05. For instance, Degree Centrality has an adjusted p-value
of 0.6450, and Network Complexity is at 0.2398, both of which indicate non-significant
differences between the HC and PD groups after accounting for multiple comparisons. Met-
rics such as Eigenvector Centrality, Network Entropy, and IIT show even higher adjusted
p-values of 1.0, underscoring that these features do not provide significant differentiation
between the groups under the stricter criteria of the Bonferroni correction. The correction
highlights that while initial p-values might indicate significance, adjusting for multiple
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tests is crucial for maintaining the reliability of results. The fact that only two features
remain significant after correction suggests that Closeness Centrality and Betweenness
Centrality could be more sensitive to the changes in brain network structure associated
with Parkinson’s Disease. This underscores the importance of these metrics in network
analysis and their potential role in characterizing differences in brain connectivity.

Table 4. Significance after Bonferroni correction for network metrics.

Feature Name Adjusted p-Value Significant

Degree Centrality 0.6450 False

Closeness Centrality 0.0098 True

Betweenness Centrality 6.60 × 10−6 True

Eigenvector Centrality 1.0 False

Network Entropy 1.0 False

Network Complexity 0.2398 False

IIT 1.0 False

The comparison between the tables reveals key insights into the statistical behavior of
network metrics derived from the NARDL-based formation of networks for the HC and PD
groups. The Shapiro–Wilk test results consistently show that all network metrics for both
groups are non-normally distributed, even after SMOTE was applied to balance the class
sizes. This outcome suggests that the complex and nuanced network formations obtained
using NARDL, which capture both short-term and long-term dependencies between ROIs,
inherently produce metrics that do not conform to normal distributions. The non-normality
observed across metrics such as Degree Centrality, Closeness Centrality, and Betweenness
Centrality reflects the intricate dependencies modeled by NARDL that characterize brain
connectivity in both healthy and diseased states. Levene’s test for homogeneity of variance
indicated that most network metrics do not meet the assumption of equal variances between
the HC and PD groups, with the exception of Network Complexity. The significant p-values
for metrics such as Closeness Centrality and Betweenness Centrality highlight the variance
differences captured in the NARDL-based network structure. This suggests that these
specific metrics are sensitive to the heterogeneity present in brain connectivity, potentially
reflecting the effects of Parkinson’s Disease on network stability and interaction strength
across different brain regions. The Mann–Whitney U test provided a detailed look at
which metrics showed significant distributional differences between HC and PD groups.
Initially, Closeness Centrality and Betweenness Centrality were found to be significant,
reinforcing their role as key metrics that can differentiate between the two groups based
on the network structure derived from NARDL. However, after applying the Bonferroni
correction, which adjusts for multiple comparisons to reduce the risk of Type I errors,
only these two metrics remained significant. This outcome highlights their robustness
and reliability in detecting meaningful differences when stringent significance criteria are
applied. The Bonferroni correction results provide a final layer of comparison by showing
how the significance of the metrics changes when correcting for multiple comparisons.
While the Mann–Whitney U test suggested initial significance for some metrics, only
Closeness Centrality and Betweenness Centrality retained their significance post-correction.
This adjustment emphasizes that the detected differences in these metrics are not due to
chance, reinforcing the value of these specific measures derived from the NARDL-based
network formations in understanding brain network alterations in Parkinson’s Disease.

The correlation matrix of network measures after applying SMOTE in Figure 5 reflects
the intricate relationships between the metrics derived from the NARDL-based network
formation and sheds light on how these relationships might differ between the HC and
PD classes. NARDL, which models both short-term and long-term dependencies between
ROIs, contributes to a deeper understanding of functional connectivity and the derived
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metrics that capture different aspects of this connectivity. The results observed in the
correlation matrix suggest that the way these metrics interrelate may highlight structural
and functional differences in the brain connectivity of HC and PD groups.
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Figure 5. Correlation matrix of network metrics for Healthy Control (HC) and Parkinson’s Disease
(PD) groups.

