Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia
Abstract
:1. Introduction
2. High-Quality Upper GI Endoscopy
3. Multi-Disciplinary Approach
4. Barrett’s Oesophagus
4.1. Definition
4.2. Barrett’s Oesophagus: Diagnosis—Endoscopy
4.3. Barrett’s Oesophagus: Surveillance and Cancer Risk
4.4. Endoscopic Detection of Barrett’s Dysplasia: Chromoendoscopy
4.5. Endoscopic Detection of Barrett’s Dysplasia: Advanced Imaging
4.6. Endoscopic Detection of Barrett’s Dysplasia: Confocal Laser Endomicroscopy (CLE) and Volumetric Laser Endomicroscopy (VLE)
5. Alternative Sampling Technologies
5.1. Wide-Area Transepithelial Sampling (WATS)
5.2. Cytosponge
6. Oesophageal Squamous Neoplasia
6.1. Introduction and Diagnosis
6.2. Endoscopic Diagnosis of SCC
6.3. Endoscopic Detection: Chromoendoscopy & Advanced Imaging
7. Gastric Atrophy and Intestinal Metaplasia
7.1. Definition
7.2. Endoscopic Diagnosis of CAG and Gastric IM
7.3. Gastric Intestinal Metaplasia: Advanced Imaging
7.4. Gastric Neoplasia Detection: Advanced Imaging
7.5. Gastric Surveillance
8. Novel Technologies/AI
8.1. Oesophageal Neoplasia
8.2. Gastric Neoplasia
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [Google Scholar] [CrossRef]
- ONS. Cancer Survival in England: Adult, Stage at Diagnosis and Childhood—Patients Followed up to 2016: Cancer Survival in England for Specific Cancer Sites by Age, Sex and Stage at Diagnosis; Dandy Booksellers Limited: London, UK, 2017; pp. 1–37. [Google Scholar]
- Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Reim, D.; Loos, M.; Vogl, F.; Novotny, A.; Schuster, T.; Langer, R.; Becker, K.; Höfler, H.; Siveke, J.; Bassermann, F.; et al. Prognostic implications of the seventh edition of the international union against cancer classification for patients with gastric cancer: The western experience of patients treated in a single-center European institution. J. Clin. Oncol. 2013, 31, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Oda, I.; Abe, S.; Sekiguchi, M.; Mori, G.; Nonaka, S.; Yoshinaga, S.; Saito, Y. High rate of 5-year survival among patients with early gastric cancer undergoing curative endoscopic submucosal dissection. Gastric Cancer 2016, 19, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Trudgill, N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc. Int. Open 2014, 2, E46–E50. [Google Scholar] [CrossRef] [PubMed]
- Murakami, D.; Yamato, M.; Amano, Y.; Nishino, T.; Arai, M. Variation in the rate of detection of minute and small early gastric cancers at diagnostic endoscopy may reflect the performance of individual endoscopists. BMJ Open Gastroenterol. 2023, 10, e001143. [Google Scholar] [CrossRef] [PubMed]
- Beg, S.; Ragunath, K.; Wyman, A.; Banks, M.; Trudgill, N.; Pritchard, M.D.; Riley, S.; Anderson, J.; Griffiths, H.; Bhandari, P.; et al. Quality standards in upper gastrointestinal endoscopy: A position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS). Gut 2017, 66, 1886–1899. [Google Scholar] [CrossRef] [PubMed]
- Bisschops, R.; Areia, M.; Coron, E.; Dobru, D.; Kaskas, B.; Kuvaev, R.; Pech, O.; Ragunath, K.; Weusten, B.; Familiari, P.; et al. Performance measures for upper gastrointestinal endoscopy: A European Society of Gastrointestinal Endoscopy quality improvement initiative. United Eur. Gastroenterol. J. 2016, 4, 629–656. [Google Scholar] [CrossRef]
