Distinctive Imaging Characteristics of Retinal and Cerebral Vessels between Central and Branch Retinal Vein Occlusion by MRI and AI-Based Image Analyzer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Eye Examination
2.2.1. AI-Based Image Analyzer for Quantitative Measurement of the Relative Retinal Vessel Caliber
2.2.2. Measurement of Retinal Branching Angles
2.3. Cerebrovascular Evaluation
2.3.1. Measurement of Cerebral Blood Vessel Geometric Parameters
2.3.2. Measurement of the Optic Nerve Sheath and Optic Nerve Diameter, and ONSASW
2.4. Sample Size Determination
2.5. Statistical Analysis
3. Results
3.1. Baseline Demographic and Clinical Characteristics
3.2. Cerebral Blood Vessel Geometric Characteristics in Comparison with the BRVO and CRVO Groups
3.3. Comparison of ONSASW between the Groups
3.4. Retinal Vessel Geometric Characteristics in the BRVO and CRVO Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AVR | Arteriolar-to-venular diameter ratio |
BRVO | Branch retinal vein occlusion |
BMI | Body mass index |
CRVO | Central retinal vein occlusion |
CRA | Central retinal artery |
CRV | Central retinal vein |
CBVGCs | Cerebral blood vessel geometric characteristics |
COAG | Chronic open-angle glaucoma |
CSF-P | Cerebrospinal fluid pressure |
EDV | End-diastolic velocity |
FFA | Fundus fluorescein angiography |
FRFSE | Fast recovery, fast spin echo |
HBP | Hypertension |
HRVO | Hemispheric retinal vein occlusion |
HU | Hounsfield units |
ICA | Internal carotid artery |
IOP | Intraocular pressure |
MRI | Magnetic resonance imaging |
MRA | Magnetic resonance angiography |
OA | Ophthalmic artery |
OCT | Optical coherence tomography |
ONSASW | Optic nerve subarachnoid space width |
OR | Odd ratio |
PCA | Posterior ciliary artery |
POAG | Primary open-angle glaucoma |
PPP | Preferred Practice Patterns |
RVO | Retinal vein occlusion |
RVGCs | Retinal vessel geometric characteristics |
VEGF | Vascular endothelial growth factor |
References
- Khayat, M.; Williams, M.; Lois, N. Ischemic retinal vein occlusion: Characterizing the more severe spectrum of retinal vein occlusion. Surv. Ophthalmol. 2018, 63, 816–850. [Google Scholar] [PubMed]
- Karia, N. Retinal vein occlusion: Pathophysiology and treatment options. Clin. Ophthalmol. 2010, 4, 809–816. [Google Scholar] [CrossRef]
- Pacella, F.; Bongiovanni, G.; Malvasi, M.; Trovato Battagliola, E.; Pistone, A.; Scalinci, S.Z.; Basili, S.; La Torre, G.; Pacella, E. Impact of cardiovascular risk factors on incidence and severity of Retinal Vein Occlusion. Clin. Ter. 2020, 171, e534–e538. [Google Scholar] [PubMed]
- Tauqeer, Z.; Bracha, P.; McGeehan, B.; VanderBeek, B.L. Hypercoagulability Testing and Hypercoagulable Disorders in Young Central Retinal Vein Occlusion Patients. Ophthalmol. Retina 2022, 6, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Li, J.; Zhang, B.; Lu, P. Association of glaucoma with risk of retinal vein occlusion: A meta-analysis. Acta Ophthalmol. 2019, 97, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xie, X.; Yang, D.; Xian, J.; Li, Y.; Ren, R.; Peng, X.; Jonas, J.B.; Weinreb, R.N. Orbital cerebrospinal fluid space in glaucoma: The Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology 2012, 119, 2065–2073.e1. [Google Scholar]