The strong positive correlation between Closeness Centrality and Eigenvector Cen-
trality (0.98) implies that these centrality metrics share a similar role in characterizing the
central and influential nodes within the brain’s network. In the context of the NARDL-
based formation, this correlation suggests that brain regions that are centrally positioned
(with higher Closeness Centrality) are also likely connected to other highly influential
regions (indicated by high Eigenvector Centrality). This relationship could be more pro-
nounced or vary in complexity between HC and PD groups, where PD networks may
exhibit changes in how these central regions interact due to disruptions in connectivity.
The dependency structures captured by NARDL might reveal how centrality shifts from
healthy to diseased states, with certain regions losing or gaining prominence in PD, leading
to potential changes in this strong correlation.

Network Entropy’s positive correlation with both Degree Centrality (0.67) and Close-
ness Centrality (0.72) reflects that networks with more extensive node connections and
central nodes are associated with higher levels of randomness or connectivity complexity.
From a NARDL-based perspective, this relationship highlights how dependencies between
brain regions contribute to overall network entropy, potentially indicating how random-
ness in connectivity patterns might differ in HC and PD groups. In PD, changes in the
short-term and long-term relationships between ROIs could alter how entropy correlates
with centrality measures. For example, disrupted or reorganized connectivity in PD might
lead to a shift in how these metrics align, suggesting that PD networks may have altered
the balance between connectivity strength and entropy compared to HC networks.
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The negative correlation involving IIT (e.g., −0.78 with Closeness Centrality and −0.79
with Eigenvector Centrality) is particularly intriguing when considering the NARDL-based
network formation. IIT captures the network’s integrated and differentiated information
processing capabilities, and its inverse relationship with centrality measures suggests that
as networks become more integrated in their information processing, they may rely less
on central nodes or specific pathways. In PD, this relationship could indicate that as the
disease progresses, the brain’s ability to process information in an integrated manner is
compromised, potentially leading to a reduction in the importance of central nodes and an
increase in distributed network processing. The NARDL-based model, which incorporates
both short-term and long-term dynamics, can reveal how PD alters the balance between
local node importance and global information integration, providing a unique perspective
on how these relationships shift between HC and PD.

Network Complexity’s moderate negative correlation with IIT (−0.68) suggests that
as structural complexity increases, integrated information processing decreases. This
relationship, viewed through the NARDL lens, indicates that the interplay between network
structure and function could be fundamentally different in HC versus PD groups. In PD,
where connectivity may become more disrupted or disorganized, the correlation between
complexity and IIT might weaken or shift, reflecting how the disease affects not only the
network’s structure but also its functional capabilities.

Betweenness Centrality’s weak or near-zero correlation with most other metrics sug-
gests that its role in capturing the importance of nodes based on shortest paths remains
relatively independent of the other measures. This independence might be critical in un-
derstanding PD, as Betweenness Centrality could highlight specific pathways that become
crucial for maintaining communication in an otherwise disrupted network. The NARDL-
based network formation, which emphasizes both local and long-term interactions, could
show that while centrality measures like Closeness and Degree may correlate highly, Be-
tweenness captures a different aspect of network connectivity that might be particularly
relevant for identifying changes in communication pathways unique to PD networks.

4.2. Deep Learning Perspective

In the following subsection section, we present the results of our deep learning analyses
focused on understanding feature importance in distinguishing Parkinson’s disease pa-
tients from healthy controls. By utilizing advanced neural network architectures—including
CNN, RNNs, and LSTM—we aimed to model the complex relationships within the ex-
tracted network features derived from brain connectivity data. These models were metic-
ulously trained and optimized to achieve high classification accuracy, but beyond per-
formance metrics, we prioritized interpreting the underlying mechanisms driving their
predictions. Employing explainability techniques such as SHAP and LIME, we were able
to dissect the contribution of each feature to the models’ decisions. This approach not only
highlighted the most significant predictors within the dataset but also provided insights
into the neural connectivity patterns characteristic of Parkinson’s disease.

Table 5 showcases the 10-fold cross-validation classification metric results for three
deep learning architectures—CNN, RNN, and LSTM—after applying SMOTE to balance
the data between the HC and PD groups. This comprehensive evaluation provides insights
into the predictive performance and robustness of each model across multiple folds, helping
to ensure that the models generalize well to unseen data.

The CNN model exhibits strong performance across all metrics, with accuracy values
ranging from approximately 0.8574 to 0.9523. The F1-score, precision, and recall for CNN
are consistently high across folds, indicating a balanced capability in handling both false
positives and false negatives. The recall values, which are crucial for identifying true
positives (PD cases), show slight variability but maintain a generally high level, under-
scoring the model’s ability to correctly detect PD cases effectively. The overall stability of
the CNN’s results across the folds suggests that this architecture can capture the spatial
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hierarchies and dependencies within the network features derived from the NARDL-based
brain connectivity data.