- Weusten, B.L.A.M.; Bisschops, R.; Coron, E.; Dinis-Ribeiro, M.; Dumonceau, J.M.; Esteban, J.M.; Hassan, C.; Pech, O.; Repici, A.; Bergman, J.; et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy 2017, 49, 191–198. [Google Scholar] [CrossRef]
- Weusten, B.L.A.M.; Bisschops, R.; Dinis-Ribeiro, M.; Di Pietro, M.; Pech, O.; Spaander, M.C.W.; Baldaque-Silva, F.; Barret, M.; Coron, E.; Fernández-Esparrach, G.; et al. Diagnosis and management of Barrett esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2023, 55, 1124–1146. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.C.; Di Pietro, M.; Ragunath, K.; Ang, Y.; Kang, J.Y.; Watson, P.; Trudgill, N.; Patel, P.; Kaye, P.V.; Sanders, S.; et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 2014, 63, 7–42. [Google Scholar] [CrossRef] [PubMed]
- Qumseya, B.; Sultan, S.; Bain, P.; Jamil, L.; Jacobson, B.; Anandasabapathy, S.; Agrawal, D.; Buxbaum, J.L.; Fishman, D.S.; Gurudu, S.R.; et al. ASGE guideline on screening and surveillance of Barrett’s esophagus. Gastrointest. Endosc. 2019, 90, 335–359.e2. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.J.; Falk, G.W.; Iyer, P.G.; Souza, R.F.; Yadlapati, R.H.; Sauer, B.G.; Wani, S. Diagnosis and management of Barrett’s esophagus: An updated ACG guideline. Am. J. Gastroenterol. 2022, 117, 559–587. [Google Scholar] [CrossRef] [PubMed]
- Shariff, M.K.; Bird-Lieberman, E.L.; O’Donovan, M.; Abdullahi, Z.; Liu, X.; Blazeby, J.; Fitzgerald, R. Randomized crossover study comparing efficacy of transnasal endoscopy with that of standard endoscopy to detect Barrett’s esophagus. Gastrointest. Endosc. 2012, 75, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K.; Spechler, S.J.; El-Omar, E.M.; McColl, K.E.L.; Takubo, K.; Gotoda, T.; Fujishiro, M.; Iijima, K.; Inoue, H.; Kawai, T.; et al. Kyoto international consensus report on anatomy, pathophysiology and clinical significance of the gastro-oesophageal junction. Gut 2022, 71, 1488–1514. [Google Scholar] [CrossRef]
- Sharma, P.; Dent, J.; Armstrong, D.; Bergman, J.J.G.H.M.; Gossner, L.; Hoshihara, Y.; Jankowski, J.A.; Junghard, O.; Lundell, L.; Tytgat, G.N.J.; et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: The Prague C & M criteria. Gastroenterology 2006, 131, 1392–1399. [Google Scholar] [CrossRef]
- Ganz, R.A.; Allen, J.I.; Leon, S.; Batts, K.P. Barrett’s esophagus is frequently overdiagnosed in clinical practice: Results of the Barrett’s Esophagus Endoscopic Revision (BEER) study. Gastrointest. Endosc. 2014, 79, 565–573. [Google Scholar] [CrossRef]
- Shaheen, N.J.; Falk, G.W.; Iyer, P.G.; Gerson, L.B. ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus. Am. J. Gastroenterol. 2016, 111, 30–50. [Google Scholar] [CrossRef]
- Manner, H.; Pech, O.; Heldmann, Y.; May, A.; Pauthner, M.; Lorenz, D.; Fisseler-Eckhoff, A.; Stolte, M.; Vieth, M.; Ell, C. The frequency of lymph node metastasis in early-stage adenocarcinoma of the esophagus with incipient submucosal invasion (pT1b sm1) depending on histological risk patterns. Surg. Endosc. Other Interv. Tech. 2015, 29, 1888–1896. [Google Scholar] [CrossRef]
- Alvarez Herrero, L.; Pouw, R.E.; Van Vilsteren, F.G.I.; Ten Kate, F.J.W.; Visser, M.; Van Berge Henegouwen, M.I.; Weusten, B.L.A.M.; Bergman, J. Risk of lymph node metastasis associated with deeper invasion by early adenocarcinoma of the esophagus and cardia: Study based on endoscopic resection specimens. Endoscopy 2010, 42, 1030–1036. [Google Scholar] [CrossRef]