- Di Capua, M.; Coppola, A.; Albisinni, R.; Tufano, A.; Guida, A.; Di Minno, M.N.D.; Cirillo, F.; Loffredo, M.; Cerbone, A.M. Cardiovascular risk factors and outcome in patients with retinal vein occlusion. J. Thromb. Thrombolysis 2010, 30, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Rim, T.H.; Kim, D.W.; Han, J.S.; Chung, E.J. Retinal vein occlusion and the risk of stroke development: A 9-year nationwide population-based study. Ophthalmology 2015, 122, 1187–1194. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Sheu, S.-J.; Hu, H.-Y.; Chu, D.; Chou, P. Association between retinal vein occlusion and an increased risk of acute myocardial infarction: A nationwide population-based follow-up study. PLoS ONE 2017, 12, e0184016. [Google Scholar]
- Cho, B.-J.; Bae, S.H.; Park, S.M.; Shin, M.C.; Park, I.W.; Kim, H.K.; Kwon, S. Comparison of systemic conditions at diagnosis between central retinal vein occlusion and branch retinal vein occlusion. PLoS ONE 2019, 14, e0220880. [Google Scholar]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Retinal Vein Occlusions Preferred Practice Pattern®. Ophthalmology 2020, 127, 288–320. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Jiang, B.; Ling, S.; Wang, Y. Correlation study of retinal vascular morphological parameters with ischemic stroke. Chin. J. Ocul. Fundus Dis. 2022, 38, 5. [Google Scholar]
- Huang, X.; Zhong, Y.; Cai, M. Retinal vascular features and diagnostic values in patients with liver cirrhosis. J. New Med. 2021, 52, 5. [Google Scholar]
- Long, T.; Xu, Y.; Zou, H.; Lu, L.; Yuan, T.; Dong, Z.; Dong, J.; Ke, X.; Ling, S.; Ma, Y. A Generic Pixel Pitch Calibration Method for Fundus Camera via Automated ROI Extraction. Sensors 2022, 22, 8565. [Google Scholar]
- Xu, Y.; Wang, Y.; Liu, B.; Tang, L.; Lv, L.; Ke, X.; Ling, S.; Lu, L.; Zou, H. The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients. BMC Ophthalmol. 2019, 19, 184. [Google Scholar]
- Endo, H.; Ishii, H.; Tsuchiya, H.; Takahashi, Y.; Inaba, Y.; Nishino, Y.; Hirakata, A.; Kubota, H. Observations of retinal vessels during intermittent pressure-augmented retrograde cerebral perfusion in clinical cases. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Lee, K.E.; Danforth, L.; Tsai, M.Y.; Gangnon, R.E.; Meuer, S.E.; Wong, T.Y.; Cheung, C.Y.; Klein, B.E.K. The Relationship of Retinal Vessel Geometric Characteristics to the Incidence and Progression of Diabetic Retinopathy. Ophthalmology 2018, 125, 1784–1792. [Google Scholar] [CrossRef]
- Goto, I.; Katsuki, S.; Ikui, H.; Kimoto, K.; Mimatsu, T. Pathological studies on the intracerebral and retinal arteries in cerebrovascular and noncerebrovascular diseases. Stroke 1975, 6, 263–269. [Google Scholar]
- Zhang, X.; Qiu, B.; Gong, Z.; Chen, X.; Wang, Y.; Nie, Y. Differentially Regulated Apolipoproteins and Lipid Profiles as Novel Biomarkers for Polypoidal Choroidal Vasculopathy and Neovascular Age-Related Macular Degeneration. Front. Endocrinol. 2022, 13, 946327. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Thomas, G.N.; Tay, W.; Ikram, M.K.; Hsu, W.; Lee, M.L.; Lau, Q.P.; Wong, T.Y. Retinal vascular fractal dimension and its relationship with cardiovascular and ocular risk factors. Am. J. Ophthalmol. 2012, 154, 663–674. [Google Scholar]