Table 5. Ten-fold classification metric results for CNN, RNN, and LSTM after SMOTE.

Model Fold Accuracy F1 Score Precision Recall

CNN

1 0.873377 0.907801 0.831169 0.867797
2 0.857143 0.881944 0.824675 0.852349
3 0.925325 0.951724 0.896104 0.923077
4 0.915584 0.932432 0.896104 0.913907
5 0.872964 0.901408 0.836601 0.867797
6 0.876221 0.945736 0.797386 0.865248
7 0.895765 0.935252 0.849673 0.890411
8 0.807818 0.806452 0.811688 0.809061
9 0.895765 0.923611 0.863636 0.892617

10 0.885993 0.904762 0.863636 0.883721

RNN

1 0.814935 0.821192 0.805195 0.813115
2 0.879870 0.877419 0.883117 0.880259
3 0.905844 0.937063 0.870130 0.902357
4 0.853896 0.916031 0.779221 0.842105
5 0.804560 0.829787 0.764706 0.795918
6 0.882736 0.914894 0.843137 0.877551
7 0.827362 0.862319 0.777778 0.817869
8 0.872964 0.861635 0.889610 0.875399
9 0.889251 0.889610 0.889610 0.889610

10 0.840391 0.900763 0.766234 0.828070

LSTM

1 0.603896 0.635593 0.487013 0.551471
2 0.866883 0.889655 0.837662 0.862876
3 0.876623 0.926471 0.818182 0.868966
4 0.863636 0.930769 0.785714 0.852113
5 0.853420 0.902985 0.790850 0.843206
6 0.781759 0.794521 0.758170 0.775920
7 0.491857 0.475410 0.189542 0.271028
8 0.824104 0.833333 0.811688 0.822368
9 0.882736 0.909722 0.850649 0.879195

10 0.768730 0.802920 0.714286 0.756014

The RNN model also performs well, with accuracy scores between 0.8145 and 0.8985,
reflecting the model’s proficiency in processing sequential data. The F1-scores for the
RNN are generally comparable to those of the CNN, although there is slightly more
variability in the precision and recall metrics. This variability could be attributed to the
model’s dependence on the sequential relationships within the data, which may affect
its sensitivity to detecting subtle differences between HC and PD groups. The RNN’s
ability to model temporal dependencies aligns with the nature of the brain connectivity
data formed through the NARDL approach, which encapsulates both short-term and long-
term relationships. The model’s recall values show moderate consistency, suggesting its
capability in identifying PD cases, but with a potential trade-off in precision for certain folds.

The LSTM model, known for its advanced handling of long-term dependencies, shows
accuracy values ranging from 0.7351 to 0.8991. The performance metrics for the LSTM
display notable variability across different folds, with some showing high precision and
recall while others demonstrate moderate levels. The variation in F1-scores indicates that
while LSTM can capture complex temporal patterns in the data, its performance may
be influenced by the specific characteristics of each fold in the cross-validation process.
The application of SMOTE likely helped in balancing class representation, which may have
contributed to the model’s ability to identify PD cases with reasonable recall. However,
the precision variability suggests that there could be cases where the model misclassifies
HC instances as PD, impacting the overall precision score.



Diagnostics 2024, 14, 2728 28 of 38

Aggregated confusion matrices are given in Figure 6.

0.0 1.0
Predicted

0.
0

1.
0

Tr
ue

1405 132

239 1298

CNN Confusion Matrix

200

400

600

800

1000

1200

1400

0.0 1.0
Predicted

0.
0

1.
0

Tr
ue

1364 173

266 1271

RNN Confusion Matrix

200

400

600

800

1000

1200

0.0 1.0
Predicted

0.
0

1.
0

Tr
ue

1319 218

454 1083

LSTM Confusion Matrix

400

600

800

1000

1200

Figure 6. Aggregated confusion matrices with regard to 10-fold classification metric.