- Schölvinck, D.; Künzli, H.; Meijer, S.; Seldenrijk, K.; van Berge Henegouwen, M.; Bergman, J.; Weusten, B. Management of patients with T1b esophageal adenocarcinoma: A retrospective cohort study on patient management and risk of metastatic disease. Surg. Endosc. 2016, 30, 4102–4113. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Sever, N.; Magee, C.; Waddingham, W.; Banks, M.; Sweis, R.; Al-Yousuf, H.; Mitchison, M.; Alzoubaidi, D.; Rodriguez-Justo, M.; et al. Risk of lymph node metastases in patients with T1b oesophageal adenocarcinoma: A retrospective single centre experience. World J. Gastroenterol. 2018, 24, 4698. [Google Scholar] [CrossRef]
- Bhat, S.; Coleman, H.G.; Yousef, F.; Johnston, B.T.; McManus, D.T.; Gavin, A.T.; Murray, L.J. Risk of malignant progression in Barrett’s esophagus patients: Results from a large population-based study. J. Natl. Cancer Inst. 2011, 103, 1049–1057. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Britton, J.; Heal, C.; Keld, R.; Murgatroyd, M.; Willert, R.; McLaughlin, J.; Hamdy, S.; Ang, Y. Quality of life measures in dysplastic Barrett’s oesophagus are comparable to patients with non-dysplastic Barrett’s oesophagus and do not improve after endoscopic therapy. BMJ Open Gastroenterol. 2023, 10, e001091. [Google Scholar] [CrossRef]
- Ngamruengphong, S.; Sharma, V.K.; Das, A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: A meta-analysis. Gastrointest. Endosc. 2009, 69, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Chedgy, F.J.Q.; Subramaniam, S.; Kandiah, K.; Thayalasekaran, S.; Bhandari, P. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett’s esophagus. World J. Gastroenterol. 2016, 22, 5753–5760. [Google Scholar] [CrossRef] [PubMed]
- Thosani, N.; Abu Dayyeh, B.K.; Sharma, P.; Aslanian, H.R.; Enestvedt, B.K.; Komanduri, S.; Manfredi, M.; Navaneethan, U.; Maple, J.T.; Pannala, R.; et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance. Gastrointest. Endosc. 2016, 83, 684–698.e7. [Google Scholar] [CrossRef]
- Coletta, M.; Sami, S.S.; Nachiappan, A.; Fraquelli, M.; Casazza, G.; Ragunath, K. Acetic acid chromoendoscopy for the diagnosis of early neoplasia and specialized intestinal metaplasia in Barrett’s esophagus: A meta-analysis. Gastrointest. Endosc. 2016, 83, 57–67.e1. [Google Scholar] [CrossRef]
- Wani, S.; Yadlapati, R.; Singh, S.; Sawas, T.; Katzka, D.A. Post-endoscopy Esophageal Neoplasia in Barrett’s Esophagus: Consensus Statements From an International Expert Panel. Gastroenterology 2022, 162, 366–372. [Google Scholar] [CrossRef]
- Muthusamy, V.R.; Wani, S.; Gyawali, C.P.; Komanduri, S.; Bergman, J.; Canto, M.I.; Chak, A.; Corley, D.; Falk, G.W.; Fitzgerald, R.; et al. AGA Clinical Practice Update on New Technology and Innovation for Surveillance and Screening in Barrett’s Esophagus: Expert Review. Clin. Gastroenterol. Hepatol. 2022, 20, 2696–2706.e1. [Google Scholar] [CrossRef]
- Sharma, P.; Bergman, J.J.G.H.M.; Goda, K.; Kato, M.; Messmann, H.; Alsop, B.R.; Gupta, N.; Vennalaganti, P.; Hall, M.; Konda, V.; et al. Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett’s Esophagus Using Narrow-Band Imaging. Gastroenterology 2016, 150, 591–598. [Google Scholar] [CrossRef]