- Hughes, A.D.; Falaschetti, E.; Witt, N.; Wijetunge, S.; Thom, S.A.M.; Tillin, T.; Aldington, S.J.; Chaturvedi, N. Association of Retinopathy and Retinal Microvascular Abnormalities With Stroke and Cerebrovascular Disease. Stroke 2016, 47, 2862–2864. [Google Scholar] [CrossRef]
- Kawasaki, R.; Xie, J.; Cheung, N.; Lamoureux, E.; Klein, R.; Klein, B.E.K.; Cotch, M.F.; Sharrett, A.R.; Shea, S.; Wong, T.Y. Retinal microvascular signs and risk of stroke: The Multi-Ethnic Study of Atherosclerosis (MESA). Stroke 2012, 43, 3245–3251. [Google Scholar]
- de Jong, F.J.; Ikram, M.K.; Witteman, J.C.M.; Hofman, A.; de Jong, P.T.V.M.; Breteler, M.M.B. Retinal vessel diameters and the role of inflammation in cerebrovascular disease. Ann. Neurol. 2007, 61, 491–495. [Google Scholar] [PubMed]
- Zhong, C.; You, S.; Zhong, X.; Chen, G.-C.; Xu, T.; Zhang, Y. Retinal vein occlusion and risk of cerebrovascular disease and myocardial infarction: A meta-analysis of cohort studies. Atherosclerosis 2016, 247, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Newman-Casey, P.A.; Stem, M.; Talwar, N.; Musch, D.C.; Besirli, C.G.; Stein, J.D. Risk factors associated with developing branch retinal vein occlusion among enrollees in a United States managed care plan. Ophthalmology 2014, 121, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Liu, Y.; Fan, Y.; Wang, L. Color Doppler flow imaging for ocular hemodynamics in branch retinal vein occlusion. J. Clin. Ophthalmol. 2015, 23, 3. [Google Scholar]
- Bertelsen, M.; Linneberg, A.; Rosenberg, T.; Christoffersen, N.; Vorum, H.; Gade, E.; Larsen, M. Comorbidity in patients with branch retinal vein occlusion: Case-control study. BMJ 2012, 345, e7885. [Google Scholar]
- Cao, T.; Liu, Y.; Fan, Y.; Wang, L. The relationship between ocular hemodynamic change and the the branch retinal vein. Gansu Med. J. 2016, 35, 8. [Google Scholar]
- Corvi, F.; Querques, G.; La Spina, C.; Lattanzio, R.; Bandello, F. Dynamic and static retinal vessel analyses in patients with macular edema secondary to retinal vein occlusion. Retina 2015, 35, 2052–2059. [Google Scholar] [CrossRef]
- Hardarson, S.H.; Stefánsson, E. Oxygen saturation in central retinal vein occlusion. Am. J. Ophthalmol. 2010, 150, 871–875. [Google Scholar] [CrossRef]
- Rossin, E.J.; Gilbert, A.L.; Koen, N.; Leslie-Mazwi, T.M.; Cunnane, M.E.; Rizzo, J.F. Site of Origin of the Ophthalmic Artery Influences the Risk for Retinal Versus Cerebral Embolic Events. J. Neuroophthalmol. 2021, 41, 24–28. [Google Scholar] [CrossRef]
- Jonas, J.B.; Wang, N.; Yang, D.; Ritch, R.; Panda-Jonas, S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog. Retin. Eye Res. 2015, 46, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Wang, N.; Wang, S.; Wang, Y.X.; You, Q.S.; Yang, D.; Wei, W.B.; Xu, L. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: The Beijing Eye Study. Am. J. Hypertens. 2014, 27, 1170–1178. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, X.; Fu, J.; Wang, H.; Jonas, J.B.; Peng, X.; Tian, G.; Xian, J.; Ritch, R.; Li, L.; et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: The Beijing Intracranial and Intraocular Pressure (iCOP) study. Crit. Care 2013, 17, R162. [Google Scholar]