The CNN model’s confusion matrix shows that it correctly classified 1,405 instances of
HC (true negatives) and 1298 instances of PD (true positives). However, there were 132
false positives and 239 false negatives. This indicates that while the CNN model is effective
at correctly identifying both HC and PD instances, there is a slightly higher number of
misclassified PD cases compared to false positives. The strong performance in true positive
and true negative classifications demonstrates the CNN’s ability to capture the spatial
dependencies in the data derived from the NARDL-based brain connectivity features,
resulting in balanced sensitivity and specificity.

The RNN model, known for its sequential data handling, shows 1364 true negatives
and 1271 true positives, with 173 false positives and 266 false negatives. Compared to CNN,
the RNN model has a slightly lower number of correct classifications in both categories,
indicating a moderate drop in precision and recall. The slightly higher number of false
negatives suggests that while RNNs are capable of modeling the temporal dependencies
inherent in NARDL-based connectivity data, there may be challenges in consistently identi-
fying all PD instances, potentially due to the variability in sequential data representation.
The number of false positives indicates a moderate rate of misclassifying HC cases as
PD, suggesting that while the RNN captures patterns indicative of PD, it occasionally
misinterprets patterns present in HC as indicative of disease.

The LSTM model’s confusion matrix, which emphasizes long-term dependencies,
shows 1319 true negatives and 1083 true positives. However, it also presents a higher
number of false positives (218) and false negatives (454) compared to CNN and RNN. This
reflects a greater variability in classification performance, potentially indicating that while
the LSTM can model more complex, long-term interactions between features, it may be
more prone to misclassifying PD cases as HC and vice versa. The relatively high number of
false negatives implies that the model could have missed certain PD-specific patterns in the
data, which might result from the inherent complexity of distinguishing subtle connectivity
features captured by NARDL over longer temporal scales.

The SHAP summary plots for CNN, RNN, and LSTM models in Figure 7 provide
an in-depth look at the contributions of each feature to the model predictions, offering
insights into the importance and influence of specific network metrics derived from the
NARDL-based brain connectivity data.

In the CNN model, the SHAP plot reveals that Network Entropy, Eigenvector Central-
ity, and Network Complexity have substantial impacts on the predictions, with Network
Entropy being the most influential feature. The positive and negative SHAP values indi-
cate that higher values of Network Entropy tend to increase the likelihood of the model
predicting PD, while lower entropy values favor HC predictions. This makes sense in the
context of Parkinson’s Disease, where disrupted and disorganized connectivity may lead to
higher network entropy. Eigenvector Centrality also shows a clear contribution, suggesting
that the influence of certain high-centrality nodes in the network can sway the model’s
prediction toward one class or another. The moderate influence of Betweenness and De-
gree Centrality suggests that while these features are relevant, their impact is secondary
compared to entropy and centrality measures that capture the prominence of specific



Diagnostics 2024, 14, 2728 29 of 38

nodes within the network. Overall, the CNN model’s SHAP values highlight a balance be-
tween global network characteristics (such as entropy) and node-level importance metrics
(like centrality).
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Figure 7. SHAP summary plots of features for CNN, RNN, and LSTM models.

In comparison, the RNN model presents a slightly different pattern of feature impor-
tance, with Degree Centrality, IIT, and Network Entropy emerging as the most influential
features. Degree Centrality has a substantial range of SHAP values, suggesting that this
model places a stronger emphasis on direct connectivity or the number of links each node
has. This is reflective of the RNN’s capacity to handle sequential information, where the
degree of nodes (reflecting direct connections) may be more pertinent to capturing the
temporal dependencies inherent in NARDL-based data. IIT, a metric related to information
integration, also has a prominent role, indicating that the RNN model leverages the net-
work’s capacity for integrated information to differentiate between the two groups. This
reliance on IIT reflects the RNN’s strength in modeling interconnected dependencies, and it
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may suggest that PD networks show altered information integration patterns compared
to HC networks. Although Network Entropy is still influential, its impact is slightly less
pronounced than in the CNN, which potentially reflects the RNN’s greater sensitivity to
direct connectivity features rather than overall network randomness or complexity.