- Canto, M.I.; Anandasabapathy, S.; Brugge, W.; Falk, G.W.; Dunbar, K.B.; Zhang, Z.; Woods, K.; Almario, J.A.; Schell, U.; Goldblum, J.; et al. In vivo endomicroscopy improves detection of Barrett’s esophagus-related neoplasia: A multicenter international randomized controlled trial (with video). Gastrointest. Endosc. 2014, 79, 211–221. [Google Scholar] [CrossRef]
- Anandasabapathy, S.; Mansour, N.M. Beyond Seattle: WATS and Advanced Imaging in Barrett’s Esophagus. Foregut J. Am. Foregut Soc. 2021, 1, 32–38. [Google Scholar] [CrossRef]
- Struyvenberg, M.R.; van der Sommen, F.; Swager, A.F.; de Groof, A.J.; Rikos, A.; Schoon, E.J.; Bergman, J.J.; de With, P.H.N.; Curvers, W.L. Improved Barrett’s neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy. Dis. Esophagus Off. J. Int. Soc. Dis. Esophagus 2020, 33, doz065. [Google Scholar] [CrossRef]
- Tschanz, E.R. Do 40% of Patients Resected for Barrett Esophagus With High-Grade Dysplasia Have Unsuspected Adenocarcinoma? Arch. Pathol. Lab. Med. 2005, 129, 177–180. [Google Scholar] [CrossRef]
- Codipilly, D.C.; Krishna Chandar, A.; Wang, K.K.; Katzka, D.A.; Goldblum, J.R.; Thota, P.N.; Falk, G.W.; Chak, A.; Iyer, P.G. Wide-area transepithelial sampling for dysplasia detection in Barrett’s esophagus: A systematic review and meta-analysis. Gastrointest. Endosc. 2022, 95, 51–59.e7. [Google Scholar] [CrossRef]
- Vennalaganti, P.R.; Naag Kanakadandi, V.; Gross, S.A.; Parasa, S.; Wang, K.K.; Gupta, N.; Sharma, P. Inter-Observer Agreement among Pathologists Using Wide-Area Transepithelial Sampling With Computer-Assisted Analysis in Patients With Barrett’s Esophagus. Am. J. Gastroenterol. 2015, 110, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Kadri, P.S.R.; Lao-Sirieix, I.; O’Donovan, M.; Debiram, I.; Das, M.; Blazeby, J.M.; Emery, J.; Boussioutas, A.; Morris, H.; Walter, F.M.; et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: Cohort study. BMJ 2010, 341, 595. [Google Scholar] [CrossRef] [PubMed]
- Ross-Innes, C.S.; Debiram-Beecham, I.; O’Donovan, M.; Walker, E.; Varghese, S.; Lao-Sirieix, P.; Lovat, L.; Griffin, M.; Ragunath, K.; Haidry, R.; et al. Evaluation of a Minimally Invasive Cell Sampling Device Coupled with Assessment of Trefoil Factor 3 Expression for Diagnosing Barrett’s Esophagus: A Multi-Center Case–Control Study. PLoS Med. 2015, 12, e1001780. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.C.; di Pietro, M.; O’Donovan, M.; Maroni, R.; Muldrew, B.; Debiram-Beecham, I.; Gehrung, M.; Offman, J.; Tripathi, M.; Smith, S.G.; et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: A multicentre, pragmatic, randomised controlled trial. Lancet 2020, 396, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Pilonis, N.D.; Killcoyne, S.; Tan, W.K.; O’Donovan, M.; Malhotra, S.; Tripathi, M.; Miremadi, A.; Debiram-Beecham, I.; Evans, T.; Phillips, R.; et al. Use of a Cytosponge biomarker panel to prioritise endoscopic Barrett’s oesophagus surveillance: A cross-sectional study followed by a real-world prospective pilot. Lancet. Oncol. 2022, 23, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Landy, R.; Killcoyne, S.; Tang, C.; Juniat, S.; O’Donovan, M.; Goel, N.; Gehrung, M.; Fitzgerald, R.C. Real-world implementation of non-endoscopic triage testing for Barrett’s oesophagus during COVID-19. QJM 2023, 116, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Petit, T.; Georges, C.; Jung, G.M.; Borel, C.; Bronner, G.; Flesch, H.; Massard, G.; Velten, M.; Haegele, P.; Schraub, S. Systematic esophageal endoscopy screening in patients previously treated for head and neck squamous-cell carcinoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2001, 12, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, J.; Legoux, J.