- Marek, B.; Harris, A.; Kanakamedala, P.; Lee, E.; Amireskandari, A.; Carichino, L.; Guidoboni, G.; Tobe, L.A.; Siesky, B. Cerebrospinal fluid pressure and glaucoma: Regulation of trans-lamina cribrosa pressure. Br. J. Ophthalmol. 2013, 98, 721. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Wang, N.; Yang, D. Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy. Asia Pac. J. Ophthalmol. 2016, 5, 5–10. [Google Scholar] [CrossRef]
- Berdahl, J.P.; Fautsch, M.P.; Stinnett, S.S.; Allingham, R.R. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: A case-control study. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5412–5418. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Wu, B.; Xie, S. Visual acuity assessment of central retinal artery occlusion patients with or without paracentral acute middle maculopathy via OCT-A. BMC Ophthalmol. 2023, 23, 412. [Google Scholar]
- Wijesinghe, R.E.; Park, K.; Kim, P.; Oh, J.; Kim, S.W.; Kim, K.; Kim, B.M.; Jeon, M.; Kim, J. Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications. Opt. Rev. 2016, 23, 307–315. [Google Scholar] [CrossRef]
- Castro, C.; Marques, J.H.; Silva, N.; Abreu, A.C.; Furtado, M.J.; Lume, M. Comparison of Color Fundus Photography and Multicolor Fundus Imaging for Detection of Lesions in Diabetic Retinopathy and Retinal Vein Occlusion. Clin. Ophthalmol. 2023, 17, 2515–2524. [Google Scholar]
Subjects with BRVO (Eyes) | Subjects with CRVO (Eyes) | t/x2/Z | p Value | |
---|---|---|---|---|
34 (68) | 25 (50) | |||
Age, y, (mean ± SD) | 53 ± 10 | 50 ± 15 | 0.782 a | 0.439 |
Gender, male/female, n | 18/16 | 16/9 | 0.722 b | 0.396 |
Height, m, (mean ± SD) | 1.65 ± 0.06 | 1.66 ± 0.08 | −0.124 a | 0.902 |
Weight, kg, (mean ± SD) | 71.12 ± 9.43 | 71.43 ± 9.27 | −0.115 a | 0.909 |
BMI, kg/m2, (mean ± SD) | 25.97 ± 2.47 | 26.08 ± 3.04 | −0.150 a | 0.882 |
Duration of HBP, y, (IQR) | 0.0 (0.0–4.5) | 0.0 (0.0–0.0) | −2.298 c | 0.022 * |
IOP, (IQR) | ||||
Affected eyes (IQR) | 16.75 (13.98–17.68) | 17.50 (15.70, 21.30) | −2.264 c | 0.024 * |
Contralateral normal eyes (IQR) | 16.00 (13.15, 19.05) | 16.00 (14.50, 17.00) | −0.142 c | 0.887 |
Mean ± SD | Paired Sample Test (p Value) (Affected Eyes vs. Contralateral Eyes) | Independent-Sample t Test (p Value) (BRVO vs. CRVO) | ||||||
---|---|---|---|---|---|---|---|---|
BRVO-Affected Eyes | BRVO-Contralateral Normal Eyes | CRVO-Affected Eyes | CRVO-Contralateral Normal Eyes | BRVO | CRVO | Affected Eyes | Contralateral Normal Eyes | |
IOP, mmHg, (mean ± SD) | 16.39 ± 3.00 | 16.11 ± 3.79 | 19.58 ± 8.84 | 15.92 ± 1.74 | 0.525 a | 0.027 b,* | 0.229 c | 0.802 c |
The diameter of the ICA-C6, mm, (mean ± SD) | 4.07 ± 0.61 | 4.03 ± 0.51 | 3.98 ± 0.50 | 3.91 ± 0.50 | 0.748 a | 0.353 b | 0.584 c | 0.363 c |
The diameter of the OA, mm, (mean ± SD) | 3.23 ± 0.43 | 3.22 ± 0.46 | 3.40 ± 0.41 | 3.47 ± 0.28 | 0.862 a | 0.488 a | 0.153 c | 0.014 c,* |
ONSASW-3, mm, (mean ± SD) | 1.01 ± 0.21 | 0.99 ± 0.34 | 1.16 ± 0.19 | 1.01 ± 0.16 | 0.763 a | 0.003 b,* | 0.001 d,* | 0.029 d,* |
ONSASW-9, mm, (mean ± SD) | 0.86 ± 0.15 | 0.82 ± 0.12 | 1.01 ± 0.21 | 0.88 ± 0.14 | 0.103 a | 0.015 b,* | 0.022 d,* | 0.116 c |