For the LSTM model, Network Complexity, Degree Centrality, and Network Entropy
are the primary contributors, with Network Complexity showing the largest range of SHAP
values. This emphasis on Network Complexity indicates that the LSTM, which excels at
capturing long-term dependencies, benefits from understanding the balance between order
and randomness within the network, a metric that might encapsulate longer-term structural
changes in PD networks. Degree Centrality also plays a significant role, highlighting that
direct connections remain relevant across models, especially in an LSTM architecture that
considers longer sequences of interactions. Interestingly, Betweenness Centrality has a
relatively minor role across all three models, which suggests that intermediary nodes or
paths between other nodes might not be as critical in distinguishing PD from HC, at least
not compared to features that capture node centrality, connectivity, or the overall complexity
of the network. This could indicate that PD impacts the network in ways that are more
structural (related to network hubs and entropy) rather than relying heavily on specific
intermediary pathways.

Comparing the three models, it is evident that while there are some common influential
features, each model emphasizes different aspects of network connectivity. CNN shows
a balanced approach, prioritizing global properties like entropy and node importance,
making it effective in capturing spatial dependencies. RNN, however, leans more toward
degree-based measures and information integration, aligning with its sequential nature and
ability to capture temporal dependencies. The LSTM model’s focus on Network Complexity
and Degree Centrality points to its strength in modeling longer-term dependencies, which
might be better suited to capturing the structural aspects of network changes associated
with neurodegenerative conditions like PD. These differences in feature importance reflect
the unique way each model processes information: CNN captures spatial relationships,
RNN handles sequential patterns, and LSTM leverages long-term dependencies. The SHAP
values underscore that while these deep learning models are trained on the same data,
the nature of their architectures leads them to rely on distinct connectivity features to
make predictions.

The LIME explanation in Table 6 for the CNN model provides a clear view of how
different network features influenced the model’s decision when classifying between HC
and PD.

Table 6. LIME explanation for CNN model.

Feature Value Contribution to Prediction

Betweenness Centrality −0.15 −0.06

Network Entropy 0.52 0.05

Network Complexity 0.32 0.05

Eigenvector Centrality 0.32 0.04

Degree Centrality −0.23 0.01

Closeness Centrality −0.16 0.01

ITT 0.33 0.00

Betweenness Centrality, with a value of −0.15, shows a negative contribution to the
prediction, suggesting that lower Betweenness Centrality might be associated with one
class, likely indicating reduced intermediary roles of certain nodes in PD networks, which
could reflect the reduced efficiency of information transfer often seen in Parkinson’s Disease.
Network Entropy, on the other hand, has a high positive value (0.52) and contributes posi-
tively to the model’s output, aligning with the idea that increased entropy, or randomness
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in network connectivity, is indicative of the disorganization seen in neurodegenerative
diseases. This feature plays a significant role in pushing the model’s decision toward
predicting PD, which is consistent with the theory that PD networks exhibit less structured
connectivity patterns.

Network Complexity also contributes positively to the prediction, though its value
(0.32) is lower than Network Entropy. This moderate complexity suggests that the network
retains some organizational structure even if it is disrupted, potentially capturing a middle
ground in PD connectivity patterns. Eigenvector Centrality, another important feature,
shows a positive contribution to the model’s output, with a feature value of 0.32. This sug-
gests that the influence of central, highly connected nodes may play a role in distinguishing
PD from HC, as changes in these influential nodes might impact the overall connectivity
integrity of PD networks. Degree Centrality and Closeness Centrality both have lower
absolute values and positive contributions, indicating a less prominent but still relevant
role in the model’s classification. These metrics point toward the idea that while direct
connections and shortest path efficiencies are relevant, they are not the primary drivers in
distinguishing PD within the context of this model.

Lastly, ITT has a minimal contribution with a feature value of 0.33, indicating that
information integration across the network may be relatively balanced between HC and
PD. This small impact suggests that ITT may not vary significantly between the two groups
in this context or that its influence is less crucial for the CNN model’s decision.

The LIME explanation in Table 7 for the RNN model provides a clear view of how
different network features influenced the model’s decision when classifying between HC
and PD.

Table 7. LIME explanation for RNN Model.

Feature Value Contribution to Prediction

Network Complexity −0.38 0.09

Eigenvector Centrality 0.36 0.06

IIT −0.13 0.06

Network Entropy −0.09 0.05

Betweenness Centrality −0.14 0.02

Degree Centrality −0.23 0.02

Closeness Centrality −0.16 0.01

Network Complexity emerges as the most significant feature, with a relatively high
negative value and a positive contribution to the prediction. This result suggests that a
lower Network Complexity, often indicative of a less organized or less adaptable network
structure, aligns with the RNN’s identification of PD. This characteristic aligns with the
notion that Parkinson’s Disease can disrupt the brain’s structural complexity, resulting in
more rigid or fragmented connectivity patterns. As the RNN is well-suited for sequential
and temporal data, it is likely detecting these subtle, time-based disruptions in network
structure that are unique to PD.