-L.; Winnock, M.; Seyrig, J.-A.; Barbier, J.-P.; Barrioz, T.; Laugier, R.; Boulay, G.; Grasset, D.; Sautereau, D.; et al. Endoscopic screening for esophageal squamous-cell carcinoma in high-risk patients: A prospective study conducted in 62 French endoscopy centers. Endoscopy 2006, 38, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, K.; Chedgy, F.J.Q.; Subramaniam, S.; Thayalasekaran, S.; Kurup, A.; Bhandari, P. Early squamous neoplasia of the esophagus: The endoscopic approach to diagnosis and management. Saudi J. Gastroenterol. 2017, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, R.B.; de Barros, S.G.; Pütten, A.C.; Mello, E.S.; Wagner, M.; Bassi, L.A.; Bombassaro, M.A.; Gobbi, D.; Souto, E.B. Occult dysplasia is disclosed by Lugol chromoendoscopy in alcoholics at high risk for squamous cell carcinoma of the esophagus. Endoscopy 1999, 31, 281–285. [Google Scholar] [CrossRef]
- Hori, K.; Okada, H.; Kawahara, Y.; Takenaka, R.; Shimizu, S.; Ohno, Y.; Onoda, T.; Sirakawa, Y.; Naomoto, Y.; Yamamoto, K. Lugol-voiding lesions are an important risk factor for a second primary squamous cell carcinoma in patients with esosphageal cancer or head and neck cancer. Am. J. Gastroenterol. 2011, 106, 858–866. [Google Scholar] [CrossRef]
- Morita, F.H.A.; Bernardo, W.M.; Ide, E.; Rocha, R.S.P.; Aquino, J.C.M.; Minata, M.K.; Yamazaki, K.; Marques, S.B.; Sakai, P.; de Moura, E.G.H. Narrow band imaging versus lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: A systematic review and meta-analysis. BMC Cancer 2017, 17, 54. [Google Scholar] [CrossRef]
- Yoshida, T.; Inoue, H.; Usui, S.; Satodate, H.; Fukami, N.; Kudo, S. Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions. Gastrointest. Endosc. 2004, 59, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Inoue, H.; Ikeda, H.; Sato, C.; Onimaru, M.; Hayee, B.; Phlanusi, C.; Santi, E.G.R.; Kobayashi, Y.; Kudo, S. Utility of intrapapillary capillary loops seen on magnifying narrow-band imaging in estimating invasive depth of esophageal squamous cell carcinoma. Endoscopy 2015, 47, 122–128. [Google Scholar] [CrossRef]
- Li, Y.X.; Shen, L.; Yu, H.G.; Luo, H.S.; Yu, J.P. Fujinon intelligent color enhancement for the diagnosis of early esophageal squamous cell carcinoma and precancerous lesion. Turkish J. Gastroenterol. Off. J. Turkish Soc. Gastroenterol. 2014, 25, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Ebigbo, A.; Mendel, R.; Rückert, T.; Schuster, L.; Probst, A.; Manzeneder, J.; Prinz, F.; Mende, M.; Steinbrück, I.; Faiss, S.; et al. Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of artificial intelligence: A pilot study. Endoscopy 2021, 53, 878–883. [Google Scholar] [CrossRef]
- Correa, P. Perspectives in Cancer Research A Human Model of Gastric Carcinogenesis. Nutrition 1988, 48, 3554–3560. [Google Scholar]
- Banks, M.; Graham, D.; Jansen, M.; Gotoda, T.; Coda, S.; di Pietro, M.; Uedo, N.; Bhandari, P.; Pritchard, D.M.; Kuipers, E.J.; et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 2019, 68, 1545–1575. [Google Scholar] [CrossRef]