ONSASW-15, mm, (mean ± SD) | 0.79 ± 0.12 | 0.78 ± 0.13 | 0.84 ± 0.10 | 0.81 ± 0.09 | 0.784 a | 0.110 a | 0.063 d | 0.366 c |
The relative retinal arteriolar caliber, (mean ± SD) | 0.057 ± 0.010 | 0.058 ± 0.010 | 0.059 ± 0.015 | 0.062 ± 0.009 | 0.272 a | 0.229 b | 0.453 d | 0.191 c |
The relative retinal venular caliber, (mean ± SD) | 0.076 ± 0.009 | 0.077 ± 0.010 | 0.095 ± 0.015 | 0.077 ± 0.011 | 0.731 b | <0.001 a,** | <0.001 d,* | 0.851 c |
AVR, (mean ± SD) | 0.747 ± 0.088 | 0.766 ± 0.107 | 0.642 ± 0.125 | 0.809 ± 0.076 | 0.188 b | <0.001 a,** | 0.001 d,* | 0.098 c |
Retinal vascular branching angles, (mean ± SD) | ||||||||
Retinal superior nasal artery (mean ± SD) | 62.406 ± 14.605 | 63.482 ± 16.364 | 48.994 ± 12.865 | 62.583 ± 24.240 | 0.732 a | 0.037 b,* | 0.001 c,* | 0.867 c |
Retinal superior nasal vein | 66.999 ± 19.078 | 61.722 ± 18.242 | 55.403 ± 20.259 | 61.500 ± 18.108 | 0.177 a | 0.252 a | 0.032 c,* | 0.963 c |
Retinal inferior nasal artery | 64.673 ± 19.888 | 65.773 ± 16.094 | 53.089 ± 16.113 | 59.049 ± 14.238 | 0.805 a | 0.175 a | 0.020 c,* | 0.104 c |
Retinal inferior nasal vein | 67.788 ± 16.344 | 65.380 ± 20.733 | 59.778 ± 19.382 | 69.518 ± 14.393 | 0.438 a | 0.071 a | 0.094 c | 0.397 c |
Retinal superior temporal artery | 68.421 ± 18.789 | 71.354 ± 11.650 | 56.155 ± 16.306 | 65.832 ± 14.445 | 0.484 a | 0.010 a,* | 0.011 c,* | 0.113 c |
Retinal superior temporal vein | 66.719 ± 15.836 | 67.096 ± 16.945 | 66.907 ± 23.359 | 64.552 ± 17.940 | 0.989 a | 0.762 a | 0.971 c | 0.583 c |
Retinal inferior temporal artery | 78.268 ± 25.170 | 74.581 ± 17.619 | 57.872 ± 22.942 | 80.617 ± 21.042 | 0.570 a | <0.001 a,** | 0.002 c,* | 0.240 c |
Retinal inferior temporal vein | 72.225 ± 21.063 | 74.826 ± 16.625 | 67.992 ± 23.633 | 66.566 ± 17.837 | 0.560 a | 0.826 a | 0.472 c | 0.075 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, T.; Zhang, X.; Zeng, Y.; Yang, Y.; Zhou, Y.; Gu, X.; Xie, X.; Ling, S. Distinctive Imaging Characteristics of Retinal and Cerebral Vessels between Central and Branch Retinal Vein Occlusion by MRI and AI-Based Image Analyzer. Diagnostics 2024, 14, 267. https://doi.org/10.3390/diagnostics14030267
Wang Q, Li T, Zhang X, Zeng Y, Yang Y, Zhou Y, Gu X, Xie X, Ling S. Distinctive Imaging Characteristics of Retinal and Cerebral Vessels between Central and Branch Retinal Vein Occlusion by MRI and AI-Based Image Analyzer. Diagnostics. 2024; 14(3):267. https://doi.org/10.3390/diagnostics14030267
Chicago/Turabian StyleWang, Qiyun, Ting Li, Xinyuan Zhang, Yiyun Zeng, Yang Yang, Yun Zhou, Xinming Gu, Xiaobin Xie, and Saiguang Ling. 2024. "Distinctive Imaging Characteristics of Retinal and Cerebral Vessels between Central and Branch Retinal Vein Occlusion by MRI and AI-Based Image Analyzer" Diagnostics 14, no. 3: 267. https://doi.org/10.3390/diagnostics14030267
APA StyleWang, Q., Li, T., Zhang, X., Zeng, Y., Yang, Y., Zhou, Y., Gu, X., Xie, X., & Ling, S. (2024). Distinctive Imaging Characteristics of Retinal and Cerebral Vessels between Central and Branch Retinal Vein Occlusion by MRI and AI-Based Image Analyzer. Diagnostics, 14(3), 267. https://doi.org/10.3390/diagnostics14030267