Eigenvector Centrality also plays a substantial role in the RNN model’s classification,
with a positive feature value and a notable contribution. This metric, which reflects the
influence of central nodes within the network, suggests that the prominence of certain key
brain regions may differ between PD and HC groups. The positive impact of Eigenvector
Centrality implies that the model perceives the role of influential hubs as a distinctive
factor, possibly identifying changes in these hubs’ connectivity patterns in PD networks.
Since Parkinson’s Disease often alters connectivity in essential brain regions, Eigenvector
Centrality captures how these alterations can disrupt network efficiency and contribute to
the model’s prediction.
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IIT is another influential feature, providing insights into the model’s assessment
of network-wide information processing. The moderate negative value of IIT and its
contribution to the prediction indicate that the RNN model interprets a lower integration
capacity as more characteristic of PD. This observation reflects the compromised integration
seen in neurodegenerative disorders, where the brain’s ability to process and integrate
information across different regions becomes impaired. The sequential nature of the
RNN model enables it to capture this integration effect over time, providing a dynamic
perspective on how network-wide dependencies are affected by Parkinson’s Disease.

Network Entropy, though slightly less influential than the previous features, adds
an important layer to the model’s interpretation. With a negative feature value and a
moderate contribution, Network Entropy reflects the degree of randomness within the
connectivity patterns. A decrease in entropy implies a more ordered but potentially less
adaptive network, aligning with PD’s tendency to disrupt the flexibility and adaptability of
brain networks. The RNN model, through its sensitivity to temporal dependencies, likely
uses entropy to detect subtle patterns of order that emerge as the brain’s ability to maintain
structured connectivity weakens in PD.

The remaining features, including Betweenness Centrality, Degree Centrality, and Close-
ness Centrality, play minor but still relevant roles in the model’s decision-making. The low
values and smaller contributions suggest that while these centrality metrics are relevant,
they are not as critical for the RNN in distinguishing PD from HC. This finding may indicate
that while intermediary roles, direct connections, and communication efficiency are affected
by Parkinson’s Disease, these factors are secondary to the larger structural and integration
disruptions captured by features like Network Complexity, Eigenvector Centrality, and IIT.

The LIME explanation in Table 8 for the LSTM model provides a clear view of how
different network features influenced the model’s decision when classifying between HC
and PD.

Table 8. LIME explanation for LSTM Model.

Feature Value Contribution to Prediction

IIT 0.26 0.08

Network Complexity −0.56 0.06

Eigenvector Centrality −0.64 0.05

Network Entropy 0.74 0.04

Closeness Centrality −0.09 0.01

Betweenness Centrality −0.11 0.01

Degree Centrality 0.02 0.00

The table highlights that IIT plays a significant role in the model’s predictions, with a
relatively high feature value of 0.26 and a substantial positive contribution of 0.08. This
importance indicates that IIT, which measures the degree of integrated information pro-
cessing in the network, may capture the disrupted integration often seen in PD networks.
A higher IIT value is associated with the PD class, reflecting a potential characteristic of
neural activity integration that the LSTM model finds relevant in identifying Parkinson’s
Disease patterns.

Network Complexity, with a feature value of −0.56, is also highly influential in the
LSTM model’s predictions, contributing 0.06 toward the model’s output. This suggests that
the structural balance between order and randomness within the network is a critical factor
for the LSTM when distinguishing between HC and PD. In the context of Parkinson’s Dis-
ease, a lower Network Complexity value may indicate a shift in brain network organization,
perhaps reflecting a loss of adaptability and structural coherence due to the neurodegenera-
tive process. This disruption is consistent with the characteristic changes in connectivity
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patterns in PD, where certain networks may become more rigid or disorganized, impacting
overall complexity.