- Waddingham, W.; Nieuwenburg, S.A.; Carlson, S.; Rodriguez-Justo, M.; Spaander, M.; Kuipers, E.J.; Jansen, M.; Graham, D.G.; Banks, M. Recent advances in the detection and management of early gastric cancer and its precursors. Frontline Gastroenterol. 2020, 12, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Nunes, P.; Libânio, D.; Lage, J.; Abrantes, D.; Coimbra, M.; Esposito, G.; Hormozdi, D.; Pepper, M.; Drasovean, S.; White, J.R.; et al. A multicenter prospective study of the real-time use of narrow-band imaging in the diagnosis of premalignant gastric conditions and lesions. Endoscopy 2016, 48, 723–730. [Google Scholar] [CrossRef]
- An, J.K.; Song, G.A.; Kim, G.H.; Park, D.Y.; Shin, N.R.; Lee, B.E.; Woo, H.Y.; Ryu, D.Y.; Kim, D.U.; Heo, J. Marginal turbid band and light blue crest, signs observed in magnifying narrow-band imaging endoscopy, are indicative of gastric intestinal metaplasia. BMC Gastroenterol. 2012, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, W.; Du, J.; Chen, Y.; Yang, J. Diagnostic yield of the light blue crest sign in gastric intestinal metaplasia: A meta-analysis. PLoS ONE 2014, 9, e92874. [Google Scholar] [CrossRef]
- Esposito, G.; Pimentel-Nunes, P.; Angeletti, S.; Castro, R.; Libânio, D.; Galli, G.; Lahner, E.; Di Giulio, E.; Annibale, B.; Dinis-Ribeiro, M. Endoscopic grading of gastric intestinal metaplasia (EGGIM): A multicenter validation study. Endoscopy 2019, 51, 515–521. [Google Scholar] [CrossRef]
- Ezoe, Y.; Muto, M.; Uedo, N.; Doyama, H.; Yao, K.; Oda, I.; Kaneko, K.; Kawahara, Y.; Yokoi, C.; Sugiura, Y.; et al. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology 2011, 141, 2017–2025.e3. [Google Scholar] [CrossRef]
- Yao, K.; Anagnostopoulos, G.K.; Ragunath, K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy 2009, 41, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Nakayoshi, T.; Tajiri, H.; Matsuda, K.; Kaise, M.; Ikegami, M.; Sasaki, H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: Correlation of vascular pattern with histopathology (including video). Endoscopy 2004, 36, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, M.R.A.; Inoue, H.; Fujiyoshi, Y.; Nishikawa, Y.; Toshimori, A.; Shimamura, Y.; Tanabe, M.; Ikeda, H.; Onimaru, M. Endoscopic Classifications of Early Gastric Cancer: A Literature Review. Cancers 2021, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- de Vries, A.C.; van Grieken, N.C.T.; Looman, C.W.N.; Casparie, M.K.; de Vries, E.; Meijer, G.A.; Kuipers, E.J. Gastric Cancer Risk in Patients With Premalignant Gastric Lesions: A Nationwide Cohort Study in the Netherlands. Gastroenterology 2008, 134, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Kono, S.; Gotoda, T.; Yoshida, S.; Oda, I.; Kondo, H.; Gatta, L.; Naylor, G.; Dixon, M.; Moriyasu, F.; Axon, A. Can endoscopic atrophy predict histological atrophy? Historical study in United Kingdom and Japan. World J. Gastroenterol. 2015, 21, 13113–13123. [Google Scholar] [CrossRef] [PubMed]
- Shichijo, S.; Hirata, Y.; Niikura, R.; Hayakawa, Y.; Yamada, A.; Ushiku, T.; Fukayama, M.; Koike, K. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointest. Endosc. 2016, 84, 618–624. [Google Scholar] [CrossRef]
- Pimentel-Nunes, P.; Libânio, D.; Marcos-Pinto, R.; Areia, M.; Leja, M.; Esposito, G.; Garrido, M.; Kikuste, I.; Megraud, F.; Matysiak-Budnik, T.; et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Port. Endoscopy 2019, 51, 365–388. [Google Scholar] [CrossRef]
- Messmann, H.; Bisschops, R.; Antonelli, G.; Libanio, D.; Sinonquel, P.; Abdelrahim, M.; Ahmad, O.F.; Areia, M.; Bergman, J.J.G.H.M.; Bhandari, P.; et al. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022, 54, 1211–1231. [Google Scholar] [CrossRef]
- de Groof, A.J.; Struyvenberg, M.R.; Fockens, K.N.; van der Putten, J.; van der Sommen, F.; Boers, T.G.; Zinger, S.; Bisschops, R.; de With, P.H.; Pouw, R.E.; et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest. Endosc. 2020, 91, 1242–1250. [Google Scholar] [CrossRef]
- Ebigbo, A.; Mendel, R.; Probst, A.; Manzeneder, J.; Prinz, F.; de Souza, L.A.J.; Papa, J.; Palm, C.; Messmann, H. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut 2020, 69, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, R.; Requa, J.; Dao, T.; Ninh, A.; Tran, E.; Mai, D.; Lugo, M.; El-Hage Chehade, N.; Chang, K.J.; Karnes, W.E.; et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest. Endosc. 2020, 91, 1264–1271.e1. [Google Scholar] [CrossRef]
- Everson, M.A.; Garcia-Peraza-Herrera, L.; Wang, H.-P.; Lee, C.-T.; Chung, C.-S.; Hsieh, P.-H.; Chen, C.-C.; Tseng, C.-H.; Hsu, M.-H.; Vercauteren, T.; et al. A clinically interpretable convolutional neural network for the real-time prediction of early squamous cell cancer of the esophagus: Comparing diagnostic performance with a panel of expert European and Asian endoscopists. Gastrointest. Endosc. 2021, 94, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.-L.; Liu, W.; Liu, Y.; Zeng, X.-H.; Mou, Y.; Wu, C.-C.; Ye, L.-S.; Zhang, Y.-H.; He, L.; Feng, J.; et al. Artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: A multicenter study. Surg. Endosc. 2022, 36, 8651–8662. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; He, X.; Liu, M.; Xie, H.; An, P.; Zhang, J.; Zhang, H.; Ai, Y.; Tong, Q.; Guo, M.; et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: A randomized controlled trial. Endoscopy 2021, 53, 1199–1207. [Google Scholar] [CrossRef]
- Wu, L.; Shang, R.; Sharma, P.; Zhou, W.; Liu, J.; Yao, L.; Dong, Z.; Yuan, J.; Zeng, Z.; Yu, Y.; et al. Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: A single-centre, tandem, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2021, 6, 700–708. [Google Scholar] [CrossRef]
- Jiang, K.; Jiang, X.; Pan, J.; Wen, Y.; Huang, Y.; Weng, S.; Lan, S.; Nie, K.; Zheng, Z.; Ji, S.; et al. Current Evidence and Future Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis with Endoscopy: A Systematic and Meta-Analysis. Front. Med. 2021, 8, 629080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waddingham, W.; Graham, D.G.; Banks, M.R. Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia. Diagnostics 2024, 14, 301. https://doi.org/10.3390/diagnostics14030301
Waddingham W, Graham DG, Banks MR. Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia. Diagnostics. 2024; 14(3):301. https://doi.org/10.3390/diagnostics14030301
Chicago/Turabian StyleWaddingham, William, David G. Graham, and Matthew R. Banks. 2024. "Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia" Diagnostics 14, no. 3: 301. https://doi.org/10.3390/diagnostics14030301
APA StyleWaddingham, W., Graham, D. G., & Banks, M. R. (2024). Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia. Diagnostics, 14(3), 301. https://doi.org/10.3390/diagnostics14030301