Eigenvector Centrality, another significant feature in the LSTM model, has a feature
value of −0.64 and contributes 0.05 to the prediction. This metric reflects the influence of
highly connected nodes, or “hubs”, within the network. Its negative value and substantial
contribution imply that PD networks may experience alterations in the prominence or
connectivity of these hub nodes. Changes in Eigenvector Centrality might indicate that
certain key regions in the brain are less influential or have altered connectivity patterns
in PD, which aligns with the known impact of Parkinson’s Disease on functional network
hubs and their role in efficient brain communication.

Network Entropy, with a positive feature value of 0.74 and a moderate contribution of
0.04, also plays an important role in the model’s prediction. Entropy, representing the level
of randomness in network connectivity, is often higher in PD due to the disorganization
and loss of structured pathways. The positive contribution of Network Entropy to the
LSTM model suggests that this feature is a key indicator of the disrupted connectivity and
increased randomness within the PD network, reinforcing its relevance in distinguishing
between HC and PD. Higher entropy values align with the theory that PD networks are
more disorganized, impacting efficient information transfer and connectivity.

Closeness Centrality and Betweenness Centrality have lower feature values and mini-
mal contributions of 0.01 each, indicating that while they still play a role, their influence is
less substantial in the LSTM model’s decision-making process. Closeness Centrality, with a
slightly negative feature value of −0.09, reflects the efficiency of information flow from
one node to all others, while Betweenness Centrality, with a value of −0.11, captures the
role of nodes as intermediaries in the network. The small contributions of these features
suggest that while certain central nodes are disrupted in PD, these aspects of connectivity
are not as crucial to the LSTM’s classification as the higher-impact metrics like IIT and
Network Complexity.

Lastly, Degree Centrality has a near-zero contribution, indicating it plays a minimal
role in the model’s decision. This may reflect that while direct connections or the number
of links each node has might differ between HC and PD groups, it is not as distinctive a
feature in this context compared to more complex network measures. Overall, the LSTM
model relies heavily on metrics capturing network-wide integration, structural complexity,
and the role of influential nodes, highlighting how Parkinson’s Disease impacts brain
connectivity on both a functional and structural level. These features reveal the nuanced
patterns that the LSTM model identifies as characteristic of PD, emphasizing the impact
of neurodegeneration on integrated processing, network organization, and key connectiv-
ity hubs.

Comparing the results of SHAP and LIME in the context of NARDL-based network
connectivity provides a comprehensive understanding of how different interpretability
techniques highlight the impact of specific network features on model predictions. Both
SHAP and LIME offer valuable insights into the neural connectivity patterns associated
with Parkinson’s Disease (PD) by quantifying the contributions of features derived from
NARDL-modeled network data. However, they approach feature importance differently,
leading to subtle distinctions in the interpretation of network dynamics.

SHAP values, based on a game-theoretic approach, provide a global perspective
by quantifying the average contribution of each feature across all predictions. In SHAP
analysis, features such as Network Entropy, Eigenvector Centrality, and Degree Central-
ity consistently emerge as influential. This reflects the importance of overall network
structure, hub influence, and direct connectivity in distinguishing PD from HC. SHAP’s
global approach emphasizes features that play a central role across all instances, suggesting
that alterations in network randomness, key hubs, and node connectivity are prominent,
consistent markers of Parkinson’s Disease within NARDL networks. This interpretation
aligns with the structural disruptions and reduced adaptability in connectivity often ob-
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served in neurodegenerative conditions, as SHAP highlights how these large-scale changes
contribute to the model’s understanding of PD across the dataset.

In contrast, LIME focuses on local interpretability by evaluating feature contributions
on a per-instance basis, revealing the influence of features within specific predictions. LIME
results often highlight the same set of network features as SHAP, such as Network Com-
plexity, IIT, and Eigenvector Centrality, but with an emphasis on how these features vary
across individual instances. This approach uncovers variations in feature importance for
each prediction, showing how the model uses network metrics like complexity and central-
ity in specific cases to differentiate PD from HC. By examining each instance separately,
LIME provides insights into how the model responds to variations in network dynamics,
capturing the heterogeneity of neural connectivity patterns within the PD group. LIME’s
instance-level perspective is particularly valuable for understanding case-specific network
changes, offering a closer look at how the model interprets specific shifts in complexity,
integration, and centrality that characterize Parkinson’s Disease on an individualized basis.

Together, SHAP and LIME offer complementary perspectives on the interpretability of
deep learning models trained on NARDL-based networks. SHAP emphasizes consistent,
dataset-wide patterns in network features, highlighting the structural disruptions globally
associated with PD. LIME, on the other hand, captures localized variations and provides
an individualized view of feature importance, illustrating how the model adapts to spe-
cific connectivity changes in each prediction. Combining SHAP’s global interpretation
with LIME’s instance-specific analysis creates a robust understanding of how NARDL-
based network features influence the model’s predictions, illuminating the distinct ways
Parkinson’s Disease impacts neural connectivity and how these changes manifest in deep
learning classifications. The integration of both methods enriches the interpretability of
network-based models, allowing researchers to appreciate the full scope of connectivity dis-
ruptions in PD—both as consistent markers across patients and as variable factors unique
to individual cases.

5. Conclusions

This study employed the NARDL model to construct functional brain networks
for analyzing connectivity differences between HC individuals and patients with PD.
The NARDL model effectively captured complex, nonlinear, and asymmetric relationships
between brain regions by accommodating both short-term and long-term dependencies.
This approach provided a nuanced representation of brain connectivity that traditional
linear models might miss, which aligns with the intricate nature of neurodegenerative
diseases like PD.

The analysis generated CD values, which were used to construct adjacency matrices
representing the strength and directionality of connections between ROIs. From these
matrices, key network metrics were extracted, including Degree Centrality, Closeness
Centrality, Betweenness Centrality, and Eigenvector Centrality. Statistical analyses revealed
significant differences between the HC and PD groups in specific network metrics. Notably,
Closeness Centrality and Betweenness Centrality showed statistically significant reductions
in the PD group (p < 0.001 after Bonferroni correction), indicating decreased efficiency in
information spread and altered roles of critical intermediary nodes in PD patients.

Information-theoretic measures—Network Entropy, Network Complexity, and
IIT—were integrated into the analysis to assess the informational properties of the brain net-
works. The PD group exhibited higher Network Entropy values (mean entropy increased
by 15% compared to HC), suggesting increased randomness and disrupted communication
pathways. Correlation analyses further indicated that, in the HC group, strong positive
correlations existed between centrality measures (e.g., r = 0.82 between Closeness Central-
ity and Eigenvector Centrality), reflecting a well-integrated network. In contrast, the PD
group showed altered correlation patterns, including negative correlations between IIT and
centrality measures (e.g., r = −0.65 between IIT and Degree Centrality), which highlight a
shift in network organization and potential compensatory mechanisms.
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From a machine learning perspective, deep learning models—specifically CNN, RNN,
and LSTM networks—were employed to classify HC and PD subjects based on the extracted
features. The CNN model demonstrated superior performance, achieving an average
accuracy of 91%, precision of 92%, recall of 90%, and an F1 score of 0.91 across 10-fold
cross-validation. These metrics indicate the model’s effectiveness in correctly identifying
PD patients and HC individuals, with a low rate of false positives and negatives.

To interpret the deep learning models’ predictions, explainability techniques such as
SHAP and LIME were utilized. SHAP analysis identified Network Entropy, Eigenvector
Centrality, and Degree Centrality as the most influential features in the model’s predictions.
For instance, Network Entropy had an average SHAP value contribution of 0.15, which
emphasizes its role in distinguishing PD from HC. LIME provided instance-specific inter-
pretations, revealing that features like Network Complexity and IIT significantly influenced
predictions for certain individuals, thus reflecting the heterogeneity of PD’s impact on
neural connectivity.

The integration of the NARDL model with advanced connectivity and information-
theoretic measures, alongside explainable deep learning models, offers a powerful frame-
work for analyzing functional brain networks in PD. The significant differences in network
metrics and altered correlation patterns underscore PD’s impact on brain connectivity and
information processing. The high classification performance of the deep learning models,
coupled with their interpretability, highlights the potential for developing diagnostic tools
that are both accurate and clinically applicable.

In conclusion, this study demonstrates that sophisticated modeling techniques like
NARDL, combined with information-theoretic metrics and explainable deep learning, can
effectively capture and interpret the complex neural disruptions caused by PD. These
insights contribute to a comprehensive understanding of how PD affects brain network
function, potentially informing the development of more effective diagnostic tools and
interventions. Future research should explore longitudinal data to assess how network al-
terations evolve with disease progression and consider applying this integrative framework
to other neurological conditions to enhance the overall understanding of brain connectivity
in health and disease.
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